
Modeling of thermomechanical behaviour of embankment dams;
one-component vs. multicomponent description

K. Wilmanski

University of Zielona Gora, ul. prof. Z. Szafrana 1, PL-65-516 Zielona Ǵora, Poland

E-mail: krzysztofwilmanski@t-online.de

Abstract

The main aim of this note is to present in juxtaposition conti-
nuous one-component and two-component models of geoma-
terials appearing in construction of embankment dams. In par-
ticular such features as saturation with water and seepage pro-
blems, modeling of fluidization yielding piping, generalizati-
ons of the Darcy law and changes of porosity are presented.

Introduction

Inspection of textbooks and manuals for civil and geotechnical
engineers reveals that the design of embankment dams and le-
vees is still based on two issues. It is either a stability analysis
based on the one-dimensional Mohr-Coulomb relation

� = c+ � tan�, (1)

where � is the shear strength,� denotes the normal effec-
tive stress on the failure plane andc, � denote the cohesi-
on intercept and the friction angle, respectively, or theseare
flow nets and streamlines obtained by a graphical, for instance
Schmidt’s, method (e.g. see Figure 1).

Figure 1. An example of flow nets for two types of embankment dams

Sometimes it is supplemented by Darcy’s law for the estima-
tion of seepage. The rest of those books contains hundreds of
examples of existing constructions, a description of theirbe-
havior under various loading conditions and failures. Based on
this empirical knowledge some heuristic hints for designers are
formulated.
This is very different from engineering books in other branches
of civil engineering where the design is based on theoretical

models which have replaced a sheer collection of observations.
This yields as well a very fruitful development of software for
computer aided design, such as CAD, Novapoint, etc. M. and
I. VANICEK [22] wrote in their book: ’When we look back on
the whole process through which the geotechnical engineer has
to go, we arrive at the conclusion that the degree of accuracy
is significantly lower than for steel or concrete structure,whe-
re the differences in the design can be in the order of a few
percent, while for earth structures these differences can be in
order of tens of percent. That is why on one side the excellent
knowledge of soil behavior and treatment of soil as constructi-
on material can bring significant savings against conventional
design but on the other one disregarding this can lead to failu-
res of earth structures.’

However, the situation is slowly changing to the better becau-
se the research in the field of soil mechanics has made a tre-
mendous progress and many theoretical issues such as failure
criteria, fluid flow in porous and granular media, heat transfer
in soils, micro-macro transitions in theoretical modelingwhich
incorporate porosity changes, saturation, phase changes,dyna-
mics and, particularly, thixotropy or sound wave propagation
in soils and rocks were successfully developed.

A choice of theoretical descriptions of aquifers, embankments
and many other geotechnical structures depends on the class
of phenomena which we want to embrace and on conditions in
which the construction or its part should work. For instance, a
mechanical loading of a granular dry material yields fragmen-
tation and abrasion. The same mechanical loading of a water
saturated granular material yields diffusion, fragmentation but
much less abrasion. Hence, in the first case we may expect con-
siderable changes of porosity while in the second case changes
of permeability, piping, particle segregation etc. play anim-
portant role. This means that the water content in a geomaterial
may essentially influence the choice of the theoretical descrip-
tion which is needed.

In this work we present a juxtaposition of the two fundamental
approaches to the theoretical description of thermomechani-
cal behavior of geotechnical materials. On the one hand-side,
we sketch a one-component model with additional internal va-
riables. This may be appropriate for the description of plastic
behavior of geomaterials, abrasion but, in many cases of prac-
tical interest, also for the description of diffusion. On the other
hand, we present a two-component model of a saturated gra-
nular material. This model contains a number of additional va-



riables which are able to describe such phenomena as diffusion
with variable permeability, localization of deformation (e.g. on
filters) and internal erosion processes. This yields a theoreti-
cal description of the backward erosion, concentrated leakand
suffusion which are, in turn, main reasons for piping.

One-component modeling of geomaterials

The origin of the one-component models of geomaterials stems
from the classical model of elastoplastic materials. They be-
long to two groups: one describing dry granular materials dri-
ven by elastic properties and frictional interactions of grains
and the other one describing fully saturated granular materials
in which viscosity rather then friction contributes to the mecha-
nical response of the system. Both classes of models contain
the macroscopic deformationB =Bijei⊗ej (the left Cauchy-
Green deformation tensor), the velocityv = viei and the tem-
perature� as unknown functions of the positionx and time
t. However, they differ in the set of unknown microstructural
variables. The first class contains only the roughnessa whose
time derivativeȧ is called the abrasion, while the second class
may contain the abrasion but it must contain also the porosity
n and the pore pressurep. For these quantities – fields, we have
to construct additional equations.
The classical approach is based on the set of conservation laws
of mass, momentum and energy. In Cartesian reference frame
they have the following form
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∂t
+
∂ (�vi)

∂xi
= 0, (2)
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where� is the bulk mass density,�ik are components of the
Cauchy stress tensor,T = �ikei ⊗ ek, bi are the body forces
(e.g. gravitational or centrifugal),b = bkek, " is the spe-
cific internal energy andqk are components of the heat flux
vector, q = qkek. It is often assumed that the real grains
of the material are incompressible. This means that the true
mass density�SR, � = (1− n) �SR (S for ’solid’ and R
for ’real’ or ’true’; in soil mechanics one denotes sometimes
�SR = 
), is constant. The porosityn is related to the void ra-
tio e, 0 ≤ e < ∞, often used in soil mechanics, by the simple
relationn = e/(1+e), 0 ≤ n ≤ 1. Then the mass conservation
yields the relation for changes ofn

∂n

∂t
+

∂

∂xk
(nvk) = 0. (5)

In order to obtain the equations of the model of dry granular
materials we have to specify constitutive relations for stress
tensor�ik, internal energy", heat fluxqk and the abrasioṅa.

Experience shows that granular materials behave plastically.
Consequently, the classical Mohr-Coulomb relation has be-
en extended to relate the stress tensor and the deformation
tensor. As the so-called hardening effects play an important
role in such models one had to introduce additional internal
variables (the so-called back-stress). The result is the cam-
clay model commonly used in the literature on soil mecha-
nics (e.g. see: D. MUIR WOOD [28], [29], LANCELLOTTA

[18]). As an alternative a so-called hypoplasticity was intro-
duced (BAUER [3], WOLFFERSDORF[27], KOLYMBAS [16],
[17]). In contrast to the cam-clay model the hypoplasticity
is rate-dependent which means that the rate of deformation
Dij = 1

2
[∂vi/∂xj + ∂vj/∂xi] (it is related to the time de-

rivative of the deformation tensorBij) has an influence on the
current values of the stress. The general constitutive relation
for stresses in this model has the form

�̊ij = fij [�ij , Dij , n] , (6)

where �̊ij denotes an objective time derivative of the stress
tensor.
We do not need to go into details of these models in the pre-
sent work. Many of them can be found in the contribution of
BAUER [4] to the first conference of this series (i.e. [35]).
It remains to specify the internal energy", the heat fluxqk and
the abrasioṅa. For the first two quantities one usually assumes
that the classical Fourier model of heat conduction is valid.
This may be questionable in some fast processes but for the
thermomechanical description of embakments it seems to be
sufficient. The distribution of temperature follows in the theo-
retical model from the energy conservation law (4). For the
purpose of our analysis it is sufficient to point out the ways
in which energy is transported in the medium. They are spe-
cified by contributions under thediv operator (i.e. ∂

∂xk

). The
first one is the convection. The second one, described byq,
consists of two parts: the conduction,qc and the diffusion,qd

with q = qc+qd. The latter means that the energy is transpor-
ted by the relative motion of components. We do not go into
any details of this mechanism in this work. The conduction is
related to the transfer of energy due to the temperature gradi-
ent. Finally, the last contribution,Tv, is the bulk working of
stresses which is also of no interest in this work.
Conduction in isotropic materials is usually described by the
linear Fourier law

qc = −�grad�, (7)

where� is the absolute temperature. The coefficient�, the heat
conductivity, is for soils heavily dependent on the morphology.
In Figure 2 (compare: FAROUKI [10]) we show an example of
a nomogram in which the dependence of� is demonstrated
for various moisture contents (i.e. for various mass densities
of the liquid if the mass density
d = �S of the skeleton is
fixed), saturations (i.e. the volume fraction of the gas to the
liquid component) and mass densities of the skeleton. As we
see, in this example� varies between0.1 to 1.4 W/mK.



Figure 2. An example of nomograms for the heat conductivity in dependence
on the soil density, saturation and moisture content

Unfortunately, the heat conductivity,�, cannot be derived by
means of any averaging procedure from microscopic conduc-
tivities of components. For this reason, we have to rely on em-
pirical relations. These were proposed for soils since some30
years.
Recently developed experimental equipment such as TP O2
probe allow to make non-steady-state measurements of he-
at conductivity (e.g. A. GONTASZEWSKA [24]) for various
morphologies of soils. In the work, published in 2008, SHAN

X IONG CHEN [7] has proposed the following empirical relati-
on for the conductivity

� = �1−n
0

�nw [(1− b)S + b]
cn
, (8)

where S is the saturation,�0 is the grain heat con-
ductivity, �w = 0.61 [W/mK] – heat conductivity
of water and b, c are fitting parameters. For example,
for sandy soils �0 = 7.5 [W/mK], b = 0.0022,
c = 0.78. In an implicit way, this relation accounts as well
for a dependence on temperature through�0 and�w.
The results for the heat conductivity and corresponding theore-
tical one-component and multicomponent models play a parti-
cularly important role in description of freezing and frosthea-
ving of soils.
The form of the equation for abrasion has a long history and
it goes back to the work of GOODMAN and COWIN [13]. Ho-
wever, in this pioneering work the equation was proposed rat-
her for changes of volume fraction than for the abrasion. It
was first the series of works of K. HUTTER (e.g. [23], [25])
and the PhD Thesis of N. KIRCHNER [15] where this equati-
on was thermodynamically justified. Its form follows from the
assumption that microstructural changes of the configuration
caused by the abrasion must be accompanied by the so-called
configurational forces. Then the abrasionȧ, corresponding to
the classical notion of momentum, must satisfy a balance law

which is assumed to have the form

�k
∂2a

∂t2
=
∂ℎi
∂xi

+ � (l + f) , (9)

wherek is the material parameter describing the resistance of
the material to changes of its internal surface. According to
K IRCHNER [15]: ’change of surface properties includes the
smoothening of initially rough grain surface (that is,ȧ < 0)
as well as the roughening of initially smooth grain surfaces
(that is,ȧ > 0)’. ℎi is the surface stress of abrasion.l andf
are supply and production, respectively and the latter mustbe
given by a constitutive law of its own.
The above sketched one-component model of dry geomaterials
is often extended by an equation describing the flow of water
through the saturated granular material. All equations descri-
bed above are assumed to remain unchanged. The seepage pro-
cess through the saturated material is supposed to satisfy some
additional balance law which is justified experimentally. Such
a justification goes back on works of DARCY [9] and it has be-
en incorporated in soil mechanics byVON TERZAGHI [21]. In
the local form this law can be written in the form

Qi = −kij
�

∂p

∂xj
, (10)

whereQi is the so-called specific discharge, i.e. a relative ve-
locity of water with respect to the skeleton,kij is the matrix of
permeability which reduces to a scalark for isotropic materi-
als and� is the kinematic viscosity of water. It has been shown
that such a relation holds for small relative velocities which
are connected with a laminar flow of the water (low Reynolds
number,Re < 1 ÷ 10, J. BEAR [5]). In the case of fast flows
yielding turbulence (high Reynolds numbers) the Darcy law
does not hold. Most likely FORCHHEIMER [11] was the first
who proposed nonlinear corrections to (10) in order to describe
such flows. They play a particularly important role in proces-
ses of piping, commonly appearing in embankment dams. A
more rational procedure of description of seepage is proposed
by theories of multicomponent systems.

Two-component modeling of geomaterials

The thermomechanical model of a one-component geomaterial
can be considerably improved when one applies a theory of im-
miscible mixtures. We shall do so for fully saturated materials.
In this case the extension yields a better physical insight but for
purposes of geotechnics it is not necessary. However, for par-
tially saturated materials such extensions are unavoidable and,
simultaneously, they are similar to two-component models in
many technical details. As the space of this article does notal-
low for the extensive treatment of immiscible mixtures of many
components we limit our attention only to two components: so-
lid and water. Some properties of a three-component model of
an unsaturated material are discussed in the work of ALBERS

and WILMANSKI [2] in this Volume.



In the case of two components one has to describe the partial
macroscopic fields for each component. These are partial mass
densities�S , �F with the bulk mass density� = �S + �F ,
partial velocitiesvS , vF with the bulk (barycentric) velocity
v =

(

�S/�
)

vS +
(

�F /�
)

vF , partial Cauchy stressesTS =

�S
ijei ⊗ ej , TF = �F

ijei ⊗ ej with the bulk stressT ≈ TS +
TF . These quantities must satisfy balance laws

∂��

∂t
+

∂

∂x
(��v�i ) = 0, � = S, F, (11)

∂ (��v�i )

∂t
+

∂

∂xk
(��v�i ⊗ v�k ) = (12)

=
∂��

ik

∂xk
+ p̂�i + ��b�i , (13)

p̂Si + p̂Fi = 0.

It is easy to check that conservation laws (3), (4) of a one com-
ponent model are then identically satisfied provided we neglect
quadratic terms in relative velocitiesv� − v which seems to
be well justified for processes in soils far from the structural
loss of stability such as fluidization. The momentum source
p̂S = p̂Si ei = −p̂F = −p̂Fi ei is related to the diffusion force.
In the case of an isotropic model linear in relative velocities it
can be written in the form

p̂S = �
(

vF − vS
)

, (14)

where� is the permeability coefficient. In the case of water
one can assume that the partial stress tensorTF is spherical,
i.e. it reduces to the partial pressurepF . Then the momentum
balance for the fluid written in Cartesian coordinates has the
form

�F
(

∂vFi
∂t

+ vFk
∂vFi
∂xk

)

= −∂p
F

∂xi
+ �

(

vFi − vSi
)

+ �F bFi .

(15)
This equation yields Darcy’s law for processes with small
changes of porosity and negligible inertial forces. In sucha
case, it follows

pF = n0p,
(

vFi − vSi
)

= −n0
�

∂p

∂xi
, (16)

wheren0 is the initial porosity andn ≈ n0. This is identical
with (10) for isotropic materials with an appropriate definition
of the permeabilityk/� = n0/�. Hence the two-component
model yields the one-component model as a particular case.
On the other hand, the general form of partial momentum ba-
lance (13) admits also nonlinear contributions which yieldthe
loss of stability of the fluid motion. If changes of porosity and
relative velocity are not small one can introduce the following
relation for the source of momentum (see: WILHELM , WIL -
MANSKI [26])

p̂Si = �
(

vFi − vSi
)

−
(

p+ �S
∂ S

∂n

)

∂n

∂xi
, (17)

wherep is the pore pressure and S is the Helmholtz free ener-
gy of the solid component dependent on deformations, porosi-
ty and relative velocity. This form of the source is justifiedby
thermodynamic considerations which we shall not discuss in
this work. The simplest choice of the dependence on the rela-
tive velocity which yields piping is as follows

�S
∂ S

∂n
=

Γ√
2

(

1 +
W − Y

∣W − Y ∣

)√
W, (18)

Γ, Y > 0, W =
1

2

(

vFi − vSi
) (

vFi − vSi
)

,

whereΓ is a material parameter andY is the threshold velocity.
As shown in [26] this model yields a quantitative agreement
with experiments on sands.
Changes of porosity may be described by the relation (5) follo-
wing from the assumption on incompressibility of grains. Ho-
wever, there is an evidence stemming from poroacoustics that
such an assumption eliminates an important P2-wave from the
model (e.g. WILMANSKI [33]). Consequently, one has to in-
troduce an equation for porosity. As already mentioned the first
attempt has been made by GOODMAN and COWIN [13] which
was subsequently extended by Passman, Nunziato and Walsh
[20]. This second order equation is still used but it seems tobe
more appropriate for abrasion than porosity. Another possibili-
ty is offered by a simple balance equation (WILMANSKI [30],
[31])

(

∂

∂t
+ vSi

∂

∂xi

)

Δn +
∂

∂xi

(

Φ
(

vFi − vSi
))

= n̂, (19)

Δn = n− nE,

whereΦ is a material parameter,nE is the value of porosity in
thermodynamical equilibrium and̂n is the source of porosity
related to relaxation processes. This equation is thermodyna-
mically admissible and yields a consistent model for large de-
formations (WILMANSKI [34]). In the case of small deforma-
tions of soils this equation can be immediately solved. Without
relaxation processes (n̂ = 0) it yields the following relation

n = n0

(

1 + �e+
Φ

n0
(e− ")

)

, (20)

wheren0 is the initial porosity and both material parameters�
andΦ are given in terms of compressibilities of components.
e and" are macroscopic volume changes of the solid and fluid
component, respectively. The same relation follows withinthe
famous Biot model (e.g. BIOT [6]). The thermodynamic none-
quilibrium contribution Φ

n0

(e− ") is usually small. For sand
saturated with water it is less then 10% of the first term. As a
mater of fact the first paper on changes of porosity referringto
microstructural properties of granular materials was written by
F. GASSMANN in 1953 [12] (see: WILMANSKI [32] for the de-
tailed discussion), and, in this paper, Gassmann proposed the
first (equilibrium) part of the relation (20). On the other hand,
the values of material parameter� are such that only in the ran-
ge of porosities smaller than app. 0.2 differences between the



relation (20) and values following from the incompressibility
assumption are visible. In Figure 3 we compare the values of
� following under the assumption of incompressibility (solid
line) with those for two values of compressibility modulus 35
GPa and 48 GPa with air in pores – these two curves coincide
with the line for incompressible case, and with water in pores
– these are two lower curves (broken lines).
One can conclude the above remarks that the two-component
model may play an important role in geotechnics for proces-
ses in which nonlinearities are essential. This concerns large
deformations and, consequently, large changes of porosityand
permeability. Of particular importance are, however, large re-
lative (seepage) velocities which yield the loss of stability and
piping. Otherwise one-component models seem to be accep-
table for both dry and wet granular materials of geotechnical
bearing.

Figure 3. Values of material parameter� for dry and wet material with two
values of compressibility modulus of grains and for incompressible grains

Concluding remark

Three important issues of theoretical modeling should be men-
tioned.
The first one is the formulation of boundary conditions. In one-
component models these are classical and extensivelly discus-
sed in elasticity or plasticity. In multicomponent models the
problem is more complicated because one has two formulate
additionl conditions for the extended set of partial differenti-
al equations. Even in the case of impermeable boundaries and
such are phreatic surfaces of contact between saturated anddry
domains of soils one has to formulate an equation of motion of
the surface itself. Such moving boundaries yield the bounda-
ry value problems with free boundaries and these are usual-
ly ill-posed and create big mathematical problems. A physical
presentation of this problem can be found in the book of BE-
AR [5]. The situation is even worse on permeable surfaces. A

part of the conditions on such surfaces has been formulated by
von Terzaghi who had shown that the external loading must
be taken over by the whole stress vectorTn = �iknk whe-
re n = nkek is the unit normal vector of the boundary. The
second condition was extensively discussed in the literature
and it concerns the flow through the boundary. This bounda-
ry condition for inviscid fluids relates the pressure difference
and the velocity of flow through the surface. It contains an ad-
ditional material parameter, the so-called surface permeability.
It plays a very important role on contact surfaces between dif-
ferent layers saturated with water and on the external surface
which is the seepage face.
The second issue appears if the transition zones of not fully
saturated soils appear. They are created, for example, by infil-
tration processes. In such processes one has to account for the
capillary effects and an appropriate theoretical model must de-
scribe more than one fluid component. It is only in recent few
years that such models are developed. Presentation of a linear
three-component model with cappilary effects in applications
to poroacoustics can be found in the book of B. ALBERS [1].
The third important issue is the development of software for
geotechnical engineers which would account for all those theo-
retical problems which we have mentioned above. Such com-
putational packages do not exist yet. It is only very recent that
the research in this direction has been intensified. In particular,
it concerns the formulation of some macroscopic constitutive
laws in terms of microscopic material properties in which the
micro-macro transition would be done in a numerical way. H.
MATTSSON, J. G. I. HELLSTRÖM, S. LUNDSTRÖM [19] for-
mulate this problem in their extensive survey work from the
year 2008 in the following manner: ’The main objective with
this literature survey is to elucidate the state of the art ofin-
ternal erosion in embankment dams in order to be able to for-
mulate a research program for numerical modelling of internal
erosion in a physically sound manner.’
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(2004)

[33] K. W ILMANSKI ; A few remarks on Biot’s model and linear acoustics of
poroelastic saturated materials,Soil Dynamics and Earthquake Enginee-
ring, 26 509–536, (2006).

[34] K. W ILMANSKI ; Continuum Thermodynamics. Part I: Foundations,
WorldScientific, Singapore (2008).

[35] YUEMING ZHU, SIHONG L IU , SHENG QIANG , ABRAHAM CHIU ;
Long Time Effects and Seepage Behavior of Dams,Hohai University
Press (2008).


