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Abstract

The main aim of this note is to present in juxtaposition conti
nuous one-component and two-component models of geoma-
terials appearing in construction of embankment dams. ih pa
ticular such features as saturation with water and seepage p
blems, modeling of fluidization yielding piping, generaliz

ons of the Darcy law and changes of porosity are presented.

I ntroduction

Inspection of textbooks and manuals for civil and geotecdini
engineers reveals that the design of embankment dams and le-
vees is still based on two issues. It is either a stabilitylyeis
based on the one-dimensional Mohr-Coulomb relation

)

where 7 is the shear strengtly; denotes the normal effec-
tive stress on the failure plane amrdy denote the cohesi-
on intercept and the friction angle, respectively, or thase
flow nets and streamlines obtained by a graphical, for ingtan
Schmidt’s, method (e.g. see Figure 1).

T=c+ otan¢,
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Figure 1. An example of flow nets for two types of embankment dams

Sometimes it is supplemented by Darcy’s law for the estima-
tion of seepage. The rest of those books contains hundreds of
examples of existing constructions, a description of thei
havior under various loading conditions and failures. Base

this empirical knowledge some heuristic hints for desigree
formulated.

This is very different from engineering books in other biizes

of civil engineering where the design is based on theoretica

models which have replaced a sheer collection of obsenatio
This yields as well a very fruitful development of softwaos f
computer aided design, such as CAD, Novapoint, etc. M. and
I. VANICEK [22] wrote in their book: 'When we look back on
the whole process through which the geotechnical engireeer h
to go, we arrive at the conclusion that the degree of accuracy
is significantly lower than for steel or concrete structuvbe-

re the differences in the design can be in the order of a few
percent, while for earth structures these differences eaim b
order of tens of percent. That is why on one side the excellent
knowledge of soil behavior and treatment of soil as consitruc
on material can bring significant savings against convaatio
design but on the other one disregarding this can lead to-fail
res of earth structures.

However, the situation is slowly changing to the better beca
se the research in the field of soil mechanics has made a tre-
mendous progress and many theoretical issues such afailur
criteria, fluid flow in porous and granular media, heat transf

in soils, micro-macro transitions in theoretical modehmvigich
incorporate porosity changes, saturation, phase chadges;

mics and, particularly, thixotropy or sound wave propawati

in soils and rocks were successfully developed.

A choice of theoretical descriptions of aquifers, embankise
and many other geotechnical structures depends on the class
of phenomena which we want to embrace and on conditions in
which the construction or its part should work. For instarece
mechanical loading of a granular dry material yields fragme
tation and abrasion. The same mechanical loading of a water
saturated granular material yields diffusion, fragmeatabut
much less abrasion. Hence, in the first case we may expect con-
siderable changes of porosity while in the second case elsang
of permeability, piping, particle segregation etc. playi@mn
portant role. This means that the water content in a geoiahter
may essentially influence the choice of the theoreticalrijesc
tion which is needed.

In this work we present a juxtaposition of the two fundamenta
approaches to the theoretical description of thermomechan
cal behavior of geotechnical materials. On the one hang-sid
we sketch a one-component model with additional internal va
riables. This may be appropriate for the description oftglas
behavior of geomaterials, abrasion but, in many cases of pra
tical interest, also for the description of diffusion. O tither
hand, we present a two-component model of a saturated gra-
nular material. This model contains a number of additiomal v



riables which are able to describe such phenomena as diffusi
with variable permeability, localization of deformationg. on
filters) and internal erosion processes. This yields a #teor
cal description of the backward erosion, concentrated dmak
suffusion which are, in turn, main reasons for piping.

One-component modeling of geomaterials

The origin of the one-component models of geomaterialsstem
from the classical model of elastoplastic materials. They b
long to two groups: one describing dry granular materiaits dr
ven by elastic properties and frictional interactions cdigs
and the other one describing fully saturated granular rizdger
in which viscosity rather then friction contributes to thecha-

Experience shows that granular materials behave pldsgtical
Consequently, the classical Mohr-Coulomb relation has be-
en extended to relate the stress tensor and the deformation
tensor. As the so-called hardening effects play an impbrtan
role in such models one had to introduce additional internal
variables (the so-called back-stress). The result is time- ca
clay model commonly used in the literature on soil mecha-
nics (e.g. see: D. MIR WooD [28], [29], LANCELLOTTA
[18]). As an alternative a so-called hypoplasticity wasant
duced (B\ER [3], WOLFFERSDORF[27], KOLYMBAS [16],
[17]). In contrast to the cam-clay model the hypoplasticity
is rate-dependent which means that the rate of deformation
Dy = 1[0v;/0x; 4+ Ov;/0x;] (it is related to the time de-
rivative of the deformation tensds;;) has an influence on the

nical response of the system. Both classes of models contain current values of the stress. The general constitutiveioela

the macroscopic deformatidd =B;;e; ® e; (the left Cauchy-
Green deformation tensor), the velocity= v;e; and the tem-
peraturef as unknown functions of the position and time

t. However, they differ in the set of unknown microstructural
variables. The first class contains only the roughrestiose
time derivatives is called the abrasion, while the second class
may contain the abrasion but it must contain also the pgrosit
n and the pore pressupeFor these quantities — fields, we have
to construct additional equations.

The classical approach is based on the set of conservatign la

for stresses in this model has the form

(6)

where ;; denotes an objective time derivative of the stress
tensor.

We do not need to go into details of these models in the pre-
sent work. Many of them can be found in the contribution of

BAUER [4] to the first conference of this series (i.e. [35]).

It remains to specify the internal energythe heat fluxg; and

6ij = fijloij, Dij.nl,

of mass, momentum and energy. In Cartesian reference frame the abrasior. For the first two quantities one usually assumes

they have the following form
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wherep is the bulk mass density,;;, are components of the
Cauchy stress tensdF, = o;.e; ® ey, b; are the body forces
(e.g. gravitational or centrifugally = byeg, ¢ is the spe-
cific internal energy and, are components of the heat flux
vector,q = gqxeg. It is often assumed that the real grains
of the material are incompressible. This means that the true
mass density®®, p = (1 —n)p*% (S for 'solid’ and R
for 'real’ or 'true’; in soil mechanics one denotes sometime
p 1 = 4), is constant. The porosity is related to the void ra-
tioe, 0 < e < oo, often used in soil mechanics, by the simple
relationn = e/(1+4e¢),0 < n < 1. Then the mass conservation
yields the relation for changes of

on 0
—+ 5
5‘t + 5‘xk ( )
In order to obtain the equations of the model of dry granular
materials we have to specify constitutive relations foesdr

tensoro;y, internal energy, heat fluxg, and the abrasioa.

(nvg) = 0.

that the classical Fourier model of heat conduction is valid
This may be questionable in some fast processes but for the
thermomechanical description of embakments it seems to be
sufficient. The distribution of temperature follows in tieo-
retical model from the energy conservation law (4). For the
purpose of our analysis it is sufficient to point out the ways
in which energy is transported in the medium. They are spe-
cified by contributions under théiv operator (i.e.%). The

first one is the convection. The second one, described,by
consists of two parts: the conductiap, and the diffusiongy

with g = q. + qq. The latter means that the energy is transpor-
ted by the relative motion of components. We do not go into
any details of this mechanism in this work. The conduction is
related to the transfer of energy due to the temperaturd-grad
ent. Finally, the last contributioril'v, is the bulk working of
stresses which is also of no interest in this work.

Conduction in isotropic materials is usually described Hoy t
linear Fourier law

q. = —Agradd, (7

wheref is the absolute temperature. The coefficigrthe heat
conductivity, is for soils heavily dependent on the morpiggl

In Figure 2 (compare: A/ROUKI [10]) we show an example of

a nomogram in which the dependence)ofs demonstrated
for various moisture contents (i.e. for various mass dessit
of the liquid if the mass density; = p° of the skeleton is
fixed), saturations (i.e. the volume fraction of the gas ® th
liquid component) and mass densities of the skeleton. As we
see, in this exampla varies between.1 to 1.4 W/mK.
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Figure 2. An example of nomograms for the heat conductivity petielence
on the soil density, saturation and moisture content

Unfortunately, the heat conductivity, cannot be derived by
means of any averaging procedure from microscopic conduc-
tivities of components. For this reason, we have to rely on em
pirical relations. These were proposed for soils since sdtne
years.
Recently developed experimental equipment such as TP O2
probe allow to make non-steady-state measurements of he-
at conductivity (e.g. A. @NTASZEWSKA [24]) for various
morphologies of soils. In the work, published in 2008{A8!
XI0ONG CHEN [7] has proposed the following empirical relati-
on for the conductivity

A=A [(1—b) S+ b, (8)
where S is the saturation,)\y is the grain heat con-
ductivity, A, 0.61 [W/mK] — heat conductivity
of water and b,c are fitting parameters. For example,
for sandy soils Ao 7.5 [W/mK], b 0.0022,
¢ = 0.78. In an implicit way, this relation accounts as well
for a dependence on temperature throngltand\,,.
The results for the heat conductivity and correspondingréae
tical one-component and multicomponent models play a-parti
cularly important role in description of freezing and frosia-
ving of soils.
The form of the equation for abrasion has a long history and
it goes back to the work of GobMAN and CowIN [13]. Ho-
wever, in this pioneering work the equation was proposed rat
her for changes of volume fraction than for the abrasion. It
was first the series of works of K. WL TER (e.g. [23], [25])
and the PhD Thesis of N. IRCHNER [15] where this equati-
on was thermodynamically justified. Its form follows frormeth
assumption that microstructural changes of the configurati

which is assumed to have the form

82(1 8h,
—87%+P(l+f),

ke

)
wherek is the material parameter describing the resistance of
the material to changes of its internal surface. Accordmg t
KIRCHNER [15]: 'change of surface properties includes the
smoothening of initially rough grain surface (that is,< 0)

as well as the roughening of initially smooth grain surfaces
(that is,a > 0)'. h; is the surface stress of abrasiérand f

are supply and production, respectively and the latter fnest
given by a constitutive law of its own.

The above sketched one-component model of dry geomaterials
is often extended by an equation describing the flow of water
through the saturated granular material. All equationsrites
bed above are assumed to remain unchanged. The seepage prc
cess through the saturated material is supposed to satisfy s
additional balance law which is justified experimentallycB

a justification goes back on works oRBCY [9] and it has be-

en incorporated in soil mechanics QN TERZAGHI [21]. In

the local form this law can be written in the form
k)ij 8])

Qi: L aIJ’

(10)
where(); is the so-called specific discharge, i.e. a relative ve-
locity of water with respect to the skeletd, is the matrix of
permeability which reduces to a scalafor isotropic materi-
als andu is the kinematic viscosity of water. It has been shown
that such a relation holds for small relative velocities athi
are connected with a laminar flow of the water (low Reynolds
number,Re < 1 = 10, J. BEAR [5]). In the case of fast flows
yielding turbulence (high Reynolds numbers) the Darcy law
does not hold. Most likely BRCHHEIMER [11] was the first
who proposed nonlinear corrections to (10) in order to descr
such flows. They play a particularly important role in preces
ses of piping, commonly appearing in embankment dams. A
more rational procedure of description of seepage is pexpos
by theories of multicomponent systems.

Two-component modeling of geomaterials

The thermomechanical model of a one-component geomaterial
can be considerably improved when one applies a theory of im-
miscible mixtures. We shall do so for fully saturated matisri

In this case the extension yields a better physical insighfidy
purposes of geotechnics it is not necessary. However, for pa
tially saturated materials such extensions are unavaidaid,
simultaneously, they are similar to two-component models i
many technical details. As the space of this article doeshot
low for the extensive treatment of immiscible mixtures ofipa
components we limit our attention only to two components: so

caused by the abrasion must be accompanied by the so-calledlid and water. Some properties of a three-component model of

configurational forces. Then the abrasigncorresponding to
the classical notion of momentum, must satisfy a balance law

an unsaturated material are discussed in the work .@&eRs
and WILMANSKI [2] in this Volume.



In the case of two components one has to describe the partial wherep is the pore pressure anid is the Helmholtz free ener-
macroscopic fields for each component. These are partial mas gy of the solid component dependent on deformations, porosi

densitiesp®, p™" with the bulk mass density = p° + pf’,
partial velocitiesv®, v with the bulk (barycentric) velocity
v = (p%/p) v + (p*/p) v¥, partial Cauchy stressé® =
a%ei ® ej, TI' = oFe; ® e; with the bulk stres& ~ T +
T*. These quantities must satisfy balance laws

Op* 0 | 4 o0y _
W—F%(P vi) =0, a=S5F, (11)
a(pavf‘) 0 a, o oy
gt oy PO UR) = (2
Do
= Dik | oy popo, (13)
a:L'k

o+ =0.

It is easy to check that conservation laws (3), (4) of a one-com
ponent model are then identically satisfied provided weawtg|
quadratic terms in relative velocitias®* — v which seems to
be well justified for processes in soils far from the struatur
loss of stability such as fluidization. The momentum source
p° = pfe; = —pf = —pFe; is related to the diffusion force.
In the case of an isotropic model linear in relative velestit
can be written in the form

(14)

where is the permeability coefficient. In the case of water
one can assume that the partial stress tefi€oiis spherical,
i.e. it reduces to the partial pressyré. Then the momentum
balance for the fluid written in Cartesian coordinates has th
form

ovF
P i
P ( ot

F
:_86]; +7 (vf — )+ pFbf.
(15)
This equation yields Darcy’s law for processes with small
changes of porosity and negligible inertial forces. In sach
case, it follows

ovF
+ U,I: a;k )

0
(of —0f) = -0 2P

whereny is the initial porosity andh ~ ng. This is identical
with (10) for isotropic materials with an appropriate defom

of the permeabilityk/n = ng /7. Hence the two-component
model yields the one-component model as a particular case.
On the other hand, the general form of partial momentum ba-
lance (13) admits also nonlinear contributions which yibigl
loss of stability of the fluid motion. If changes of porosityca
relative velocity are not small one can introduce the folfayv
relation for the source of momentum (seellWELM, WIL-
MANSKI [26])

p" = nop, (16)

s ((9%2'7

POV an

on afEi,

ty and relative velocity. This form of the source is justifiey
thermodynamic considerations which we shall not discuss in
this work. The simplest choice of the dependence on the rela-
tive velocity which yields piping is as follows

S —
Sag;—r(1+ v Y)x/ﬁ

V2 W —Y]
ry >0, Wz%(vf—v-s) (UF—US),

(18)
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wherel" is a material parameter andis the threshold velocity.

As shown in [26] this model yields a quantitative agreement
with experiments on sands.

Changes of porosity may be described by the relation (5)oll
wing from the assumption on incompressibility of grains-Ho
wever, there is an evidence stemming from poroacoustids tha
such an assumption eliminates an important P2-wave from the
model (e.g. WLMANSKI [33]). Consequently, one has to in-
troduce an equation for porosity. As already mentioned the fi
attempt has been made byoGbMAN and GowiIN [13] which

was subsequently extended by Passman, Nunziato and Walsh
[20]. This second order equation is still used but it seentreto
more appropriate for abrasion than porosity. Another [bissi

ty is offered by a simple balance equationI(MANSKI [30],

(31])

o 40 0
(at”i axi)A“axi

(@ (oF ) =,

(19)
A, =n—ng,

where® is a material parametet, is the value of porosity in
thermodynamical equilibrium and is the source of porosity
related to relaxation processes. This equation is thermepdy
mically admissible and yields a consistent model for large d
formations (WLMANSKI [34]). In the case of small deforma-
tions of soils this equation can be immediately solved. W(ith
relaxation processes (= 0) it yields the following relation

nn0(1+56+¢(e€)>, (20)

ng
whereny is the initial porosity and both material parametérs
and ® are given in terms of compressibilities of components.
e ande are macroscopic volume changes of the solid and fluid
component, respectively. The same relation follows withim
famous Biot model (e.g. ®T [6]). The thermodynamic none-
quilibrium contributionn% (e — €) is usually small. For sand
saturated with water it is less then 10% of the first term. As a
mater of fact the first paper on changes of porosity refetiong
microstructural properties of granular materials wastemiby
F. GASSMANN in 1953 [12] (see: WLMANSKI [32] for the de-
tailed discussion), and, in this paper, Gassmann proptsed t
first (equilibrium) part of the relation (20). On the othemnda
the values of material parameteare such that only in the ran-
ge of porosities smaller than app. 0.2 differences betwieen t



relation (20) and values following from the incompreséipil
assumption are visible. In Figure 3 we compare the values of
¢ following under the assumption of incompressibility (soli
line) with those for two values of compressibility modulus 3
GPa and 48 GPa with air in pores — these two curves coincide
with the line for incompressible case, and with water in pore

— these are two lower curves (broken lines).

One can conclude the above remarks that the two-component
model may play an important role in geotechnics for proces-
ses in which nonlinearities are essential. This concemye la
deformations and, consequently, large changes of porasiy
permeability. Of particular importance are, however, éarg-
lative (seepage) velocities which yield the loss of stabidind
piping. Otherwise one-component models seem to be accep-
table for both dry and wet granular materials of geotechnica
bearing.

incamprassibia
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Figure 3. Values of material parametefor dry and wet material with two
values of compressibility modulus of grains and for incomphésgrains

Concluding remark

Three important issues of theoretical modeling should be-me
tioned.

The first one is the formulation of boundary conditions. leon
component models these are classical and extensivellysdisc
sed in elasticity or plasticity. In multicomponent modédie t
problem is more complicated because one has two formulate
additionl conditions for the extended set of partial diffeti-

al equations. Even in the case of impermeable boundaries and
such are phreatic surfaces of contact between saturatethand
domains of soils one has to formulate an equation of motion of
the surface itself. Such moving boundaries yield the bounda
ry value problems with free boundaries and these are usual-
ly ill-posed and create big mathematical problems. A phajsic
presentation of this problem can be found in the book Bf B

AR [5]. The situation is even worse on permeable surfaces. A

part of the conditions on such surfaces has been formulgted b
von Terzaghi who had shown that the external loading must
be taken over by the whole stress veclam = o;,n; whe-
ren = nge; is the unit normal vector of the boundary. The
second condition was extensively discussed in the litezatu
and it concerns the flow through the boundary. This bounda-
ry condition for inviscid fluids relates the pressure diffiece
and the velocity of flow through the surface. It contains an ad
ditional material parameter, the so-called surface pebitiga

It plays a very important role on contact surfaces betwegn di
ferent layers saturated with water and on the external cairfa
which is the seepage face.

The second issue appears if the transition zones of not fully
saturated soils appear. They are created, for examplefiby in
tration processes. In such processes one has to accounéfor t
capillary effects and an appropriate theoretical modeltrdes
scribe more than one fluid component. It is only in recent few
years that such models are developed. Presentation ofa line
three-component model with cappilary effects in applmasi

to poroacoustics can be found in the book of B.e&RS[1].

The third important issue is the development of software for
geotechnical engineers which would account for all those-th
retical problems which we have mentioned above. Such com-
putational packages do not exist yet. It is only very reckat t
the research in this direction has been intensified. Inqat,

it concerns the formulation of some macroscopic constiuti
laws in terms of microscopic material properties in which th
micro-macro transition would be done in a numerical way. H.
MATTSSON, J. G. |. HELLSTROM, S. LUNDSTROM [19] for-
mulate this problem in their extensive survey work from the
year 2008 in the following manner: 'The main objective with
this literature survey is to elucidate the state of the afinef
ternal erosion in embankment dams in order to be able to for-
mulate a research program for numerical modelling of irgkrn
erosion in a physically sound manner.
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