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1 Introduction

Macroscopic modeling of porous bodies is a task which cannot be solved universally for all
materials possibly belonging to this class. Porous bodies are aggregates of solid elements
(grains, various matrices) and whose voids form the pore space. In order to construct
continuum macroscopic models this microscopic heterogeneity has to be smeared out by
some homogenization technique. Even the purpose of this smearing transition is still not
properly understood by some researchers. For instance, within soil mechanics, models are
often using the notion of the so-called real (true) mass density of components, ραR (α
is labeling the component; e.g. α = S for the solid component, α = F for the fluid, or
α = G for the gaseous component). This mass density is identical with the mass density
of the component when considered alone outside of the porous medium (e.g. ρFR = 1000
kg/m3 for water under normal conditions). These mass densities are well-defined in porous
bodies only in those points where a particular component indeed appears. In order to
construct a continuum model, one has to extend the domain of definition on a domain,
say B0 ⊂ ℜ3, common for all components. This means that either one has to make an
arbitrary extension of the true density on parts of the domain where a chosen component
does not appear or one has to smear out this quantity which yields a definition of the so-
called partial densities, characteristic for a macroscopic continuum theory of mixtures. In
our simple homogeneous example of water saturating a porous medium whose voids cover,
say, 25% of the total volume such a mass density would be ρF = 0.25 · ρFR = 250 kg/m3.
It is the first procedure for which it is often advocated within soil mechanics. The second
procedure was systematically introduced by C. Truesdell [1] for the so-called miscible
mixtures of fluids. Most likely, G. Heinrich and K. Desoyer [2,3] were the first authors
who used the mixture theory for porous media. Such mixtures are called immiscible (e.g.
R. A. Bowen [4]).

In addition, as always in the case of smearing it is necessary to close such a procedure
with some ad hoc relations (the closure problem) which may vary from one model to the
other. The best known and investigated are problems of transition from a microscopic
description to the so-called thermodynamic region within the kinetic theory of gases (see:
Chapter 7 in [5]).

For porous materials, the most commonly used homogenization technique is the volume
averaging over the so-called representative elementary volume (REV ). These domains
must be large enough to enable the averaging and small enough to apply a continuum
model. Unfortunately, these properties of REV cannot be made mathematically precise.
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As indicated by T. Bourbie, O. Coussy, B. Zinszner [6] the domainREV may be dependent
on the quantity which we define.

Fig.1 : Examples of microstructure for various porous materials
1) upper panel: loose granular material (exfoliated vermiculite, porosity app. 0.4),

2) middle panel: concrete (a/ region of formation of ettringite, b/ portlandite and calcium silicates,

porosity app. 0.1),
3) lower panel: foam (porosity app. 0.9).

For instance, the porosity of a porous material is defined by the relation

n (X, t) = 1−
1

vol (REV )

∫

REV (X,t)

χS (Z, t) dVz, (1)
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where REV (X, t) is the domain of the real porous medium ascribed to a point X ∈B0
of the continuum at the instant of time t, χS (Z, t) , Z ∈REV (X, t) is the characteristic
function for the solid component, i.e. it is one when the point Z is occupied by the
solid at the instant of time t and zero otherwise. vol (REV ) denotes the volume of
REV (X, t). Clearly, such a definition is characteristic for the description of a body with
microstructure. The average (1) may not be adequate, for instance, for the quantity called
the degree of saturation which is, in turn, the volume fraction of the liquid to the joint
volume of liquid and gas. Namely, in the case of very low degree of saturation, very few
bubbles of the gas are spread in large volumes of the liquid which means that, in contrast
to porosity, one needs much larger domains for an appropriate average of saturation. A
similar remark concerns the convection properties of the medium which is characterized
by the permeability coefficient (e.g. [7]). It is even worse that these properties may
vary strongly in time and in space. Consequently, a construction of averages by means
of representative elementary volumes should be taken with a pinch of salt. J. Bear [8]
demonstrates an example of applicability of the notion of porosity as an average. This is
shown in Fig.2. If the domain of REV is too small there are large fluctuations of porosity
depending on the position in space in which the average is calculated. For inhomogeneous
media in which porosity changes from place to place there is also an influence of the size
chosen too large in which some layers, for instance, will not be seen.

Fig. 2: Definition of porosity in dependence on the size of REV [8]

An additional problem appears when the medium is cracked. This is, for instance,
the case in many geotechnical applications to rocks. Then the size of REV sufficient for
a usual porosity may be much too small for cracks. In such media one has to introduce
very often a so-called double porosity (e.g. [9]).

Unfortunately, these remarks do not exhaust problems with averaging techniques for
porous media. In the case of such materials as composites or polycrystals (considered
as aggregates of monocrystalline grains) one can most likely improve procedures so far
that macroscopic properties of materials (elastic parameters, viscoplastic properties, etc.)
follow with a sufficient accuracy for their practical applicability (compare the classical
works of E. Kröner [10] and Z. Hashin and S. Shtrikman [11]). This is not the case
for aggregates in which the diffusion appears. It means that porous and, in particular,
granular materials in which a fluid in pores moves with a different kinematics than the
solid skeleton, require not only special averaging techniques but also some image analysis
of the microstructure (e.g. see: [12]) in order to sort out properties which mostly influence
the relative motion. Apart from permeability this may be, for instance, the tortuosity, i.e.
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some measure of local curvatures of microchannels. For instance, by inspection of the lower
panel of Fig.1 it is easy to imagine that a macroscopic one-dimensional homogeneous flow
of a fluid through a foam corresponds to wild variations of momentum, both in magnitude
and direction, on the real material. It is still a very much open question how to account for
such "fluctuations" in macroscopic model and no averaging procedure gave any reasonable
hint for the solution of this problem.

These few remarks on the microstructural properties of porous media seem to justify
a purely phenomenological continuum approach extended more or less intuitively by a set
of microstructural variables. Certainly, one should try to justify such macroscopic models
by relations to microstructure as far as possible in the present state of research but a hope
for a full derivation of macroscopic equations by some homogenization procedure does not
seem to be justified.

In this work, we present some fundamental properties of macroscopic modeling of
the so-called thermoelastic porous materials which admit large deformations of the solid
skeleton. For the lack of space we shall make only occasional and very brief references
to the microscopic interpretations and motivations of the model. We begin with the
presentation of a general theory of the Lagrangian description of kinematics and balance
equations for porous materials, as well as a small remark on a thermodynamic strategy of
construction of models. Then we discuss a few constitutive properties of thermoporoelastic
materials. We complete this presentation with equations of a linear model introduced by
Biot which is fundamental for poroacoustics. At the end of the work we make a few
comments on linear modeling of unsaturated media.

2 Kinematics and balance equations in Lagrangian

description

It is well known in classical continuum mechanics that the description of motion is usually
performed in two different ways. The Eulerian description is characteristic for fluids and
it operates on families of subdomains of the configuration space (the space of motion)
which are usually chosen to be time independent (i.e. they contain the same points of the
configuration space). Then a material flows through such domains with the kinematics
given by a field of velocity v (x, t) , x ∈B ⊂ ℜ3. Balance laws in this description must
account for fluxes through boundaries of subdomains. The Lagrangian description is
characteristic for solids and it operates on subdomains P in a reference configuration
B0 ⊂ ℜ3 which are also time independent. These subdomains contain always the same
material particles X ∈B0 which is, of course, not the case for subdomains of Eulerian
description. The kinematics is given by the so-called function of motion x = f (X, t)
which describes the current position x of the particle X in the configuration space. Its
partial time derivative defines the field of velocity. In linear models the function of motion
is usually defined by the displacement vector u. We do not use this notion in this work.

Porous materials consists of both solid skeleton and fluid components in pores. Con-
sequently, one can choose either Eulerian description which would emphasize the motion
of the fluid component or Lagrangian description which would emphasize the motion of
the skeleton. The first approach is convenient, for instance, in the description of suspen-
sions. The second approach is appropriate for a (physically) compact skeleton appearing
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in rocks, foams, ceramics and granular materials sustained by a confining pressure (e.g.
soils). We use this second description.

For a multicomponent immiscible mixture which consists of a solid skeleton and A
fluid components in pores the motion of the skeleton is assumed to be described by the
function of motion

x = fS (X,t) , X ∈B0, (2)

whose first derivatives define the deformation gradient and the velocity, respectively,

FS (X,t) = Grad fS, x́S (X, t) =
∂fS

∂t
. (3)

When necessary, we use Cartesian frames in which the above objects have the following
components

FS = FSkKek ⊗ eK , x́S = x́Skek, (4)

where {ek}
3
k=1 are unit orthogonal vectors of the Eulerian coordinates and {eK}

3
K=1 are

unit orthogonal vectors of the Lagrangian coordinates. Metric tensors of both systems
are, obviously, Kronecker deltas: δkl = ek · el, δKL = eK · eL. The deformation gradient
of the skeleton for the reference configuration is chosen to be represented by the unit
matrix: FS = 1. The possibility of this description has been indicated by O. Coussy [13]
and it was systematically introduced to porous models by K. Wilmanski (e.g. [14, 15]).
Let us mention in passing that there are papers on this subject in which the Lagrangian
description is introduced separately for each component. It is not only an unnecessary
formal complication but sometimes it yields erroneous results.

The aim of the model is to find the following fields defined in points X of the reference
domain B0 ⊂ ℜ3 and in instances t of the time interval T ⊂ [0,∞):

1. partial mass density of the skeleton referred to a unit reference volume: ρS (X, t),

2. partial mass densities of the fluid components referred to a unit reference volume:
ρα (X, t) , α = 1, . . . , A,

3. velocity of the skeleton: x́S (X, t),

4. deformation gradient of the skeleton: FS (X, t) , JS := detFS > 0,

5. velocities of fluid components x́α (X, t) , α = 1, . . . , A,

6. porosity: n (X, t),

7. temperature common for all components T (X, t).

Consequently a thermomechanical process is described by the mapping

w : (X, t) → ℜ4A+15, w :=
{
ρS, ρα, x́S,FS, x́α, n, T

}
, α = 1, . . . , A. (5)

Field equations for these fields follow from balance equations which we proceed to
formulate.

Balance equations are specified in their global form on material domains of compo-
nents. For porous materials in the Lagrangian description the family of material domains
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for the skeleton satisfies conditions identical with those of the classical continuum me-
chanics. As already mentioned, material domains of the skeleton are time independent
because the reference configuration B0 is defined with respect to the deformation gradient
of skeleton FS. For this configuration FS = 1.

It is not the case any more for fluid components. They have different kinematics than
the skeleton which means that domains in the space of motion containing during the
motion the same particles of a particular fluid component move with respect to material
domains of the skeleton. In the Eulerian description the velocity field for this motion is
given by the difference vα (x, t)−vS (x, t) for the fluid component α, where vα (x, t) is the
velocity of the fluid and vS (x, t) is the velocity of the skeleton at the same spatial position
x and at the same instant of time t. This relative motion yields the time dependence of
material domains of fluid components projected on the reference configuration B0. The
projection is carried by the function of motion of the skeleton (2), whose existence is
assumed in the model. The condition for the existence of the function of motion fS shall
be formulated later.

In order to describe the kinematics of material fluid domains projected on the ref-
erence configuration we consider the mappings shown in Fig. 3. In the current con-
figuration Bt = fS (B0, t) we consider an arbitrary subset Pαt ⊂ Bt which is material
with respect to the component α, i.e. by an infinitesimal increment of time, ∆t, it be-
comes Pαt+∆t := {x ∈Bt+∆t|x− v

α (x,t+∆t)∆t ∈ Pαt }. These two subsets of the space
of current configurations are maps of the subsets Pα (t) ,Pα (t+∆t) of the reference con-
figuration B0, one at the instant of time t and the other at the instant of time t + ∆t.
Obviously, they contain the same particles of the component α. This construction is
shown in Fig. 3. Now, we choose an arbitrary particle of the component α which occupies
the position x ∈Pαt at the instant of time t, i.e. its position in the reference configuration
is X = fS−1 (x, t). Its position x+∆x at the instant t+∆t can be written in the form

x+∆x = x+ x́α (X,t)∆t = fS (X+∆X, t+∆t) =

= x+Grad fS (X, t)∆X+
∂fS

∂t
∆t = (6)

= x+ FS∆X+ x́S∆t.

Fig. 3: Reference configuration for immiscible mixtures
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Consequently, the set Pα (t) ⊂ B0 is endowed with the kinematics defined by the
following velocity field

∀X ∈ B0 : lim
∆t→0

∆X

∆t
= X́α (X, t) = FS−1

(
x́α − x́S

)
. (7)

Obviously, in the above relations we were using the following transformations

x́S (X, t) = vS
(
fS (X,t) , t

)
, x́α (X, t) = vα

(
fS (X,t) , t

)
. (8)

The fields X́α are called Lagrangian velocity fields of fluid components. The index α may
be also equal to S as X́S ≡ 0.

As indicated above the Lagrangian description exposes the role of material subdomains
of components. In order to appreciate the operational meaning of the transformation of
velocities to the Lagrangian description, we formulate balance equations of mass for all
components. They have the following form

d

dt

∫

PS

ρSdV =

∫

PS

ρ̂SdV, (9)

for every material domain of the skeleton PS ⊂ B0, and

d

dt

∫

Pα(t)

ραdV =

∫

Pα(t)

ρ̂αdV, (10)

for every material domain of the α fluid component Pα (t) ⊂ B0, α = 1, . . . A. In the
above relations ρ̂S, ρ̂α are the mass sources which satisfy the following bulk conservation
law

∀X ∈ B0, t ∈ T : ρ̂S +
A∑

α=1

ρ̂α = 0. (11)

Time dependence of material domains for fluid components yields the following rules
of time differentiation

d

dt

∫

PS

ρSdV =

∫

PS

∂

∂t
ρSdV,

d

dt

∫

Pα(t)

ραdV =

∫

Pα(t)

∂

∂t
ραdV +

∮

∂Pα(t)

ραN · X́
α
dS, (12)

where N denotes the unit normal vector field of the boundary ∂Pα (t).
These relations yield the following local form of mass balance equations for α =

1, . . . , A,
∂ρS

∂t
= ρ̂S,

∂ρα

∂t
+Div

(
ραX́α

)
= ρ̂α, (13)

in regular points (almost everywhere) of B0, and

U
[[
ρS
]]
= 0,

[[
ρα
(
X́α ·N−U

)]]
= 0, (14)

in points of singular surfaces moving through the reference configuration B0 with the local
speed U . The brackets [[· · · ]] denote the difference of finite limits of quantities in these
brackets on the positive and negative side of the surface.
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It is seen in the above relations that the Lagrangian velocities X́α replace in this
description the velocities vα of the Eulerian description.

In a similar manner we obtain the following partial momentum balance equations in
their local form. For the regular points of the reference configuration B0

∂
(
ρSx́S

)

∂t
−DivPS = p̂S + ρSbS,

∂ (ραx́α)

∂t
+Div

(
ραx́α ⊗ X́α −Pα

)
= p̂α + ραbα, p̂S +

A∑

α=1

p̂α = 0, (15)

and for points on singular surfaces

ρSU
[[
x́S
]]
+
[[
PS
]]
N =0,

ρα
(
X́α ·N− U

)
[[x́α]]− [[Pα]]N = 0. (16)

In these relations PS,Pα denote partial Piola-Kirchhoff stress tensors, bS,bα are par-
tial mass forces, and p̂S, p̂α denote the momentum sources. Relation (15)3 expresses the
bulk conservation of momentum.

We do not need to present details of partial energy balance equations. Under the
assumption of a single field of temperature we need solely the bulk energy conservation
law. The derivation is based on a principle of the theory of mixtures formulated by
C. Truesdell that bulk quantities must be defined in such a way that balance equations
for these quantities have the form of classical conservation laws of the single component
continuum thermodynamics.

Bearing this principle in mind we define the following bulk quantities

ρ = ρS +
A∑

α=1

ρα, ρẋ =ρSx́S +
A∑

α=1

ραx́α, ρẊ =
A∑

α=1

ραX́α, (17)

which are the bulk mass density, the bulk momentum, and an objective relative momen-
tum connected with the reference of the motion to the skeleton rather than to local centers
of gravity for mixtures of fluids in Eulerian description;

P = PI − F
S

{

ρSẊ⊗ Ẋ+
A∑

α=1

ρα
(
X́α − Ẋ

)
⊗
(
X́α − Ẋ

)}

,

PI = PS +
A∑

α=1

Pα; (18)

this is the bulk Piola-Kirchhoff stress tensor with the so-called intrinsic part PI ;

ρε = ρεI +
1

2

{

ρSCS ·
(
Ẋ⊗ Ẋ

)
+

A∑

α=1

ραCS ·
(
X́α − Ẋ

)
⊗
(
X́α − Ẋ

)}

,

ρεI = ρSεS +
A∑

α=1

ραεα, CS = FSTFS, (19)
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this is the bulk specific internal energy with the intrinsic part ρεI . The symmetric tensor
CS is the right Cauchy-Green deformation tensor of the skeleton;

Q= QI +
1

2

{
−ρSẊ⊗ Ẋ⊗ Ẋ+

+
A∑

α=1

ρα
(
X́α−Ẋ

)
⊗
(
X́α−Ẋ

)
⊗
(
X́α−Ẋ

)}

CS,

QI = Q
S +

A∑

α=1

Qα − ρSεSẊ+
A∑

α=1

ραεα
(
X́α − Ẋ

)
+ (20)

+PSTFSẊ−
A∑

α=1

PαTFS
(
X́α − Ẋ

)
,

and this vector describes the bulk heat flux in the Lagrangian description. Again the
intrinsic part QI was separated.

The bulk balance equation of energy can now be written in the following form

∂

∂t
ρ

(
ε+

1

2
ẋ2
)
+Div

{
ρ

(
ε+

1

2
ẋ2
)
Ẋ+Q−P

T
ẋ

}
= ρb · ẋ+ρr, (21)

where

ρb = ρSbS +
A∑

α=1

ραbα,

ρr = ρSrS +
A∑

α=1

ραrα − ρSbS · FSẊ+
A∑

α=1

ραbα · FS
(
X́α − Ẋ

)
, (22)

and rS, rα denote the partial radiations.
In the Lagrangian description and with the choice of fields (5) we have at disposal the

following integrability condition

∂FS

∂t
= Grad x́S. (23)

This condition yields the existence of the function of motion (2). By the choice (5)
of unknown fields this relation plays the role of the field equation for the deformation
gradient FS.

It is useful to write equation (23) in the following weaker form

d

dt

∫

PS

FSdV =

∮

∂PS
x́S ⊗NdS, (24)

for every material domain of the skeleton PS ⊂ B0. This balance equation yields the
following condition in points of singular surfaces

U
[[
FS
]]
= −

[[
x́S
]]
⊗N. (25)
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This relation is usually derived by means of the Hadamard Theorem for singular surfaces.
Before we present remaining equations of the model let us discuss some properties

of the objects which we have introduce above. It is easy to notice a striking similarity
of the structure of bulk quantities to that appearing in the classical theory of mixtures.
This concerns terms with explicit contributions of velocities. However in contrast to the
mixture theory all velocities of the present model are objective because X́α and Ẋ are
relative velocities. Due to constitutive relations these velocities may be also present in the
implicit form in intrinsic parts of stress tensors, internal energy and heat flux vector. It is
also important to notice that the explicit dependence is at least quadratic. If we consider
processes with small deviations from the thermodynamical equilibrium these contributions
can be neglected.

In order to turn over mass balance equations (5), momentum balance equations (15),
energy balance equation (21) and compatibility condition (23) into field equations for fields
(5) we need constitutive relations for partial stress tensors, momentum sources, the bulk
internal energy and the bulk heat flux. If we had these relations we would have 14 (A+ 1)
equations. Consequently we would be missing one equation. This is connected with the
fact that the porosity n is the additional microstructural variable and this requires an
additional equation. We proceed to formulate this equation.

There are various ways in which one can describe changes of porosity. One can assume
that it is given by a constitutive equation of the same nature as stresses or the inter-
nal energy. In linear models it is often assumed that these changes are proportional to
changes of the volume of the skeleton. Such a proposition was made by Gassmann [16].
Another constitutive relation follows within the linear Biot model in which also volume
changes of the fluid have an influence on porosity. A second order differential equation
describing changes of porosity was proposed by Goodman and Cowin [17] in their model of
combustion of granular materials. This equation has been modified and still serves as one
of the most popular approaches to this problem. In description of plastic deformations of
soils it is sometimes assumed that the true mass density of the skeleton does not change
(incompressibility) and this yields an equation for porosity changes. Since some 15 years
there exists also a proposition to describe porosity changes by a balance equation [18, 19].
This equation has the form

∂∆n

∂t
+Div J = n̂, ∆n = n− nE, (26)

where ∆n is the deviation of porosity from the equilibrium value nE, the latter together
with the flux of porosity J and the source of porosity n̂ must be given by constitutive
relations. We expect that n tends to an equilibrium under constant external conditions.
The equilibrium value of porosity nE satisfies the equation (26) with the flux and source
equal to zero. The latter as we show later follow indeed from the second law of ther-
modynamics. It can be shown that the above equation yields as particular cases linear
models of Gassmann and Biot. In contrast to other propositions the above equation is ap-
propriate for arbitrary deformations of the skeleton. Simultaneously, it contains a source
term which accounts for changes of porosity due to microcracking in, for instance, freezing
and melting, or other nonisochoric phase changes and for natural relaxation processes of
biomaterials.

Making an assumption that sources of porosity do not carry surface singularities we
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can write the following compatibility condition for porosity on such surfaces

U [[∆n]]− [[J]] ·N = 0, (27)

which may suggest the form of natural boundary conditions for porosity.
Let us collect balance equations which we have discussed in this Section. They are

shown in the Tables 1 and 2.

Table 1: Balance equations for the A+ 1-component porous material in regular points
of the reference configuration X ∈B0

mass of S ∂ρS

∂t
= ρ̂S

mass of α ∂ρα

∂t
+Div ραX́α = ρ̂α

momentum of S
∂(ρS x́S)

∂t
−DivPS = p̂S + ρSbS

momentum of α
∂(ραx́α)
∂t

+Div
(
ραx́α ⊗ X́α −Pα

)
=

= p̂α + ραbα

bulk energy
∂
∂t
ρ
(
ε+ 1

2
ẋ2
)
+Div

{
ρ
(
ε+ 1

2
ẋ2
)
Ẋ+

+Q−PT ẋ
}
= ρb · ẋ+ρr

integrability of FS ∂FS

∂t
= Grad x́S

porosity ∂∆n
∂t
+Div J = n̂

Table 2: Balance equations (dynamic compatibility conditions) in points of the singular
surface

mass of S U
[[
ρS
]]
= 0

mass of α
[[
ρα
(
X́α ·N− U

)]]
= 0

momentum of S ρSU
[[
x́S
]]
+
[[
PS
]]
N =0,

momentum of α ρα
(
X́α ·N− U

)
[[x́α]]− [[Pα]]N = 0

integrability U
[[
FS
]]
= −

[[
x́S
]]
⊗N

porosity U [[∆n]]− [[J]] ·N = 0

As already indicated we do not quote here the dynamic compatibility relation for the
bulk energy.

In order to construct field equations for the fields w listed in relation (5) we have to
solve the closure problem, i.e. we have to add constitutive relations to balance equations
of Table 1. We shall do so for some important particular cases.
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3 Second law of thermodynamics

In order to be more specific we consider a nonlinear model describing a fully saturated
porous material. It means that we consider a two-component immiscible mixture: α = S
or α = F . We limit the attention to the so-called thermoporoelastic model which must
specify the following fundamental fields

F =
{
ρS, ρF , x́S, x́F ,FS, T, n

}
. (28)

It means that the model contains only one microstructural variable — porosity, n. However,
in an implicit way some additional properties of microstructure are also incorporated in
the present model. It has been shown in the work [20] that some microscopic fluctuations
of microscopic velocities can be accounted for in the model if we include a nonlinear
(at least quadratic) dependence on the relative velocity and a dependence on relative
accelerations. The latter must be first properly defined as the difference of the second
time derivatives ∂

(
x́F − x́S

)
/∂t is not objective and, consequently, cannot be used as a

constitutive variable. It has been shown in the above quoted paper [20] that this definition
must be of the following form

ar ≡
∂

∂t

(
x́F − x́S

)
− (1− z) X́F ·Grad x́F − zX́F ·Grad x́S, (29)

where z is an arbitrary scalar. There is an obvious similarity of this definition to definitions
of objective time derivatives appearing, for instance, in nonlinear plasticity. The object
(29) transforms under the time dependent change of observer: x∗ = O(t)x, where O is
orthogonal OT = O−1 — it describes the rotation of the reference system, in the following
manner

a∗r = Oar, (30)

which means that ar is objective.
We return to the interpretation of the above indicated extension of the set of consti-

tutive variables after the discussion of the second law of thermodynamics.
Field equations for the fields (28) which follow from the above presented balance laws

must be constructed by means of the closure relations. These are constitutive relations
for the constitutive quantities of the model

C =
{
ρ̂S,PS,PF , p̂S, ε,Q,J, n̂

}
. (31)

They are functions of the following set of constitutive variables

R =
{
ρS, ρF ,FS, X́F ,∆n, T,G,N, ar

}
, G = GradT, N = Gradn, (32)

where the relative acceleration ar is defined by the relation (29). The presence of both
partial mass densities is necessary only in the case of mass exchange between components.
Otherwise, only the mass density ρF would appear in order to describe volume changes of
the fluid component. Obviously, FS accounts for the deformations of the skeleton, X́F for
the relative motion of components (diffusion), ∆n for nonequilibrium changes of porosity,
T for nonisothermal character of processes, G for heat conduction, N for heterogeneity of
porosity, and ar for relative acceleration of components. Experience with the derivation of
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Biot’s model shows that the dependence on N is essential for the admissibility of certain
couplings in a linear model (e.g. [21]).

Constitutive relations
C = C (R) (33)

contain in addition a parametric dependence on the initial porosity n0. In the case of
residual partial stresses which may appear in the configuration B0, they should also be
present in a parametric way in constitutive relations. It is, for instance the case when the
fluid component is the gas or for granular materials which remain compact under confining
pressure. Constitutive relations should satisfy a set of principles characteristic for a
thermodynamic strategy of constructing continuous models. We shall not present here
any details of this strategy referring the reader to monographs on the subject (e.g. [5]).
However, in some details we discuss consequences of the second law of thermodynamics.
We proceed to formulate this law in the Lagrangian description of two-component porous
materials. The case of multicomponent immsicible mixtures was consider in the work [22].

The fundamental assumption of this formulation refers to the existence of partial
entropy densities, ηS, ηF , which satisfy balance laws

∂ρSηS

∂t
+DivHS = η̂S, (34)

∂ρFηF

∂t
+Div

(
ρFηF X́F +HF

)
= η̂F ,

in which HS,HF are partial entropy fluxes, and η̂S, η̂F are partial entropy sources. Ad-
dition of these relations yields

∂ρη

∂t
+Div

(
ρηẊ+H

)
= η̂S + η̂F , (35)

where

ρη = ρSηS + ρFηF , H = HS +HF +
ρSρF

ρ

(
ηF − ηS

)
X́F . (36)

The most essential part of the second law of thermodynamics which we consider in this
work is the assumption that the source of entropy η̂S + η̂F is nonnegative for all solutions
of field equations. This yields the following entropy inequality

∂ρη

∂t
+Div

(
ρηẊ+H

)
≥ 0, η = η (R) , H = H (R) , (37)

which must hold for all admissible processes, i.e. solutions of field equations.
Comparison of relations (20) and (36) reveals that even in the case of classical Fourier

relations between partial fluxes HS = QS/T and HF = QF/T , one cannot expect a
similar relation to hold for the bulk fluxes Q and H. This has been observed by I. Müller
for mixtures of fluids and it holds also for porous materials. For immiscible mixtures it is
even more obvious as the intrinsic fluxQI may be anisotropic with respect to the diffusion
due to the contribution of partial stresses (compare (20)) while H (36) does not possess
such a contribution. In a particular case, when, for some reason or other, one can neglect
an influence of shear stresses in the relation (20) it follows

QI = Q
S +QF +

ρSρF

ρ

((
εF +

pF

ρFt

)
−

(
εS +

pS

ρSt

))
X́F , (38)
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where
pS = −

1

3
JS−1 trPSFST , pF = −

1

3
JS−1 trPFFST , (39)

ρSt = JS−1ρS, ρFt = JS−1ρF , JS = trFS,

i.e. pS, pF are partial pressures, while ρSt , ρ
F
t are current partial mass densities. In such

a case, the second part of the intrinsic flux QI is parallel to X́F but the coefficients(
εF + pF/ρFt

)
−
(
εS + pS/ρSt

)
(difference of specific enthalpies) in QI and

(
ηF − ηS

)
(dif-

ference of specific entropies) in H are not related only by the factor 1/T . If this were the
case then this would mean equal chemical potentials of components (i.e.(
εF + pF/ρFt − TηF

)
=
(
εS + pS/ρSt − TηS

)
) which, of course, does not hold in general.

It is one of the properties of the thermodynamic equilibrium.
Even less one can say about different partial temperatures. In such a case not only

Fourier relations do not hold but, in addition, some other components of the second law
cannot be formulated in a standard way. This concerns particularly continuity conditions
on boundaries between different systems and, consequently, a measurability of partial
temperatures. It can be easily checked that partial temperatures cannot be continuous
through boundaries (e.g. [14]). Some progress has been recently made for mixtures of
gases but even there the solution is still not complete [23].

Exploitation of the entropy inequality (37) is based on the elimination of constraints
on the space of its solutions by means of Lagrange multipliers (e.g. [5], [15]). In the case
of the model under consideration one has to consider the following inequality

∂ρη

∂t
+Div

(
ρηẊ+H

)
− Λρ

S

RS − Λρ
F

RF− (40)

−Λv
S

·MS −Λv
F

·MF − ΛεE − ΛnD −ΛF
S

· F ≥ 0,

for all fields (28). The multipliers Λρ
S

,Λρ
F

,Λv
S

,Λv
F

,Λε,Λn,ΛF
S

are functions of con-
stitutive variables (32). In contrast to the entropy inequality (37), the above inequality
must hold for arbitrary fields and not only for solutions of field equations.

4 Simplified constitutive relations

Apart from usual restrictions of material objectivity (i.e. invariance with respect to
changes of observers), we assume additionally that the system is isotropic and that a
dependence on vectorial constitutive variables X́F ,G,N, ar has the lowest nontrivial or-
der. The same assumption concerns the deviation of porosity from equilibrium, ∆n. For
the purpose of this work we neglect as well the exchange of mass between components
ρ̂S = 0. Then the mass density ρS does not appear as a constitutive variable and the
multiplier Λρ

S

= 0.
These assumptions yield the following structure of constitutive relations
— partial stresses

PS = PS0 (RE,∆n) +
1

2
σS (RE)F

SX́F ⊗ X́F , RE =
{
ρF ,FS, T

}
, (41)

PF = PF0 (RE,∆n) +
1

2
σF (RE)F

SX́F ⊗ X́F , nE = nE (RE) , (42)
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— internal energy and entropy

ρε = ρε0 (RE,∆n) +
1

2
εd (RE)

(
FSX́F

)
·
(
FSX́F

)
, (43)

ρη = ρη0 (RE,∆n) +
1

2
ηd (RE)

(
FSX́F

)
·
(
FSX́F

)
, (44)

— fluxes of energy, entropy, porosity

Q = QV X́
F −KG+QnN+QaF

STar,

H = HV X́
F +HTG+HnN+HaF

STar, (45)

J = ΦX́F + JTG+JnN+JaF
STar,

where all coefficients are functions of variables RE,
— momentum source

FST p̂ = ΠV X́
F +ΠTG+ΠnN− ρ012F

STar, p̂ ≡ p̂S, (46)

with coefficients dependent again on variables RE.
Hence, we allow for a quadratic dependence on the diffusion velocity X́F in the internal

energy, entropy and partial stresses and only for the linear dependence on this velocity
in vectorial quantities. This is, of cause, the consequence of the isotropy assumption
and yields an obvious lack of equipresence in these relations. The latter is also related to
physical arguments which we proceed to present and, simultaneously, it yields considerable
technical simplifications.

Nonlinear contributions of diffusion velocity X́F to the internal energy and entropy
(material parameters εd and ηd) are related to analogous terms in partial stress tensors
(material parameters σS and σF ). We shall find their connections after the exploitation of
the entropy inequality. The physical motivation for such terms follows from the analysis
of microstructure. Namely, the volume averaging shows that the macroscopic momenta
ρSx́S, ρF x́F do not account for rapid changes of directions of true microscopic velocities
(compare remarks in the Introduction). These may be considered to be fluctuations of
partial momenta caused by the tortuosity, i.e. by the curvy character of channels in porous
materials. Such fluctuations are one of the reasons for dissipation of acoustic waves and
create a kind of geometrical viscosity of the diffusive flow even in the case of ideal fluids
in an elastic porous matrix.

Simultaneously, the internal energy and the entropy do not depend on G,N and ar.
They are scalars and as such cannot depend in a linear way on vectors. There exists also
no clear argument that they should depend in a nonlinear way on these variables.

Obviously, coefficients K and HT are related to the usual thermal conductivity.
Coefficients QV and HV are responsible for diffusive fluxes of energy and entropy.

Explicit relations (19), (20) and (36) following from the definitions of bulk quantities
are compatible with (45) only if we neglect nonlinear contributions in X́F and leave out
anisotropic effects caused by shear stresses. We do not need to go deeply into these
simplifications because the bulk fluxes specified by the above constitutive relations will
be not related to their partial counterparts within this model. Such a relation may be
important if we consider field equations based on partial energy balance equations and this
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would be the case when the components had different temperatures. However, one should
stress that certain processes in granular materials are related to a nonlinear dependence of
momentum source (diffusive force) on the relative velocity of components. This concerns,
for instance, the liquefaction and piping of soils. A model describing such processes must
be nonlinear in diffusion velocity which is natural as these velocities are large during the
liquefaction.

Coefficients Qn, Qa in the flux Q and Hn, Ha in the flux H follow from the extension
of the model to a constitutive dependence on heterogeneity of porosity and on relative ac-
celeration. We discuss them after the presentation of thermodynamic identities following
from the second law.

The structure of the relation for the momentum source is similar. The coefficient
ΠV corresponds to the classical diffusion force. The coefficient Πn relates the source to
the heterogeneity of porosity. We shall see that, similarly to the contribution with the
coupling coefficient ρ012, this contribution is nondissipative.

Simplification with respect to the dependence on ∆n has not been yet fully exposed.
Dependence on this field does not appear in vectorial fluxes but it is present in the energy
contribution ε0, entropy contribution η0 and both partial stresses PS0 ,P

F
0 . We return to

this dependence in the next Section.

5 Thermodynamical results

We skip here details of a rather tedious analysis of the entropy inequality and present
only the most important results. These are proven in the work [30].

First of all, it can be shown that the dissipation in two-component poroelastic materials
described by the set (32) of constitutive variables (without ρS!) is defined by the relation

D :=

(
∂HV

∂T
−
1

T

∂QV

∂T
+ΠT

)
X́F ·G+

K

T
G ·G+ (47)

+
1

T
ΠV X́

F · X́F + Λnn̂ ≥ 0, for all G and X́F .

Hence, the state of thermodynamical equilibrium defined by D = 0 appears if

G = 0, X́F = 0, n̂ = 0. (48)

Simultaneously, the source of porosity is described by the relation

n̂ = −
∆n

τ
, τ = τ (RE) , (49)

and the multiplier Λn is also a linear function of ∆n.
Obviously, the inequality (47) yields the following restrictions on transport coefficients

ΠV ≥ 0, K ≥ 0,

(
∂HV

∂T
−
1

T

∂QV

∂T
+ΠT

)2
≤ 4ΠV

K

T 2
. (50)

The first two inequalities are obvious. They express the classical statements that the
diffusion coefficient and the heat conduction coefficient are non-negative which means that
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the diffusive force points in the direction of diffusive flow and the heat flux is oriented from
the hotter to colder regions. The last restriction limits the relation between QV and HV ,
i.e. between couplings of the heat flux and the entropy flux to diffusion (thermodiffusion).
In general, one cannot say more about this relation.

The important feature of the dissipation relation (47) is the lack of contribution of
the relative acceleration to this quantity. This follows from the nonlinear contribution
to the relative acceleration (29) which shifts the corresponding term to partial stresses
(see further). It seems to rule out a rather common argument that the contribution of
the relative acceleration may account for the tortuosity of the porous material. Tortu-
osity yields fluctuations of true momentum of the fluid component and, for this reason,
scattering of acoustic waves and irreversibility of processes. It is rather obvious that the
additional resistance to the diffusive flow created by the curvy character of channels must
yield a dissipation which is not the case in the present model. Further nonlinearities
could improve the situation but, as they must be much smaller than these for which we
account for, such a formal solution does not seem to be appropriate either and one has to
account for tortuosity in a model in a different way. The most probable place where one
can introduce this effect is the permeability, i.e. the diffusive force.

Inequality (47) indicates that a deviation from equilibrium is described by the vari-
ables: Lagrangian velocity X́F (diffusion), temperature gradient G = GradT (thermal
conduction), deviation of porosity ∆n (relaxation of porosity). As already mentioned the
relative acceleration ar and the gradient of porosity N = Gradn do not contribute to the
dissipation.

Secondly, the entropy inequality yields the existence of the following potential

ψ = ε− Tη, ρψ = ρψE −
1

2
λnT∆2

n +
1

2
ρ012

(
FSX́S

)
·
(
FSX́S

)
, (51)

ψE = ψE (RE) , λn = λn (RE) ,

which plays a role of the Helmholtz free energy function. In contrast to classical results
of thermoelasticity, it possesses nonequilibrium contributions due to the diffusion and
nonequilibrium changes of porosity. In addition

ηd = 0, ρ012 = const. (52)

Simultaneously, the coefficients of partial stresses must satisfy the following relations

σS = −2zρ012, σF = −2 (1− z) ρ012. (53)

Hence, they are influenced by both parameters of the relative acceleration. Partial stresses
PS0 and PF0 become also fairly explicit.

Tedious calculations [30] yield for isotropic materials the following results for fluxes

J = ΦX́F ,

H = HV X́
F +

1

T
(−KG+QnN+QaA) ,

Q = QV X́
F −KG+QnN+QaA, i.e. (54)

H−
1

T
Q =

(
HV −

1

T
QV

)
X́F .
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Hence, changes of porosity are caused only by diffusion (the flux J) and by the sources
n̂ = −∆n/τ . In the case of the simple mixture model in which there is no constitutive
dependence on the gradient of porosity (see: [20]) the difference HV −

1
T
QV is described

by the partial free energy of the fluid. In the more general case considered in this work
such a relation does not follow from the second law of thermodynamics. Some additional
restrictions for isotropic materials on HV and QV shall not be presented here.

Constitutive relations for partial stresses can be written in the following form

PF = −ρFρ
∂ψE
∂ρF

FS−1+

−T

(
HV −

QV

T

)
FS−T + TλnΦ∆nF

S−T −
ρF

ρ
ρ012F

SX́F ⊗ X́F , (55)

PS = ρ
∂ψE
∂FS

+

+T

(
HV −

QV

T

)
FS−T + ρFρ

∂ψE
∂ρF

FS−T − TλnΦ∆nF
S−T +

ρF

ρ
ρ012F

SX́F ⊗ X́F . (56)

These Piola-Kirchhoff stresses are related to the Cauchy partial stresses by the following
relations

TF = JS−1PFFST , TS = JS−1PSFST . (57)

Consequently, the partial Cauchy stress in the fluid TF is spherical except of the
contribution of relative velocities

TF = −pF1−
ρF

ρ
ρ012
(
x́F − x́S

)
⊗
(
x́F − x́S

)
. (58)

This anisotropic effect is related to the contribution of the relative acceleration to mo-
mentum source.

On the other hand, it is obvious that the free energy ψE = ψE (RE) is not a potential
for partial stresses but it contributes to the coupling of partial stresses. This is an im-
portant property. In contrast to the simple mixture model [20], one can now incorporate
couplings characteristic for the linear Biot model which we briefly present in the next
Section of this work.

6 Biot’s model

The set of nonlinear field equations derived in the previous Section serves, among other
applications like description of propagation of nonlinear waves or energy transport under
large deformations, the purpose of control of correctness of various linear approximations.
These are usually obtained by making the following assumptions

i) small deformations of components; for a two-component system this condition has
the form

max
{∣∣λSα

∣∣}3
α=1

≪ 1, where det
(
eS − λSα1

)
= 0, (59)

∣∣∣∣
ρF0 − ρF

ρF0

∣∣∣∣≪ 1,
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and, obviously, λSα are eigenvalues (principal stretches) of Almansi-Hamel deformation
tensor, eS,

eS =
1

2

(
1−BS−1

)
, BS = FSFST , (60)

while
(
ρF0 − ρF

)
/ρF0 measures volume changes of the fluid for small deformations,

ii) deviations of temperature are small

|T − T0|

T0
≪ 1, (61)

iii) quadratic contributions of velocity are negligible. This concerns, in particular,
convective terms.

These conditions are fulfilled, for example, by the famous Biot model of saturated
porous materials (e.g. [24, 25]). In addition to the above assumptions, in Biot’s model it
is assumed that processes are isothermal and, consequently, the energy balance equation
does not appear. For changes of porosity one assumes that the source term vanishes

n̂ = 0 =⇒
∂∆n

∂t
+Φdiv

(
vF − vS

)
= 0, (62)

where Φ is a constant. Then partial mass balance equations allow to integrate this porosity
equation. Namely

∂ρS

∂t
+ ρS0 div v

S = 0 =⇒ divvS = −
∂

∂t

(
ρS − ρS0

ρS0

)
=

∂e

∂t
, e = tr eS, (63)

∂ρF

∂t
+ ρF0 div v

F = 0 =⇒ div vF = −
∂

∂t

(
ρF − ρF0

ρF0

)
=

∂ε

∂t
, ε =

ρF0 − ρF

ρF0
,

and we obtain

n = nE +Φ(ε− e) = n0 [1 + δe+ γ (ε− e)] , γ =
Φ

n0
, (64)

where δ is a material parameter describing equilibrium (e = ε) changes of porosity due to
volume changes of skeleton, measured by e, and γ is a material parameter for nonequi-
librium changes of porosity, caused by diffusion (a so-called increment of fluid content).
These two parameters can be derived within Biot’s model by means of other material
parameters of the model (see: [26]).

The above analysis shows that porosity can be ignored as a field in Biot’s model.
In the original formulation, Biot is using displacements u and U for the skeleton and

the fluid component, respectively., Then

vS =
∂u

∂t
, eS =

1

2

(
gradu+ (gradu)T

)
= symgradu, (65)

vF =
∂U

∂t
, ε = divU.

The displacement U is a bit unusual in the description of motion of a fluid but this does
not have any practical bearing.

The operators div, grad refer to differentiation in Eulerian coordinates.

19



The fundamental equations proposed by Biot can be then written in the following
form:

ρS
∂2u

∂t2
= divTS + π

(
∂U

∂t
−
∂u

∂t

)
− ρ12

(
∂2U

∂t2
−
∂2u

∂t2

)
,

ρF
∂2U

∂t2
= − grad pF − π

(
∂U

∂t
−
∂u

∂t

)
+ ρ12

(
∂2U

∂t2
−
∂2u

∂t2

)
, (66)

where

TS = TS0 + (P − 2N) (divu)1 + 2N symgradu+Q (divU)1,

pF = pF0 −Q divu−R divU, (67)

The choice of material parameters P,N,R,Q describing constitutive relations for par-
tial stresses is arbitrary. Biot himself was changing his notation from one work to the
other. In the standard notation of elasticity we have P −2N = λ, 2N = µ, where λ, µ are
Lamé constants and R is the compressibility of the fluid. An essential extension of the
set of parameters which characterize separate components (i.e. P,N for the skeleton and
R for the fluid) is the parameter Q which introduces a coupling between partial stresses.

Initial partial mass densities ρS0 and ρF0 were denoted in a different way by Biot. We
introduce them here in order to expose the presence of the relative acceleration which
appears with the material parameter ρ12. It corresponds to the coefficient ρ012 of the
nonlinear model of Sec. 4. This contribution was introduced by Biot in order to account
for added mass effects which he expected to appear in diffusive processes due to a complex
geometry of microstructure of porous materials. The permeability coefficient π was also
introduced in a different form by Biot. It corresponds to ΠV in the nonlinear model of
Sec. 4. It was argued that this coefficient describing a reaction on relative motion of
components should be dependent on the true viscosity of fluid and, primarily, on the
frequency of waves. The latter was attributed by Biot to the tortuosity. Finally, Biot was
considering increments of stresses with respect to constant initial stresses but he never
mentioned this in an explicit form. For this reason, relations (67) contain initial stresses
TS0 , p

F
0 .

Relations (67) do not account for an additional effect derived for the nonlinear model
of the previous Section. They do not contain an influence of nonequilibrium changes of
porosity ∆n. It seems to be justified for acoustics of poroelastic materials but, on the
other hand, it may be important for damage effects.

Simultaneously, the dependence on Gradn in the linear model can be included in
constitutive relations for partial stresses. This results from the relation (64) for porosity.

Numerous theoretical and experimental papers based on Biot’s model prove that Biot’s
intuition was right for problems of poroacoustics and that he included in his model in a
correct way the most important effects appearing in poroelastic materials.

We can summarize the above presentation in the form of the following questions fre-
quently asked in relation to Biot’s model:

(1) Is the coupling of stresses described by the material parameter Q admissible from
the thermodynamic point of view?

(2) Is the contribution of relative accelerations admissible from the point of view of
material objectivity?
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(3) How are changes of porosity described by this model?
(4) How should one write in the mathematically correct form the frequency-dependent

permeability?
(5) Can one extend in a consistent way Biot’s model to large deformations of the

skeleton and other nonlinear effects?
The first question is motivated by the experience with the theory of mixtures of ideal

fluids. For such a mixture the coupling between partial pressures cannot be incorporated
into the model in a thermodynamically admissible way if one does not account for a
constitutive dependence on the so-called higher gradients. As shown in Sec. 5 the second
law of thermodynamics yields for a model with constitutive dependence on Gradn a result
for partial stresses in which this coupling is admissible. Otherwise we get a model called
the simple mixture in which there is no interaction term in constitutive relations for partial
pressures (i.e. Q ≡ 0).

As we have already mentioned, one of the fundamental principles of any macroscopic
continuum model is the so-called material frame indifference or material objectivity which
states that constitutive relations should be invariant with respect to the change of ob-
server. The relative acceleration appearing in the Biot model violates this principle and
yields existence of terms in equations of motion which depend simultaneously on the
choice of the reference system (i.e. observer) and on the material. However, the principle
of material objectivity is fulfilled if we include non-linear contributions in the relative ac-
celeration. In this sense, Biot’s model is acceptable but it cannot describe nonlinear effects
without essential changes and one cannot transform Biot’s field equations to non-inertial
reference frames.

Biot did not make any contributions to describe changes of porosity. There were even
claims in the literature that the model does not account for such changes. We have cleared
this point above.

The form of the permeability coefficient in which a dependence on a frequency of
waves is incorporated cannot appear in general equations of motion which contain as
well a dependence on time. Many papers on this subject avoid this problem by writing
Eqs. (66) after Fourier transformation. The question arises how to incorporate such a
dependence in a general case when, for instance, a complex impulse is applied as a loading
and the temporal form of equations is more convenient for the formulation of the problem.
The proper way to incorporate a dependence on frequency in a linear model is a hereditary
integral describing diffusive forces [21].

Finally, the last question was answered in the first part of this work where it was
shown that nonlinear extensions are not uniquely determined by solely adding terms to
Biot’s model.

7 Unsaturated porous media

We close our considerations with a remark on a problem which seems to be of primary
importance in mechanics of soils and which is still open within thermodynamical modeling
of porous materials.

The class of two-component models presented above applied to soils describes very
important problems related to the loss of stability of slopes or damage done by earthquakes
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but it is too narrow for the description of common engineering problems in which the soil
is not fully saturated. In Fig. 4 we demonstrate typical situations related to flows in
unsaturated soils.

Fig. 4: Unsaturated flow phenomena in the field
(a) Earth dam with an imprevious core illustrating the syphon effect;

(b) imterceptor ditch for a highway and a side-hill location [27]

Formally, an extension of multicomponent models to systems with more than one
fluid component is easy as we can see by inspection of equations presented already in
this work. However, the problem of constitutive relations for the porous medium filled
with a mixture of a liquid and a gas becomes much more complicated than it was for
two-component systems. First of all, the inspection of the microstructure of such systems
shows immediately that depending on the relations of volumes of the gas and the liquid
we may have to deal with bubbles of gas in liquid or with droplets of liquid in the gas. The
transition from one morphology to the other may appear during a flow process in which
the relation of volumes of these two components changes. This is one of many difficulties
related to modeling of unsuturated porous materials.

Existing three-component models are usually linear even in the case of a highly nonlin-
ear constitutive relation describing the microstructure in such a case. Namely, in addition
to porosity one has to introduce a notion of degree of saturation, S, which is a ratio of
the volume of liquid in REV to the full volume of the fluid components in REV (i.e the
sum of volumes of the liquid and of the gas). In the limit case S = 1 the porous medium
is fully saturated by the liquid and in the case S = 0 the medium is fully saturated by
the gas. This notion allows to relate partial pressures of fluid components, pL and pG,
respectively, to true pressures, pLR and pGR, on the microscopic level

pL = nSpLR, pG = n (1− S) pGR, (68)
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with the assumption that the fluid pressure is given by the Dalton relation pF = pL+ pG.
These are very strong simplifying assumptions which cannot be fulfilled, for instance, in
the vicinity of the boundary. In addition, it is assumed that the degree of saturation S is
given by a relation to capillary pressure, pc, by the so-called retention curve

pc = pGR − pLR = f (S) . (69)

The function f is assumed in different, more or less empirical forms (e.g. see [27]). In an
extensive work on waves in unsaturated soils Albers [28] is using a linear approximation
of the so-called van Genuchten equation

pc =
1

αvG

[
S(−1/mvG) − 1

]1/nvG
, (70)

where αvG,mvG, nvG are material parameters.
An attempt, not very successful, to justify the relations (68) and the definition of the

capillary pressure has been made by Pietruszczak and Pande (e.g. [29]).
In the work of Albers [28] the linear constitutive relations have the following form

TS = TS0 + λSe1+ 2µSeS +QLεL1+QGεG1,

pL = pL0 + ρL0κ
LεL +QLe+QLGεG, (71)

pG = pG0 + ρG0 κ
GεG +QGe+QLGεL,

for partial stresses. In these relations, εL and εG are volume changes of the liquid and of
the gas, respectively. The coefficients ρL0κ

L, ρG0 κ
G are compressibilities and the coupling

coefficients are QL, QG, QLG. All these parameters are dependent on the degree of sat-
uration and the corresponding relations are given in the work [28]. Results of the wave
analysis presented in this work seem to check well with measurements. However, an ap-
propriate thermodynamical modeling of such materials, particularly in nonlinear cases, is
still an open problem.
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