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ADVANCES IN THE MECHANICS OF INHOMOGENEOUS MEDIA

CHAPTER 9.

DIFFUSION AND HEAT CONDUCTION
IN NONLINEAR THERMOPOROELASTIC MEDIA

1. INTRODUCTION

Modeling of poroelastic materials is usually limited to the range of small defor-
mations as the main field of applications of such models is the propagation of
acoustic waves. However, many properties of these linear models cannot be
explained without referring to nonlinear effects. A typical example is furnished
by the celebrated Biot model, Biot (1956); which possesses four important pro-
perties seemingly violating principles of continuum thermodynamics:

e coupling of partial stresses by contributions of volume changes of both
phases which seems to be forbidden by the second law of thermodynamics
(compare: simple mixtures of fluids),

e linear dependence of momentum sources on relative accelerations which
seems to violate the principle of objectivity,

e dependence of permeability (resistance to relative motions of components)
on the frequency of monochromatic waves which is inconsistent with the
linearity and with the temporal form of equations of motion,

e apparent lack of porosity changes which follows from the linearity of con-
stitutive laws.

The first property was analyzed in the paper Wilmanski (2002) and it has
been shown that a nonlinear model in which one accounts for a dependence on
the porosity gradient yields indeed this coupling in the linear limit. In this sense,
the Biot model does not violate the second law.

The linear contribution of relative accelerations is contradicting the prin-
ciple of objectivity (compare: Wilmanski (2001)). However, a nonlinear correc-
tion in the difference of accelerations yields an objective quantity which may
appear as a constitutive variable (see: Wilmanski (2005)) and which yields in the
linear limit the Biot contribution.
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The third flaw of the model results from a misinterpretation of the Biot
paper, Biot (1956),. In this work M. A. Biot has shown on examples of a few
simple flows that the viscosity of real fluids saturating porous materials yields a
dependence of permeability on the frequency of acoustic waves. This property
shown in a spectral representation of the model (i.e. for independent variables
(w,x), where w - frequency, x - spatial coordinate) has been taken over by some
researchers in a mathematically nonsensical manner (see remarks in Wilmanski
(2006)). This flaw can be easily eliminated by an assumption on a hereditary
character of the momentum source. However, such a correction yields usually
also a nonlinearity of the model.

A proper exploitation of Gedankenexperiments proposed by Gassmann,
Gassmann (1951) and then used by Biot and Willis, Biot, Willis (1957) shows
that porosity does change in the original Biot model. These changes are different
from those presented by Gassmann as they contain, in contrast to the Gassmann
relation, both equilibrium and nonequilibrium contributions. However, this point
was never properly exposed in the works on linear acoustics. An equilibrium
part is proportional to volume changes of the skeleton and the nonequilibrium
part is proportional to the difference of volume changes of both components.
The latter is, in turn, proportional to the so-called increment of fluid content.

The above mentioned four effects are all related to a macroscopic mode-
ling of complex morphology of a porous material. Even in the case of fully satu-
rated, two-component systems a number of microstructural parameters desired to
describe flows in such systems may be quite large. In Figure 1, we show sche-
matically some of these morphological properties which should be reflected in a
macroscopic model. We indicate a flow through a chosen channel of a given
curvature (part 1)) which may be replaced by a flow through the channel of the
same length but a much more complicated shape (part 2)) or by two channels
(part 3)) whose average areas of cross-section are together the same as the
cross-section in part 1): all three examples are assumed to yield the same local
porosity and the same local tortuosity of the system. The latter is understood as a
fraction of the length of the channel to the distance between points A and B. It is
quite clear that, in spite of the same values of these microstructural parameters:
porosity and tortuosity the flows in all three cases are different. This results from
local variations of the microscopic relative velocity (a difference of the velocity
of true fluid and true skeleton) not accounted for in an average macroscopic
relative velocity.
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3)
Fig. 1: Three different microstructures of porous material, illustrating three different
flows (bold lines with the arrow) in channels of the same tortuosity.
The true geometry of porous materials is fully described by a characteristic func-
tion ¥y (Z,t), which is equal to one when the point Z belongs to the fluid and
zero when it belongs to the skeleton. The point Z is an element of the set REV
(X,r), the so-called representative elementary volume, which physically descri-

bes a certain true neighborhood of the point X of the reference configuration B,
of the body in the sense of microstructure. It means that a body is understood as
a collection of local Cartesian products {X}x REV(X,t), X¢e B, where REV

(X,), is the microstructure at the point Xe€ B,. The macroscopic fields are

volume averages of true quantities defined on each RE V(X,r) . For instance, the
porosity is defined by the volume integraf

1
Xi)J=—————— Z,t)dV,, 0<n<l. 1
H( ) VOIREV(X,I)REVT[[?:)X( ) 7z R ()

It is clear that the porosity n(X,f) is carrying some very rough information about
the function ¥y (Z,.t) :REV(X,t)—1{0,1}. However, such important properties as
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a difference between two systems whose porosity is the same but one of them
contains a few large cavities in the microstructure REV(X,r) while the other ma-
ny small cavities are not described by the porosity alone. The above mentioned
tortuosity should be also defined by its relation to the characteristic function y.
Surface porosity of boundaries, important for the formulation of boundary condi-
tions is also not yet defined in this way. One could multiply examples of micro-
structural variables which are needed for a proper formulation of a macroscopic
model of porous materials. This mathematical question seems to be still open. In
this work we present an ad hoc method of construction of such a model common
for this part of continuum thermodynamics.

We exploit thermodynamic conditions imposed on a nonlinear poroelastic
model. We account for the dependence on objective relative accelerations and on
the porosity gradient. The former is sometimes attributed to tortuosity effects;
even though this interpretation seems to be doubtful we show that it describes
microscopic fluctuations of relative velocities. The latter, a local nonhomogene-
ity of the material, allows to introduce couplings of partial stresses mentioned
above. Otherwise, as it was demonstrated in earlier papers (e.g. Wilmanski
(1998),, Wilmanski (2004),), the so-called simple mixture model of porous ma-
terials follows in which static couplings of components are absent.

We formulate the model in the Lagrangian description with respect to the
skeleton which is appropriate for nonlinear modeling. Simultaneously, we con-
struct the model which is almost linear with respect to vectorial constitutive
variables, i.e. we assume the linearity of vectorial constitutive laws with respect
to the diffusion velocity, temperature gradient, gradient of porosity and relative
acceleration. Scalar and tensorial quantities contain also a dependence on some
quadratic terms. This is justified by physical expectations.

2. LAGRANGIAN DESCRIPTION OF SATURATED POROUS
MEDIA

We begin with the construction of general balance equations for the two-
component model. A general case of many components has been considered, for
instance, in the paper Wilmanski (2003) but the case of two components is more
instructive due to its simplicity. In addition, a multicomponent model must be
extended to cover such effects as capillary forces which has not been done yet
for nonlinear processes.

We need some basic notions of geometry and kinematics of two-
component immiscible mixtures.

The skeleton (solid component of an immiscible mixture) of the porous
material is treated as a confinement for the motion of the fluid. It means that a

configuration @, say at the instant of time #=0, is chosen as a reference for

both the solid and fluid components. The function of motion of the skeleton
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£5(X,t=0)=

and deformatio

7S

The motion of
tion of its motic
velocity of the f

By means of th
rial domains. F

configuration

current configu

have (compare

Obviously,
\’F(X,f), Xe

kinematics of
by the relation

Clearly, this rel
rian description

For the p
well a quant:

B(X'F =y ) d
tions of the frar
cit additive con
O(¢). Howeve:
Z the following




NONLINEAR THERMOPOROELASTIC MEDIA 127

x-f'(X:) Xe3B,, )

is assumed to be twice differentiable with respect to both arguments. Certainly,
= {X,r = 0) = X. Then the velocity of the skeleton, acceleration of the skeleton
and deformation gradient are defined in the classical manner

of’ s df’
78 ”S

X = (X7 x =

ot &4 dt
The motion of the fluid follows by the transformation of the Euclidean descrip-

tion of its motion to the reference configuration of the skeleton. In particular, the
velocity of the fluid has the form

X" =vF(£5 (X, 1)) )

By means of these velocity fields we can define the Lagrangian image of mate-
rial domains. For the skeleton, these are, obviously, subsets @ 5 of the reference

(X,t), FS = Grade(X,t). (3)

configuration B, . For the fluid, we have to map its material domains from their

current configuration P” to the reference configuration contained in B,. We
t
have (compare Wilmanski (1995))

P (r):{xE B,|f°(X,t)e @f}‘ (5)

Obviously, the kinematics of @®" is given by the field
V’c'(x,t), Xe 3, :{X'X=f5(x,t),)(€ @0}, while it can be shown' that the

kinematics of P *(t) is given by the so-called Lagrangian velocity X'* defined
by the relation

X'F =F(x" -x5)=X"F(X,1). 6)

Clearly, this relative velocity corresponds to the diffusion velocity in the Eule-
rian description.

For the purpose of construction of objective constitutive laws we need as
well a quantity which is related to the difference of accelerations

B(X'F —x’5 )f’ dt . Such a difference is not objective, i.e. by time-dependent rota-
tions of the frame: x*= O( r)x, 0" =0, its transformation contains expli-
cit additive contributions depending only on the relative motion of the frames
0( E). However, it can be shown, Wilmanski (2005), that for an arbitrary scalar
Z the following quantity
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_9
"ot

a (X’F it )_ (1-2)X’" -Grad x’* —zX’" -Grad x”*, (7)

is objective, i.e. a,*=0a, . It shall be called a Lagrangian acceleration and it

shall be used in the constitutive theory.

The above described Lagrangian kinematics yields a peculiar structure of
balance equations. We quote them here without details of the derivation which
can be found elsewhere (e.g. Wilmanski (1998), (2008))

e mass balance

g e
5 et 5 =
= F
dp”© P AF
RF ;:.-5,;,.“+Divpfx’* -pF =0, (8)
55457 =0,

e momentum balance

§F_ '8
M :=apTx—DivP5 —p’ -p'b® =0,
1
F_tF
M’ = a—pa-r—x—+l)ivax’F Rx'F -DivP* —pF —p D" =0, (9
Y AR
p +p =0,

e energy balance

= ai( pies + % px x> j +Div(Q* -Px’%)-
t

-p° (bs x" +r5)—¢§5 =1

"

ES = —,{%(p’csp 2wl Div[(p’cgp tlep x X

QP -P7x " ) ]—pF (b X +rF)-8F =0, & +£ =0,
(10)

* porosity balance

D::%+DM—£:U. (11)
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We use here the following notation. Mass densities, 0°, ,OF refer to the unit

reference volume of the skeleton in its configuration @, i.e. the integrals
[ptar, (ideV, (12)
P ‘i

describe the mass of the skeleton and the mass of the fluid which are contained
in the domain ® < @B, at the instant of time . This point yields often a confu-
sion among soil specialists who rather use the so-called true mass densities,
,OSR : pFR . These will not appear in this paper.

Ly o O .
Mass sources, p°,p" describe the exchange of mass between compo-

nents (e.g. due to freezing or melting) per unit mass of the reference volume of
the skeleton and per unit time. We shall not discuss such problems in this work
which means that we neglect these contributions. Partial mass balance equation

for the fluid contains the convective term, p” X’* which is characteristic for the
Lagrangian description. It reflects the fact that projections ®" ( t) of domains

®", material for the fluid component, on the reference configuration of the

skeleton (the so-called pull-back) move with the velocity field X'* rather than
to remain unchanged as material domains, @°, of the skeleton.

Momentum balance equations (9) contain fields of the partial velocities,

8 e . . o '
x”,x"" of both components as functions of Lagrangian coordinates and time,

(X,f). The nonconvective fluxes, P°,P" are called partial Piola-Kirchhoff

AR AR %
stresses. The momentum sources, p”,p° describe an exchange of momentum

between components. We see further that, in principle, it may be caused by the
diffusion, a gradient of porosity, a gradient of temperature and the relative acce-
leration. The structure of these contributions will be the subject of the exploita-
tion of the second law of thermodynamics. These equations may be represented
in an arbitrary non-inertial frame of reference. However, for the purpose of this
work we assume the frame to be inertial and, for simplicity, we leave out body

forces, prS 0 Fp* entirely.

Partial energy balance equations (10) contain source terms, £°,& . They
describe local exchange of energy between components which is characteristic
for mixtures with different temperatures of components. We do not consider
such processes in this work. For this reason, only the bulk energy conservation
law will be used. This follows by the addition of partial equations which we

show further. Obviously, £°,&” are specific internal energies of components
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and QS,Q'L are nonconvective parts of the partial energy fluxes. The terms

Y ) . Bl i
r°,r" describe energy radiation and, similarly, to body forces, we leave them

out.
Finally, the porosity balance equation (11) describes the balance of the
nonequilibrium part of the porosity

A, =n-ng, (13)

where »n is the current porosity and s, is the constitutive part of the current po-

rosity which is due to changes of equilibrium variables. We return later to the
discussion of this representation. The flux of porosity, J may be caused by diffu-
sion as it is the case in the linear Biot model or by some other processes. We
specify them using the second law of thermodynamics. The right-hand side 7
describes the source of porosity which yields a relaxation of porosity changes
and it may be caused by some irreversible processes such as damage (formation
of microcracks) or melting and freezing.

By means of the above partial balance equations we may easily formulate
the bulk conservation laws. Even though we use only the bulk conservation of
energy we demonstrate all these equations in order to interpret certain contribu-
tions to the bulk energy and the bulk energy flux.

The sum of mass balance equations (8) yields the bulk equation of conse-
rvation of mass

%§+Divpxzo, p=p°+p°, pX=p"X7F, (14)

where p is the bulk mass density and X denotes the bulk Lagrangian velocity. It
appears because the motion is referred to the motion of the skeleton. This is
different from the classical theory of miscible mixtures where the bulk motion 1s
identical with the so-called barycentric motion. We return to this point after the
momentum balance. Z

The sum of momentum balance equations (9) yields the bulk equation of
momentum conservation

%«kDiv(pk@X—l’):O, px=px"S +p=x’F, (15)

and

PR®X-P=p'x" X" -P5 -PF,
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pp’ e
P=P +P - L_F'X"®X"=P°+P" - pL_FX®X (16)
p p
In the derivation of the last relation we have used the first two of the fol-
lowing identities

s s 5
i=x*+FX, x=x"-L.F%X X-X"=-Lx7=_L % (3
p P P
The bulk velocity X corresponds to the barycentric velocity of the classical the-

ory of mixtures. The diffusion velocities u® =x* —x and u” =x"" —x are
then given by the above identities. Namely

F s §

u' =P X=-L_pix?, wf =L px=L pix” (18)
p p p

Hence, in this two-component system either of the two variables, X or X'/,

replaces these relative velocities. We shall not use them any further.

It remains to formulate the bulk energy conservation law. If we neglect
body forces and radiations it must have the following form

%(ps” +1/2p%-%)+ Div|(pe’ +1/2p%- %)X +Q* —PTx|]=0, (19)

where the relations (10) added to each other yield the following identifications
peE t1I2px X=piet $12p' % x" + pfel 1/ 2p x x =
5 _F ‘ ] (20)
:>p£h :psgs +pF£F +_%£sz; _Csx;F, ok —F5FS,
P
and
(pe +1/2p% %)X +Q° =P x =
—Q° P it 120 s SR g e (1)

=Q'=Q* +%PSPF (ps _pF)(fo -CSX’F)X'F,
p

whereas the intrinsic part fo of the energy flux is given by the relation

5 e
Q? =QS +QF +%(pFPST __pSPFT)FSX!F +p_;7_(€F_€S)Xr‘F. 22)
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There is an alternative to the above definitions of quantities appearing in
the full energy balance. Namely, instead of the conservation law of the bulk

energy p&‘b +1/2pXx- X, we can use the balance equation for the internal ener-
gy defined in the following way

pe=p°e’ +p°e’, (23)

which is, of course, the intrinsic part of the bulk energy densi e” (compare
p gy ty p p

(20)). Such a balance equation leaves exposed partial stresses which is conve-
nient in applications as these stresses and not the bulk stress P appear in the
governing equations of the model. Addition of partial equations (10) and appli-
cation of balance laws for partial mass and momentum yield

E IZ%ﬁLDiv(p&‘XJrQ)—- P®-Gradx™ —P” -Gradx* ~(F$T[3)X”" =0,

(24)
where we have already neglected mass sources as they do not appear further in
this work and other quantities are defined by the relations

s _F
pe=p°e’ +pe”, Q:Q‘+QF+M—(£‘”_£5)X'F. (25)
P

The balance equation (24) shall be used in the evaluation of the second law of
thermodynamics.

In addition to the above natural balance laws it is convenient to consider a
kinematical condition for the existence of the function of motion of the skeleton,
%, as one of the equations. This condition consists of two parts (integrability

conditions for x”* and F*)

QEE =Gradx”®, 9 Fix = 9F, Fy

. 26
a1 o Mo t2)

where, for clarity, the second relation was written in the Cartesian frame:
= F‘_i,e , ®e,, e, .e, being base vectors in current and, correspondingly,
reference configurations. The second integrability condition is usually directly
incorporated in constitutive assumptions. However, it is convenient to consider
the first one as an additional balance relation of the following divergent form

by
F= aaFr ~Div(x* ®1)=0, @)

where 1 den
1=0,e, ®e,
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where 1 denotes the Cartesian metric of Lagrangian coordinates, i.e.
1=9,,¢e, Qe,.

3. ENTROPY INEQUALITY

The thermoporoelastic model which we consider in this work must specify the
following fundamental fields

F=1{p%,p" ,x*,x'" F°,T,n) (28)

It means that the model is two-component and that it contains only one micro-
structural variable - porosity, n. Tortuosity or any other microstructural quanti-
ties whose necessity were indicated in Introduction do not appear. This is at
present a typical situation in construction of macroscopic models of porous ma-
terials. However, in an implicit way some additional properties of microstructure
are incorporated in the present model and this will be indicated in the sequel.
Field equations for the fields (28) which follow from the above presented balan-
ce laws must be constructed by means of the closure relations. These are consti-
tutive relations for the constitutive quantities of the model

C:{pé',PS,P*",ﬁ*‘,e,Q,J,ﬁ}. " 29

Such relations may be functional or differential or a mixture of both. In this
work, we consider a so-called thermoelastic porous materials for which constitu-
tive relations are functions of the following set of constitutive variables

R ={p*,p" F X" A, T.GNa ) G=GradT, N=Gradn, (30)

where the relative acceleration a, is defined by the relation (7). The presence of
both partial mass densities is necessary only in the case of mass exchange be-
tween components. Otherwise, only the mass density pF would appear in order

to describe volume changes of the fluid component. Obviously, F® accounts for
the deformations of the skeleton, X'* for the relative motion of components
(diffusion), A, for nonequilibrium changes of porosity, T for nonisothermal
character of processes, G for heat conduction, N for heterogeneity of porosity,
and a, for relative acceleration of components. Experience with the derivation

of Biot's model shows that the dependence on N is essential for the admissibility
of certain couplings in a linear model (e.g. Wilmanski(2004),). Consequently,
the present model is a generalization of those described in earlier works Wil-
manski (2002) and Wilmanski (2005).

Constitutive relations
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C=C(R), (31)

contain in addition a parametric dependence on the initial porosity #,. In the

case of residual partial stresses which may appear in the configuration for ¢ =0,
they should also be present in a parametric way in constitutive relations. It is, for
instance the case when the fluid component is the gas. Constitutive relations
should satisfy a set of principles characteristic for a thermodynamic strategy of
constructing continuous models. We shall not present here any details of this
strategy referring the reader to monographs on the subject (e.g. Wilmanski
(2008)). However, in some details we discuss consequences of the second law of
thermodynamics. We proceed to formulate this law in the Lagrangian descrip-
tion of two-component porous materials.

The fundamental assumption of this formulation refers to the existence of

partial entropy densities, ?]S,UF, which satisfy balance laws

‘ s _as 9p'n [ F_FgF F\_aF :
----------------- +DivH® =5°, ——5.--—-4-Div(p "X +H7)=7", (32)
t ot .

in which H® ,H" are partial entropy fluxes, and 7j°,7j" are partial entropy
sources. Addition of these relations yields

aéD?+D1\r(p7]X+II] 75 +7", (33)
where
) i
pn=p°n’*+pn", H=H’+H" +&(0F—U‘Q)X’F. (34)
p

The most essential part of the second law of thermodynamics which we
consider in this work is the assumption that the source of entropy ﬁS +?§Jc is

nonnegative for all solutions of field equations. This yields the following entro-
py inequality

a-m.+DwLqu+H)>0 n=n(R), H=H(R) (35)

which must hold for all admissible processes, i.e. solutions of field equations.
Comparison of relations (22) and (34) reveals that even in the case of

classical Fourier relations between partial fluxes HS:QS/T and

= Q“"/T , it can be hardly expected that a similar relation holds for the bulk
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fluxes Q and H. This observation has been made by I. Miiller for mixtures of
fluids and it holds also for porous materials. For immiscible mixtures it is even
more obvious as the intrinsic flux Q, is anisotropic with respect to the diffusion
due to the contribution of partial stresses (compare (22)) while H in (34) does
not possess such a contribution. In a particular case, when, for some reason or
other, one can neglect an influence of shear stresses in the relation (22) it follows

S F §

where

pS :“lJS_]tIPSFST, pF :_lJS—ItIPFFSTl
3 3 (37)
§

p’ =JS_IPS, p:'" ZJTS_IPF, JS Z"TI'FS,

= ‘.er‘(’\,p‘L are partial pressures, while p°,p/ are current partial mass densi-

ties. In such a case, the second part of the intrinsic flux Q, is parallel to X -
but the coefficients (eF 1F pF/pIF)—(SS A ps/pf) (difference of specific en-

thalpies) in Q, and n" —n® (difference of specific entropies) in H are not rela-
ted only by the factor 1/7. If this were the case then this would mean equal
chemical potentials of components

Ge (" +p"/pF =Tn")=(e5 + p*/ p* -Tn*))

which, of course, does not hold in general.

Even less one can say about different partial temperatures. In such a case
not only Fourier relations do not hold but, in addition, some other components of
the second law cannot be formulated in a standard way. This concerns particular-
ly continuity conditions on boundaries between different systems and, consequ-
ently, a measurability of partial temperatures. Some progress has been recently
made for mixtures of gases, Ruggeri, Simic (2007), but even there the solution is
still not complete.

Exploitation of the entropy inequality (35) is based on the elimination of
constraints on the space of its solutions by means of Lagrange multipliers. In the
case of the model under consideration one has to consider the following inequ-
ality

927 | Div( pk+ H)-A% RS — A" RF —
ot (38)

AT MS—AY MF—AE—A"D-AF .F20,
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for all fields (28). The multipliers AN AT AT A A, AT are functions
of constitutive variables (25). In contrast to the entropy inequality (30), the
above inequality must hold for arbitrary fields and not only for solutions of field
equations.

4. SIMPLIFIED CONSTITUTIVE RELATIONS

Apart from usual restrictions of material objectivity, we assume additionally that
the system is isotropic and that a dependence on vectorial constitutive variables

+F i _— -
X" ,G,N,a,_ has the lowest nontrivial order. The same assumption concerns

the deviation of porosity from equilibrium, A, . For the purpose of this work we
neglect as well the exchange of mass between components f)s =0. Then the

mass density pS does not appear as a constitutive variable and the multiplier

A =0
These assumptions yield the following structure of constitutive relations
e - partial stresses

7= (RE,AHJ%C’S(RH)FSX’F ®X”", R,={p"F’ T} (9)

PZ =PI (Q{E,An]dl-—;o“p(ﬂg FXT®XT, n,=n.(R,;), (40)
e - internal energy and entropy

pgngo(RE»An)+%8d((K£ )(FSX’F )'(FSX,F )’ )

P11 = pr, (RF A, )+ *;"ﬂd ( Rz )(FSX’F ) (FSX’F ) (42)

e - fluxes of energy, entropy and porosity
Q=0,X"-KG+QN+Q Fa_,
H=H,X"+H,G+HN+HF"a_, (43)
J=0X"+J,G+J N+J F"a_,

where all coefficients are functions of variables R .,
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FSTf):l-IVXfF-+HTG+IINN"_'O]E}2FSTar’ ﬁEﬁS, (44)

with coefficients dependent again on variables R .

There is an obvious lack of equipresence in these relations. This is related
to physical arguments which we proceed to present and, simultaneously, it yields
considerable technical simplifications.

Nonlinear contributions of diffusion velocity X'* to the internal energy
and entropy (material parameters £, and 77, ) are related to analogous terms in

partial stress tensors (material parameters o° and o’ ). We shall find their
connections after the exploitation of the entropy inequality. The physical motiva-
tion for such terms follows from the analysis of microstructure. Namely, the

SX’S,pr'F do not
account for rapid changes of directions of true microscopic velocities. These
may be considered to be fluctuations of partial momenta caused by the tortuosi-
ty, 1.e. by the curvy character of channels in porous materials (see: Introduction).
Such fluctuations are one of the reasons for dissipation of acoustic waves and
create a kind of geometrical viscosity of the diffusive flow even in the case of
ideal fluids in an elastic porous matrix.

Simultaneously, the internal energy and the entropy do not depend on
G,N and a, . They are scalars and as such cannot depend in a linear way on
vectors. There exists also no clear argument that they should depend in a nonli-
near way on these variables.

Obviously, coefficients K and /. are related to the usual thermal con-
ductivity.

volume averaging shows that the macroscopic momenta p

Coefficients O, and H, are responsible for diffusive fluxes of energy

and entropy. Explicit relations (21), (22) and (34) following from the definitions
of bulk quantities are compatible with (43) only if we neglect nonlinear contri-

butions in X'* and leave out anisotropic effects caused by shear stresses. We do
not need to go deeply into these simplifications because the bulk fluxes specified
by the above constitutive relations will be not related to their partial counterparts
within this model. Such a relation may be important if we consider field equ-
ations based on partial energy balance equations and this would be the case
when the components had different temperatures. However, one should stress
that certain processes in granular materials are related to a nonlinear dependence
of momentum source (diffusive force) on the relative velocity of components.
This concerns, for instance, the liquefaction and piping of soils, (Wilhelm, Wil-
manski (2002)). A model describing such processes must be nonlinear in diffu-
sion velocity which is natural as these velocities are large during the liquefac-
tion.




138 COUPLED FIELDS

Coefficients Q,,0, in the flux Q and H, ,H, in the flux H follow from

the extension of the model to a constitutive dependence on heterogeneity of po-
rosity and on relative acceleration. We discuss them after the presentation of
thermodynamic identities following from the second law.

The structure of the relation for the momentum source is similar. The co-

n’

efficient II, corresponds to the classical diffusion force. The coefficient IT,
relates the source to the heterogeneity of porosity. We shall see that, similarly to
the contribution with the coupling coefficient p/,, this contribution is nondissi-
pative.

Simplification with respect to the dependence on A, has not been yet ful-
ly exposed. Dependence on this field does not appear in vectorial fluxes but it is
present in the energy contribution &,, entropy contribution 77, and both partial

Y
stresses P

o P . We return to this dependence in the next Section.

5. EVALUATION OF ENTROPY INEQUALITY

Substitution of the above discussed constitutive relations in the entropy inequali-
ty (38) yields the inequality linear with respect to the following time derivatives

9p" 9F° 3A, ax’® ax’ ar
ot 9t at ot ot ‘ot

(45)

Time derivatives of the remaining constitutive variables &, i.e.
dG/dt,dN/dt, do not enter the inequality due to our simplifying assump-
tions. G and N appear only in fluxes which are not differentiated with respect to
time. Simultaneously, the contribution with the relative acceleration a, yields

additional terms in time derivatives dx”* /9¢,dx’" /ot .

According to Liu’s Theorem (e.g. Wilmanski (2008)), it means that coef-
ficients of these derivatives must vanish. Consequently, we obtain the following
set of relations for multipliers

f?_e_i ! —_ £ l and _ Af ag:{ S wrtF . SwrrF
L A=A +2[8pF A.app}@ X5 BixE]

F_9PM _ 4 9P

(46)
A

i apf apF g

aE* o
=5
gz’

at
(pS _plo2)‘:\.
+Div(H F*)
dx'*

at
(0" -ph)A°
-Div(H,F°)
9T dpn,
ot T
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oF* F_0pm, dpe, 1(an, dpe A o
e e D N e s |
ot OF?® AFS 2| 9F° OF® ( )( )

(47)

dA, . =apr}U A apsoj
dt JdA, dA,

(48)
ox’*

dt
(0° ~Ph)A™ + b + (1, - A%, )(FSX7)- pO A (FS X7 )+ (49)
+Div(H,F)- A°Div(0,F* )~ A"Div (s, F*)=0
ox”’

ar
(pF —pluz)AVF +p|02Avx _(??d = )(FSX’F)'*plgAg(FSx’F)_ (50)
~Div(H,F*)+ A°Div(Q,F* )+ A"Div(J,F*)=0

¢l

3

Q_?:. ap?]o _AS apg{] +i aﬂd “Afgf_{{_
ot oT oT 2\ oT or

As usually done, we identify A® in a different way and the relation (51) will be
considered to be an additional restriction on constitutive functions.
Inspection of the residual inequality which describes the dissipation of the

system and which we present further shows that the multiplier A" must be at
least a linear homogeneous function of A, . This is due to the fact that the dissi-

J(I«“‘TX"’“)-(FSX’F)zo. (51)

pation contains the contribution A"A_ which must be nonnegative for all A, .
Hence p€, and pr7, must be at least quadratic with respect to A, . However
both functions may also possess contributions independent of A, (i.e. zeroth
orderin A ).

In addition, the above relations contain terms linear in
GradT,Gradp” ,GradF®, as well as linear and quadratic in X'* . As these

quantities are arbitrary, we must impose additional restrictions yielding their
coefficients zero. After a straightforward analysis, we obtain
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J. =0, (52)
aHﬂ ___Aé' aQu :0’ a][ Aé‘ an 0,
aT aT dp” dp”
dH . 90 2!
= a lF> H KO 100, =0,
{ aﬁ}f aF;fL} kK} ( a Q{.’) k™ KL

pSA‘,.s- :_pFA,.-'-' ZyFSX’F, y - 7]“, —Asgd _A!?p]f)z

=— e 54
oo (+pfpr) Y

Reltaions (53) yield integrability conditions which could be satisfied if A° were
a constant. This is not possible. Consequently, we have to require

H,=0, 0 =0 (55)
The inequality following from (38) is also linear with respect to the follo-
wing spatial derivatives

Gradx”,Gradx’” ,Grad p” ,GradF*,Grad G, GradN. (56)

The contribution of GradA  does not appear among them because it can be
written in the following explicit form

dn an - :
Gl \ENT agE e,
- aT ~ ap” P dF d¥,

5
kK
e, e, e,

L

GradF?® =

i.e. except of the first two terms, it is a combination the gradients already listed
in (56). We have listed them in the order of the further analysis and, simultaneo-

usly, skipped the derivative Grada, because it does not contribute to the second

law due to the relations (52) and (55). The linearity with respect to (56) yields a
set of identities and leaves a residual inequality which is essentially nonlinear. It
defines the dissipation in the system and has the following form

JH, aQ;
D= —L -

e
+{8HT+A€8K_ dJ,

A" G-G+ATI X" -XF+An20.
oT oT ar}

= [ J G+
(58)
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Hence the state of thermodynamical equilibrium defined by O =0 appears if

G|, =0, X*

~

=0, Al =0, (59)

Le. the temperature gradient, the relative motion (diffusion), and the source of
porosity cause the deviation from the equilibrium. Consequently, the relative

acceleration a, has no influence on the dissipation. For this reason, in spite of
common claims in the literature concerning Biot's model, the tortuosity cannot
be considered to be responsible for the presence of a, in the model. As indica-

ted in the first Section of this work, tortuosity has an influence on true flows on
the microscopic level which must be dissipative.

As already mentioned the multiplier A" is a linear homogeneous function
of A, . This indeed follows from the inequality (58). We can write

T - S = e (60)
T

with 4" <0. Simultaneously, the dissipation inequality indicates (compare line-
ar contributions of A, to the first two terms in dissipation)
00 _, 3, _
or  arT
Now we return to the coefficients of derivatives (56).
i) The coefficient of Gradx”® yields

0. (61)

APSFST +(8p Mo _ pe OPEq }F” +H, +A°Q, + A+ pP AT Ji=0

oF’ ) Ol ’
(62)

a1, . 0E, a7, ¢ JE,
Cla _pella_g, 9Mu_pe%_g 63
a7 ol a1l oll G

an € an de Tk
2| LN L |IT+pF| L N4 =yl oS+ £ _G5F | (64
(am amJ & [BpF apFJ y( p" Y
Z:‘“LO.SAE _y(o,s_i_psffpfo.ﬁ)
y(l+p%/p" )+ A°
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I:=trC", H::%(F-trcf), Il =detC®, C*=FTFS, (66)

are main invariants of the Cauchy-Green deformation tensor C*. In order to
simplify calculations we have already accounted for the relation (47) and elimi-

nated the multiplier A” . Relations (63), (64), follow from the quadratic depen-
dence of identities with respect to A~ and the relation (65) results from the qu-
adratic dependence of identities with respect to X'*. We have used the
assumption on the isotropy with respect to the dependence on the deformation of
the skeleton which is described by the deformation tensor C* .

ii) Similarly, the coefficient of the derivative Gradx’” yields

AP = -(H,, — 0 = = A”cD)F-‘“‘T , (67)
d 0%
-a—% ~A 5}*’? =0, (68)
ol 0 p’ s, 0 AE
Ao’ +o )=—pm(1+;;]y—p Y- PRAC. (69)
Consequently, bearing (63) and (68) in mind,
32;’. — g;ﬁ; =0. (70)

It is easy to check that these results are not influenced by the presence of
N as a constitutive variable. Consequently, they do not differ from those derived
in the paper Wilmanski (2005).

iil) We proceed to the derivatives Grad pF and GradF*® . We have

aH;’ =N aQ‘; = A aq:; —A2 Xt
ap ap ap

aP.S? p}" aPJ“‘T {?I)

Sy’ F
—F°XF =0,

5
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JoH, aQ 0P e ,
SYI | S5 A =~ A" —— @ X" + pF AP BT @ X7F 4
{(BFS oF* apﬁ] £

(72)
+y ES +yE‘F}—sym{(HV “ANQ,— Aaq))FS—r ® X’F}: 0,

where the components of tensors Z°,E" in Cartesian coordinates are given by
the relations

= P N p* oPr .
:fm :éﬁg‘“ ‘E;E:rXMF’ “::XL :";,E-'g;‘c,u_?'ﬂff X,.wr- (73)
kK kK

These two conditions contain derivatives of partial stresses with respect to de-
formations of both components: F* in the case of the skeleton and p” in the

case of the fluid. Such restrictions of constitutive relations in thermodynamical
equilibrium seem to be not plausible. One can eliminate them by assuming

=0 (74)
Then, according to (54), we have
A" =0, A" =0 (75)
Bearing relations (51), (64), and (70) in mind, we obtain from (74)

1 ;
1, :}-;(.E‘d +p|°2)= 0, ie. 7,=0, £, =—p., = const. (76)

Simultaneously, the relations (65) and (69) imply

a'=—2zp’ Nio" =-2(1-2)pl. G
In addition

OH, . IK  3J

— L L Af —=0, L = 78
dp* 3" dp” (78)
IH, . 9IK oL

—— AE e 0’ ———-—T =] O, ?9
aF° T F IF° 72
I s 90

(80)
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The last condition for isotropic materials yields
oD 0P Jd (D
—=0, —=0, —|—|=0 = ®=0_J, 81
ol o1l 9J [ J ) & 1)
where I,II,IIT = J* are invariants of C* (see: (66)) and @, is a constant.
iv) The coefficient of GradG = Grad ® Grad 7" yields
HeE A K — () =) (82)

Relations (78), (79) and (82) give rise to the conclusion that A is only a func-
tion of 7. Then the classical argument on fluxes of energy and entropy leads to
the relation

1 .
AN ==, (83
i )
identifying this multiplier.
v) The coefficient of Grad N = Grad ® Grad n yields

H -AQ =0 J =0 (84)

vi) There remains the identity following from the coefficient of GradA .
This yields

ap’?a _Ae‘ apg() =(). (85)
A, A,

We can simplify considerably the above results if we introduce the notion of the
Helmbholtz free energy defined by the relation

w=e-Tn, py,=py-re&, (FSX!F)' (F‘?X!F)s £, ==Py;-(86)

Then, bearing the above considerations in mind, we obtain for the Lagrange
multipliers the following final results

e e DR
dp
1 d 10 0
i AR DR
7 34 T OF

n
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1 Nrps n n
pWUZ)OWE—E/?’YAi’ WE:WE(REJ’ =2 (‘RE) (88)

6. FUNDAMENTAL RELATIONS OF THE MODEL

We are now in the position to write nonlinear constitutive relations of the two-
component medium under considerations which are consistent with the second
law of thermodynamics.

Piola-Kirchhoff partial stresses are given by the relations

d py, - 0 Py, T
P’ = SRlO - TH —pF S Bt s s RS
aFS [Q# I p ap,ﬂ (it (89)
-2 B X T @X'F,
. - 0 Py, g
P =0, -TH, - p" ZEY0 _ 20 jp A |FST
[QV k )0 apF 0 JEJ (90)

—(1-2)p2FSX" @ X'F,
where diffusive flux coefficients Oy and H, must satisfy the following identity

Jzi[QV —-TH, )z_pF 0PV,

g b dp’’ 4

Integration of this relation yields
TH, =0, +h(R ;). (92)

Comparison with relations (34) and (36) shows that h( Q{E) can be interpreted
as a difference of free enthalpies of both components (see the comment follo-
wing these relations). Consequently, the energy flux and entropy flux do not
fulfil the classical Fourier relation H # Q/T . We do not obtain an anisotropic
contribution to the energy flux because we have made the simplifying assump-
tion (43).

The Helmholtz free energy function PY, is given by relation (88),

®,,p/, are constant and A,,Z are arbitrary functions of equilibrium variables.
Clearly, volume changes of the skeleton, described by J yield partial stresses in
the fluid and, vice versa, volume changes of the fluid, described by pF, yield

partial stresses in the skeleton. This is the coupling, appearing in the linear Biot
model.
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Simulataneously, partial stresses in the fluid reduce to the pressure:
P’ :—pFFs_T, only if we leave out the influence of diffusion described by

the coefficient pg. Both partial stresses contain a contribution of nonequili-
brium changes of porosity A, .

Fluxes of energy, entropy and porosity are given by the relations

Q:QVX’F __KG +QMN’

e i :
H=HVXF——G+%N, (93)
T T
J=D I
The source of momentum must have the following form

Fp=I1, X" +I1,G+I1,N-p ,F"a . (94)

These coefficients are limited only by the dissipation inequality. Bearing the
above results in mind, we obtain it in the form

%KG-G--}T -@-Q*’—713H"—nr X"-G+
T T\ oT oT
(a,)

+;ﬁbX”-X”—ﬁﬁ——~2Q
7 T

95)

Neither spacial changes of porosity N nor relative acceleration a, contribute to
this inequality which means that they yield only reversible effects.
The first term in (95) is, obviously, related to the classical inequality

K >0 for the heat conductivity coefficient K. The third term yields I, 20

which is again the classical result for the diffusion coefficient II, . The rema-

ining coefficients are only weakly limited by this inequality.

7. CONCLUDING REMARKS

Second law of thermodynamics and the assumption on small deviations from
thermodynamic equilibrium render the two-component model fairly explicit. The
influence of diffusion on the form of free energy function (86) and stress rela-

tions (89), (90) are coupled to the parameter ,0102 which enters the model

through relative accelerations. This is rather supprising. In addition, the term
with relative acceleration in the momentum source does not contribute to the
dissipation which is also not the result expected by advocates of such models.
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The assumption of linearity of the momentum source with respect to the diffu-
sion velocity X'F yields only the classical diffusion force without hereditary
effects (dependence of permeability on the wave frequency in Biot’s model) and
without nonlinearities describing such important effects as liquefaction and pi-
ping. An extension on such fully nonlinear models would be very difficult be-
cause the evaluation of the entropy inequality in contemporary continumm ther-
modynamics is limited to an infinitesimal vicinity of equilibrium states. This
yields the possibility of using Lagrange multipliers technique which we demon-
strated in this work. However, even this simple version of the model contains

nonequilibrium coupling effects: thermodiffusion IT y and energy transport by
convection. The latter is described by the coefficient 0, . These coupling effects

contribute to the dissipation (94) in the term with the product X" -G . The co-
upling coefficient plays an important role in the relations for partial stresses (89)

and (90). The difference of coefficients Q, —TH, which we attributed to the

difference of free enthalpies of components is, apart from diffusion and nonequ-
ilibrium changes of porosity, the important nonequilibrium part of stresses.
Otherwise both partial stresses are described by the potential in the form of
Helmholtz free energy function .

It should be also stressed that in spite of nonlinearity of the model the po-
rosity flux J has a very simple form given by (92)s. It is proportional to the
Lagrangian relative velocity and the coefficient is dependent only on volume
changes of the skeleton J. This property has important consequences in linear
models in which J =1 .




