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Abstract

Macroscopic modeling of soils is based on a number of pro-
perties which refer to the mesoscopic morphology. The most
fundamental parameters of this art are

I. coupling parameters between partial stresses of
components and deformations of components,
2. porosities
3. saturation
4. permeability and diffusivity, tortuosity.
They are discussed in this note.

Introduction

Thermodynamic modeling of soils develops as a brunch of the
theory of immiscible mixtures. This modern continuous ap-
proach to systems with multicomponent structures whose one
component is solid has been initiated by works of R. M. Bowen
¢.g. [1]). Numerous nonlinear effects in porous and granular
materials yield in such a modeling a necessity of application
of rather complex mathematical tools. This complexity is then
hidden in modern computer programs whose applications in
cngineering do not require high mathematical skills from soft-
ware users.

However, such thermodynamic models of soils require as well
an identification of various quantities which do not usually ap-
pear in classical continuous models. This concerns, in particu-
Lar. geometrical properties of such systems, true properties of
their components and some process variables characteristic for
+vstems with microstructure. We call this identification the mo-
“cling of soil morphology. To name a few examples, one has
0 identity the porosity, saturation, moisture, capillary pressu-
= permeability and many others. This leads very often to con-
“usion and misinterpretation of results. For this reason, in this
work we show fundamental quantities of thermodynamic mo-
“els of immiscible mixtures appearing in description of soils
wod their relation to quantities commonly used by soil engi-
mecTs.

M

Micro-macro transitions for porous materials

"5 construction of thermodynamic models of materials with
sl randomly distributed voids requires always a smearing-
s procedure which transforms functions on complicated and

- crent domains to a common domain, say By, which, in turn,
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is identified with a continuous porous medium. Such construc-
tions for multicomponent systems with a relative motion (dif-
tusion) yield the so-called immiscible mixtures. Quantities ap-
pearing in such models are not directly measurable and require
certain identification rules. In some cases these rules can be
simply constructued by volume averaging and in some other
cases they require more sophisticated methods of identifica-
tion. We begin our presentation with a few typical quantities
which follow from the former procedure.

The volume averaging is performed by means of the so-called
Representative Elementary Volume (REV, e.g. [2]) consisting
of points Z. REV is small enough to be replaced by a ma-
terial point X of By at which a set of macroscopic quantities
replaces real (true) quantities of the microdomain RE'V. For
three-component systems which we consider in this work, the
following quantities are defined by averaging over RE'V (X, t)
prescribed to the point X By at the instant of time ¢:

1. Porosity
1

i LX‘ fj =1- 7‘]_01 {HEV_)

/ Z(Z.8)dVz, (1)
REV(X.t)

where y° (..t) is the characteristic function of the skeleton,
i.e. it is equal to one if the point Z is occupied by a particle
of the skeleton (solid phase) at the instant of time ¢, and ze-
ro otherwise, and vol (REV) = V' is the volume of REV . In
continuous models, the porosity is usually identical with the
porosity available for the transport in pores. This means that,
for instance, contributions of dead-end channels are not inclu-
ded in n. The latter contribute to changes of the true (real) ef-

fective properties of the skeleton.
2. Mass density of the skeleton
1

c o
AL

f A s
REV(X.t)
(2)
where pf (Z. ) is the real (true) mass density of the skeleton
at the point Z and at the instant of time .

3. Mass density of the liquid

1

Ly o
P (Xt) = ST REY

/ ptR(Z,t) X" (Z,1) dVg,

REV(X,t)
(3)
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where p=f (Z,t) is the real (true) mass density of the liquid
at the point Z and at the instant of time ¢, and x” (.. t) is the
characteristic function of the liquid, i.e. it is equal to one if the
point Z is occupied by a particle of the liquid at the instant of
time £, and zero otherwise.

4, Mass density of the gas

1

G -
Xt = S REY)

/ pT(Z,t) XC (Z,t)dVz,
REV(X,t)
4)

where p@ft (Z.t) is the real (true) mass density of the gas at
the point Z and at the instant of time ¢, and x“ (..t) is the
characteristic function of the gas, i.e. it is equal to one if the
point Z is occupied by a particle of the gas at the instant of
time ¢, and zero otherwise.

In many cases of practical importance, one assumes a micro-
homogeneity of the microstructure which means that true mass
densities are approximately constant on REV. Then

05 = (1-n)pSR,  pb =nSp=E, 5
p°=n(1-5)p%%, n=tTTC, ‘
= / X (Z.t)dVz, (6)
REV(X.t)
where S denotes the saturation
S=Vi/(VL+Va), ™)

and pSB. ptT pCR are evaluated in an arbitrary point Zg €
REV (X.t) (microhomogeneity!).
Sometimes the product

0=nS=V,/V, V=Vsg+ V4 Vg (8)

is called the volumetric water content. This should be distin-
guished from the gravimetric water content (a moisture fracti-
on)

w=mw = M/ Ms= ;JLRF}j (p‘mlf's) !

Vi = nSV, Ve=(1-n)V,

9

i.e. it is the fraction of the mass of liquid to the mass of the (re-
al, true, dry) skeleton. Certainly, bearing relations (5) in mind,
it can be written in the form

mw = pL}.-‘fpS. (10)

Consequently, in contrast to porosity, 2, and saturation, S. neit-

her the volumetric water content, £, nor the moisture fraction,
.. are independent microstructural quantities. However, the

latter is sometimes used as a measure of compactness of soils

reflected by the partial mass density of the skeleton, 0

The construction of volume averages illustrated above fails in

the case of transport coefficients. This concerns both classical

coefficients such as heat conductivity or hydraulic conducti-
vity, as well as partial stresses. In the latter case, one makes
sometimes simplifying assumptions

p° =(1-n)p%R, pt =nSprF,
p(_x:n(l_S)pG‘B fJF:})L_T'pG:onR (11
})FH = Sp‘["R +(1-15) ;?_?GR.

where p® = —1/3trT¥ is the partial pressure in the skeleton
(T* denotes the partial Cauchy stress tensor in the skeleton)
and p® denotes the true (real) pressure in the skeleton, p’
and p® are partial and, respectively, real pressure in the li-
quid, p© and p&f — in the gas, and p*'¥ is the pore pressure.
One can show that relations (11) are a combination of volume
averaging under very restrictive conditions and Dalton’s law
for fluid components. However, one should bear in mind that
they may not hold, for instance, near boundaries or for dyna-
mical processes such as shock waves. The following quantity

o — pGR - pLR. (12
is identified with the capillary pressure and used in constitutive
relations for the saturation, S.

Fields of a continuum model

As indicated in the previous Section, we limit the attention
the class of three-component continuous models. Then, the aim
of thermodynamical analysis is the construction of equations
for the following fields

1. partial mass densities, Bl s
. velocities of components, v3 vl v&,
. common temperature of components, 7',
4. porosity, 7,
5. saturation, S.

(IS B

The physical significance of the first group has been explained
above.

Fields of velocities of components are more difficult to inter-
pret in terms of microstructural quantities. It is obvious that de-
viations of real velocities of the skeleton and of the fluid com-
ponents from their macroscopic counterparts, both with respecs
to directions and the magnitude, are usually very large. Such
fluctuations cannot be easily estimated by averaging. Hence
the terminology: diffusion velocities v¥ — v, v&
respect to the skeleton — or frequently appearing in soil mechs
nics — seepage velocity or velocity of filtration should be ws
derstood as macroscopic notions and their interpretation mas
change from one process to the other. For instance. in cases o
catastrophic phenomena such as liquefaction the filter velocis
cannot be identified with any of the macroscopic average ve
locities. Macroscopic models based on the above notions mas
be then correspondingly extended.

At the first glance, the problem of averaging of velocities cas
be replaced by the averaging of momenta. These arc voluse
densities and, consequently, one could write

= \", Wit
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R L SR S e S e
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e ! GR GR (g 1 G
P = (REV) / [ (_Z,f)\-’ (Z\U,\ (Z,t)dVz,
REV(X.t)
(13)
where v vER vGR denote real (true) velocities in chan-

sels. However, this is not much of the help. First of all, the
macrocsopic momenum balance equations which yield field
equations for v, v, v© must contain source terms such as
&ffusive forces reflecting interactions through walls of chan-
mels or frictional forces between fluid components. Such terms
e not present in microstructural momentum balance equati-
wns and must be introduced by some additional surface or line
wicerals on REV which, of course, has nothing to do with vo-
fume averaging. Secondly, average momentum densities do not
“escribe strong deviations (fluctuations) of true momenta from
wverage values anyway. These would have to be introduced ad-
@tonally to averaged momentum balance equations. Conse-
quently. in spite of a few attempts to develop this procedure
¥ seems to be easier to deal directly with purely macroscopic
models.

One of the important quantities which we present further in this
work is the tortuosity, 7. It does not appear among the fields
Secause there exists no model with a corresponding field equa-
Son. We return to this problem later. Also the fields of porosity,
+. and saturation, S, are discussed below in some details.
#ield equations for the above fields follow either from balance
#quations or from additional constitutive assumptions (satura-
“on ). Balance equations contain fluxes and sources and the-
s 10 turn, require additional information on material parame-
sers. In our present work we address three such parameters: the
sources of momenta, porosity and heat conduction.

Porosity

A% field of porosity, n, is a typical microstructural (internal)
sanable. In many linear models used in soil mechanics (e.g.
sl acoustics) it is assumed to be constant. However, many
sroblems must account for changes of porosity. For instance,
wathin soil mechanics these are large plastic deformations (e.g.
11 damage (for instance, in freezing and thawing) or, for gra-
sular materials, combustion problems of solid fuels:
“senerally. there are a few different approaches to changes of
sorosity. We mention here the five most commonly appearing
® the literature:
Constitutive assumption, e.g. equilibrium changes cou-
pled on volume changes of the solid (Gassmann [4]),
- Incompressibility assumption (Bowen [5]),
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3. Evolution equation (Bowen [6]),

4. Second order equation based on a principle of equilibrated
pressure  (Goodman and Cowin  [7], Hutter
et al. [8]),

5. Balance equation (Wilmanski [9], [10]).

Gassmann’s model follows from a simplified micro-macro des-
ription and results in the relation

n =ng (14 de), (14)

where e denotes small volume changes of the skeleton and §
Is a material parameter related to compressibilities of com-
ponents. 7y is the initial porosity. We show some properties
of this model further in this Section.

The assumption of incompressibility which is essential for Bo-
wen’s approach [5] states p°f = const., which, according to
relations (5) yields the following form of the macroscopic mass
balance equation for the skeleton

& ; 5 =
p‘gg% (1—n)+ Jr)"S’Rdiv [{1 — 1) v*’] = (15)
provided there is no mass exchange with other components.
Easy integration of this equation yields for small deformations

n=ng[l+4(1-no)/nge, (16)

which, obviously, reminds Gassmann’s relation (14) but there
is no relation to material parameters. Again, we return to this
relation further in this Section.

We will not discuss the next two models and mention only that
the evolution equation proposed by Bowen is a particular case
of the balance equation of porosity, at least for small deforma-
tions, when one neglects the influence of diffusion. The Good-
man and Cowin proposition is related to some microstructural
considerations which have a bearing in the case of combustion
problems for powders. Hutter and his coworkers have shown
that some extensions of this model describe well the behavior
of avalanches.

The last model, mentioned above, has been developed primari-
ly for applications under large deformations. Its linear version
for two-component systems has the form

8—‘_}1 + &div (vF — v L
ot ' s (17)
Ap=n-—ng, ng=ng(l-+de),
where v/ is the macroscopic velocity of the fluid, 7, 4, & are
material constants. In the case of soils, one can usually neglect
relaxation effects described by the right-hand side of the equa-
tion. This means that one can take the limit 7 — oc. Then. the
equation can be integrated and the following relation follows

n=ng(l+de+vy(e—c)), =~

(18)

L]
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where z is the volume change of the fluid component. The
quantity ¢ = (e — 2] /ng is called the increment of fluid con-
tent. The above relation can be easily extended to three com-
ponents (see: [11]). We shall not present this equation in this
work.

4% GPa water
- = = = 35 GPa water
———— 43 GPaair
- 150Paair

delta

il L
[X3 rB

[
initial por oty

e ——— licompressible deka

1 P | 1
[ 0.4 06 0E
buitial poresiey

Az

o b
imifial prorosty

Figure 1: Coefficients § and ~ of the linear porosity relation
without source. Top: coefficient 4 for compressibilities of the
skeleton 35 and 48 GPa with water or air filling the pores,
middle: 4 for incompressible skeleton (pSR = const.),
bottom: coefficient v for nonequilibrium contribution

Similarly to the Gassmann relation, it can be shown that mate-
rial parameters 4.~ can be identified by means of compres-
sibilities of components [12]. Simultaneously, they coincide
with coefficients of porosity changes predicted by Biot's model
[13]. In Figure 1, we present a few examples of the behavior of
these parameters.

The upper panel shows the dependence of the coefficient §
(equilibrium changes of porosity) as a function of the initial
porosity, ng. The curves correspond to the compressibility of
the solid skeleton 48 GPa and 35 GPa, respectively. The two
lower curves are plotted for water and the two coinciding up-
per curves are plotted for air. The middle panel shows the il-
lustration of 4 for an incompressible skeleton (Equation (16);
in this case ~ = (). There is almost no difference between this
curve and the curves for air in the upper panel. Finally. the bot-
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tom panel shows the behavior of - which reflects the influence
of diffusion on changes of porosity. Obviously, this influence
is rather small and the values for the saturation with air are so
small that the curves are not visible in the scale of Figure 1.

Capillary pressure, saturation, retention curves

As mentioned earlier, the construction of a relation for the sa-
turation as one of the fields for a three-component immisci-
ble mixture is based on considerations concerning mechanical
properties of the microstructure. They are still limited to iso-
thermal conditions.

Between two immiscible fluids, of which one may be gaseous.
e.g. water and air, a discontinuity in pressure exists across
the interface separating them. The difference is called capil-
lary pressure (compare Equation (12)) wherein p“* is the true
pressure in the nonwetting phase (gas in our case) and pEf the
corresponding value in the wetting fluid (water in our case).
The fluid phase whose molecules or atoms preferentially are
adsorbed on a solid surface is called the wetting fluid while the
superseded material is denoted as nonwetting fluid.

In a fluid-gas-mixture, the Young-Laplace equation describes
the capillary pressure difference due to the phenomenon of
surface tension ¢ and relates it to the radius of the bubbles ;
(p. = 2a/r). For a porous medium, the capillary pressure is a
measure of the tendency to suck in the wetting fluid or to repel
the nonwetting phase. In soil science, the negative of the capil-
lary pressure (expressed as the pressure head) is called suction.
The radius r then is of the order of magnitude of the pore or
grain size. The capillary pressure, thus, depends on the geome-
try of the void space, on the nature of the solids and fluids and
on the degree of saturation. As we have already pointed out. in
soils, the geometry of the void space is extremely irregular and
complex. Hence, an idealized model may be adopted (e.g. ca-
pillary tubes, spheres of constant radius or a bundle of parallel
circular rods). Laboratory experiments are probably the only
method to derive the relationship p. = p. (5] .

In the experimentally determined capillary pressure curves a
hysteresis occurs. This means that different capillary pressures
may be obtained for a certain degree of saturation, dependinz
on whether a sample is initially saturated with a wetting or
with a nonwetting fluid. In both cases the fluid initially satu-
rating the sample is slowly displaced by the other fluid. When
the sample is initially saturated with a wetting fluid, the process
is called drainage, otherwise imbibition. Figure 2 which is ta-
ken from [2] shows a typical capillary pressure - wetting fluid
saturation relationship (kerosene and water in a sandstone) in-
cluding the effect of hysteresis. In theoretical approaches the
hysteresis is neglected for simplification. The capillary pressu.
re curve is known also under several other denotations. ¢.2.
is also called retention curve, pF-curve or soil-water characte

ristic curve.
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“tion of Figure 2 shows that a certain quantity of wetting
Femains in the sample even at high capillary pressures.
value of the water saturation at this point (Bear denotes it
8. otherwise it is often described by S"F — r stands for
sdual) is called irreducible saturation of the wetting fluid.
ing similar appears if one looks at the imbibition cur-
& is observed that at zero capillary pressure there remains a
amount of the nonwetting fluid — the residual saturation
nonwetting fluid (Bear denotes it by S,,,, otherwise it
described by S"¢). It indicates the amount of entrap-
@i in the pores. This leads to the introduction of the term
ve saturation (for more information see e.g. [14])

Sie e

N i
5. — or S = S

e C
e = )

are some attempts to put once experimentally measured
» into formulae. The most common approaches are those
ks & Corey [15] and van Genuchten [16]. According to
“atier the relationship is described by — ©

Pe = _1_ [Sf{z—lf'rrh_-c;) = ]_:| e . (20)
(e

“oG - My, Ny are parameters which depend on the ty-
W the soil and S, is the effective water saturation (19). For
ity mostly it is assumed that S, = S. Obviously, the van
“hten equation is a nonlinear relation in the saturation S.
«lear that Equation (20) can be incorporated in a macros-
- model only under the condition that we know how to
fer true pressures p© & and p"F to the macroscopic level.
simplest possibility is to use relations (11) but they may
%0 simplistic as we have already indicated. They may give
saable results in linear models but, in general, the problem
sl open.

Tortuosity
" sotion of tortuosity contributes to numerous confusions in

Sewciing porous media. It is still disputable in what way one
" include this measure of complexity of microstructure.
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The tortuosity, 7, is taken as the ratio of the average pore length
to the macroscopic characteristic length along, for instance, the
major flow. An example of different value of tortuosity for a
medium with the same local porosity is exemplified in Figure
3. The upper situation yields the smallest value of 7 and the lo-
west situation — the largest value of 7 among these three cases.
The value of 7 is the ratio of the distance of points A and B to
the length of channels indicated by the arrows.

Figure 3: Different tortuosities for three morphologies of the
same porosity

As shown in [17] the tortuosity influences the intensity of dif-
fusion by entering a material parameter relating the pressure
gradient and the diffusion velocity. We return to this coeffi-
cient in the next Section. However, it should be mentioned that
it is the square of T which appears in this relation. The error of
the linear dependence made by Kozeny [18] has been corrected
in many works and the quadratic dependence seems to be well
established.

In many papers on acoustics of porous media it is claimed that
the tortuosity enters the model by the so-called added mass
effect. This has been introduced by Biot [19] in the form of
a off-diagonal contribution p5 to the partial mass matrix. It
can be understood as a coupling of components through iner-
tial forces. One can show in a simple thermodynamic analysis
[20] that such a coupling is nondissipative. This means that the
tortuosity cannot have an influence on the damping of acoustic
waves. This is, of course, a nonsensical conclusion. This con-
tribution, can be indeed introduced to poroelastic models after
some nonlinear corrections, but it cannot be interpreted as an
influence of tortuosity.

Permeability

The notion of permeability of porous media is usually related
with the Darcy law which expresses a total discharge of fluid
in a one-dimensional flow in terms of the pressure difference.
However, there is still a bit of confusion in the terminology. We
use in the model of porous materials the term of a coefficient
of permeability or coefficients of permeability if we deal with
more than one fluid component. We proceed to introduce these
notions in a systematic way.

The fundamental notion of intrinsic permeability, #, is related
solely to the morphology of a porous skeleton and it is inde-
pendent of the kind of fluid in the channels. It may be related
to the effective diameter of the pores, d, by the relation

= O (21)

where C"is a dimensionless constant. The units of « are [m?]
but in practical applications often the unit 1 [darcy] = 1 D
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~ 107'? [m?] is used. In the second column of Table 1 we
quote some typical values of this parameter.

TABLE 1: INTRINSIC PERMEABILITY, £ AND HYDRAULIC
CONDUCTIVITY, ' FOR SOME FORMATIONS

| soil | &[darcy] K [m/s]

| well sorted gravel | 10° — 107 1-10"°
| oilreservoir | 10-10""7 | 1077 -107°
sandstone TS =1 || e =
granite | 107" — 107" | 107 — 107

In order to characterize the flow of a particular fluid one has to
account also for properties of this fluid. If the dynamic visco-
sity is s« and its mass density p# then the parameter

LRy

L L
=

I= (22)

is called the hydraulic conductivity; g is the earth acceleration.
A few typical values for water (pressure 10° Pa, temperature
20" C, = 1.002 x 10~3 Pa-s) are quoted also in Table 1.
Then the typical form of the Darcy law is as follows

Q (pLRg) = KAAp/L, (23)

where @ [m?/s] is the total discharge through the surface A,
Ap = p, — pp is the pressure difference and L is the distance
between two faces a and b. In addition, for horizontal aquifers
one uses the notion of transmissivity, 7', which is the product
of the hydraulic conductivity, K, and the thickness, d, of the
aquifer.
If we refer the diffusive flow to the difference of the concentra-
tion rather than to the difference of the pressure — one speaks
then about the first Fick law — then the diffusion flux and the
gradient of concentration are connected by the diffusion coef-
ficient, [J. This notion is, of course. related to the hydraulic
conductivity, /. by a simple change of variables.
Finally, let us remark that the constant C' of Equation (21) is
dependent on the porosity and on the tortuosity (a quadratic
dependence as we argued before).
Theories of porous media are based on the model of immiscible
mixtures. Then Darcy’s law does not enter the model at all. It is
replaced by partial momentum equations. In the case of a linear
model of two components the simplest form of this equation is
the following
i
ot
If we neglect the acceleration it becomes a precursor of Darcy’s
law. The coefficient = which is inversely proportional to the
hydraulic conductivity is called the coefficient of permeability.
The microstructural justification of the above relations for pa-
rameters of permeability is difficult. Such laws are known from
the kinetic theory of mixture of gases and, in the case of granu-
lar materials, they are mimiced by assuming that grains have a
very big mass in comparison to the the gas in pores and, con-
sequently. can be assumed to be immobile. One obtains the so-
called gas-dust diffusivity [21] which is the counterpart of the

= —gradp’ + 7 (vF' = v5), (24)
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hydraulic conductivity. Some results, also experimental, are
obtained for regular geometries of channels. Otherwise. one
has to rely on purely macroscopic observations.

Final remarks

We shall not present in this work the set of field equations for
any specific model of soils. However, it should be mentioned
that both nonlinear and linear models with fully specified set
of material parameters have been developed. The latter models
have been also applied in the analysis of acoustic waves for
many types of soils (see: [11]). Even though the further theore-
tical investigations are necessary there exists already a basis tor
the development of software packages for engineers in which
practical problems of deformation and changes of temperature
of soils will be coupled with such changes of soil morpholo-
gy as variations of porosity, saturation, moisture, permeability.
and heat conductivity.
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