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Abstract

Macroscopic modeling of soils is based on a number of properties which refer to the
mesoscopic morphology. The most fundamental parameters of this art are

1. coupling parameters between partial stresses of components and deformations of
components,

2. porosities
3. saturation
4. permeability and diffusivity, tortuosity.

The main aim of this note is to present in juxtaposition continuous one-, two- and three-
component models of geomaterials appearing in construction of embankment dams. In
particular the above mentioned features, especially saturation with water and seepage
problems, modeling of fluidization yielding piping, generalizations of the Darcy law and
changes of porosity are presented.

1 Introduction

Inspection of textbooks and manuals for civil and geotechnical engineers reveals that the
design of embankment dams and levees is still based on two issues. It is either a stability
analysis based on the one-dimensional Mohr-Coulomb relation

τ = c + σ tanφ, (1)

where τ is the shear strength, σ denotes the normal effective stress on the failure plane
and c, φ denote the cohesion intercept and the friction angle, respectively, or these are
flow nets and streamlines obtained by a graphical, for instance Schmidt’s, method (e.g. see
Figure 1).
Sometimes it is supplemented by Darcy’s law for the estimation of seepage. The rest of
those books contains hundreds of examples of existing constructions, a description of their
behavior under various loading conditions and failures. Based on this empirical knowledge
some heuristic hints for designers are formulated.
This is very different from engineering books in other branches of civil engineering where
the design is based on theoretical models which have replaced a sheer collection of obser-
vations. This yields as well a very fruitful development of software for computer aided
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Figure 1: An example of flow nets for two types of embankment dams.

design, such as CAD, Novapoint, etc. M. and I. V������ [33] wrote in their book: ’When
we look back on the whole process through which the geotechnical engineer has to go, we
arrive at the conclusion that the degree of accuracy is significantly lower than for steel
or concrete structure, where the differences in the design can be in the order of a few
percent, while for earth structures these differences can be in order of tens of percent.
That is why on one side the excellent knowledge of soil behavior and treatment of soil as
construction material can bring significant savings against conventional design but on the
other one disregarding this can lead to failures of earth structures.’
However, the situation is slowly changing to the better because the research in the field
of soil mechanics has made a tremendous progress and many theoretical issues such as
failure criteria, fluid flow in porous and granular media, heat transfer in soils, micro-macro
transitions in theoretical modeling which incorporate porosity changes, saturation, phase
changes, dynamics and, particularly, thixotropy or sound wave propagation in soils and
rocks were successfully developed.
A choice of theoretical descriptions of aquifers, embankments and many other geotechnical
structures depends on the class of phenomena which we want to embrace and on conditions
in which the construction or its part should work. For instance, a mechanical loading of a
granular dry material yields fragmentation and abrasion. The same mechanical loading of
a water saturated granular material yields diffusion, fragmentation but much less abrasion.
Hence, in the first case we may expect considerable changes of porosity while in the second
case changes of permeability, piping, particle segregation etc. play an important role. This
means that the water content in a geomaterial may essentially influence the choice of the
theoretical description which is needed.
In this work we present a comparison of fundamental approaches to the theoretical de-
scription of the thermomechanical behavior of geotechnical materials. First, we sketch a
one-component model with additional internal variables. This may be appropriate for the
description of plastic behavior of geomaterials, abrasion but, in many cases of practical
interest, also for the description of diffusion. Second, we present a two-component model
of a saturated granular material. This model contains a number of additional variables
which are able to describe such phenomena as diffusion with variable permeability, lo-
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calization of deformation (e.g. on filters) and internal erosion processes. This yields a
theoretical description of the backward erosion, concentrated leak and suffusion which
are, in turn, main reasons for piping. Finally, also a three-component description for
unsaturated granular materials is mentioned.
Thermodynamic modeling of soils developed as a brunch of the theory of immiscible
mixtures. This modern continuous approach to systems with multicomponent structures
whose one component is solid has been initiated by works of R. M. B��� (e.g. [7]).
Numerous nonlinear effects in porous and granular materials yield in such a modeling a
necessity of application of rather complex mathematical tools. This complexity is then
hidden in modern computer programs whose applications in engineering do not require
high mathematical skills from software users.
However, such multi-component thermodynamic models of soils require as well an identi-
fication of various quantities which do not usually appear in classical continuous models.
This concerns, in particular, geometrical properties of such systems, true properties of
their components and some process variables characteristic for systems with microstruc-
ture. We call this identification the modeling of soil morphology. To name a few examples,
one has to identify the porosity, permeability, and for three-component materials the sat-
uration, moisture, capillary pressure and many others. This leads very often to confusion
and misinterpretation of results. For this reason, in this work we show fundamental quan-
tities of thermodynamic models of immiscible mixtures appearing in description of soils
and their relation to quantities commonly used by soil engineers.

2 One-component modeling of geomaterials

The origin of the one-component models of geomaterials stems from the classical model
of elastoplastic materials. They belong to two groups: one describing dry granular ma-
terials driven by elastic properties and frictional interactions of grains and the other one
describing fully saturated granular materials in which viscosity rather then friction con-
tributes to the mechanical response of the system. Both classes of models contain the
macroscopic deformation B =Bijei ⊗ ej (the left Cauchy-Green deformation tensor), the
velocity v = viei and the temperature θ as unknown functions of the position x and time
t.
In linear models one uses often the displacement vector, u = ukek, related to the Almansi-
Hamel deformation tensor, e, and the velocity, v, by the following relations

e = eklek ⊗ el, ekl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
, v = vkek, vk =

∂uk
∂t

. (2)

This deformation measure is related to the left Cauchy-Green tensor by the equation

e =
1

2

(
1−B−1

)
. (3)

However, these models differ in the set of unknown microstructural variables. The first
class contains only the roughness a whose time derivative ȧ is called the abrasion, while
the second class may contain the abrasion but it must contain also the porosity n and the
pore pressure p. For these quantities — fields, we have to construct additional equations.
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The classical approach is based on the set of conservation laws of mass, momentum and
energy. In Cartesian reference frame they have the following form

∂ρ

∂t
+

∂ (ρvi)

∂xi
= 0, (4)

∂ (ρvi)

∂t
+

∂

∂xk
(ρvkvi − σik) = ρbi, (5)

∂

∂t

(
1

2
ρvkvk + ρε

)
+

∂

∂xk

[(
1

2
ρvivi + ρε

)
vk + qk − σkivi

]
= ρbkvk, (6)

where ρ is the bulk mass density, σik are components of the Cauchy stress tensor,
T = σikei ⊗ ek, bi are the body forces (e.g. gravitational or centrifugal), b = bkek,
ε is the specific internal energy and qk are components of the heat flux vector, q = qkek.
It is often assumed that the real grains of the material are incompressible. This means
that the true mass density ρSR, ρ = (1− n) ρSR (S for ’solid’ and R for ’real’ or ’true’;
in soil mechanics one denotes sometimes ρSR = γ), is constant. The porosity n is related
to the void ratio e, 0 ≤ e < ∞, often used in soil mechanics, by the simple relation
n = e/(1 + e), 0 ≤ n ≤ 1.
All these arguments are related to the two-component model which we discuss in Section
3. Therefore, the changes of porosity following from the incompressibility assumption
cannot be consistently incorporated in a one-component model. The following relation,
used in this model,

n = n0

(
1 +

1− n0
n0

e

)
(7)

where n is the current porosity, n0 the initial porosity and e =tr(1−B−1) the volume
changes of the solid frame (caution: this e is not the same as the void ratio, mentioned
above), must be considered as an additional assumption of the one-component model.
We return to the microscopic interpretation of these quantities in Section 4.1 of the present
work.
In order to obtain the equations of the model of dry granular materials we have to specify
constitutive relations for stress tensor σik, internal energy ε, heat flux qk and the abrasion
ȧ.
Experience shows that granular materials behave plastically. Consequently, the classical
Mohr-Coulomb relation has been extended to relate the stress tensor and the deformation
tensor. As the so-called hardening effects play an important role in such models one had to
introduce additional internal variables (the so-called back-stress). The result is the cam-
clay model commonly used in the literature on soil mechanics (e.g. see: D. M��� W���

[45], [46], L���������� [27]). As an alternative a so-called hypoplasticity was introduced
(B���� [2], W����������� [44], K������� [24], [25]). In contrast to the cam-clay
model the hypoplasticity is rate-dependent which means that the rate of deformation
Dij =

1
2
[∂vi/∂xj + ∂vj/∂xi] (it is related to the time derivative of the deformation tensor

Bij) has an influence on the current values of the stress. The general constitutive relation
for stresses in this model has the form

σ̊ij = fij [σij, Dij, n] , (8)
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where σ̊ij denotes an objective time derivative of the stress tensor.
We do not need to go into details of these models in the present work. Many of them can
be found in B���� [3].
It remains to specify the internal energy ε, the heat flux qk and the abrasion ȧ. For the first
two quantities one usually assumes that the classical Fourier model of heat conduction
is valid. This may be questionable in some fast processes but for the thermomechanical
description of embankments it seems to be sufficient. For the purpose of our analysis it
is sufficient to point out the ways in which energy is transported in the medium. They
are specified in (6) by contributions under the div operator (i.e. ∂

∂xk
). The first one is

the convection. The second one, described by q, consists of two parts: the conduction, qc
and the diffusion, qd with q = qc + qd. The latter means that the energy is transported
by the relative motion of components. Such a mechanism cannot be described by a
one-component model. The conduction is related to the transfer of energy due to the
temperature gradient. Finally, the last contribution, Tv, is the bulk working of stresses
which is also of no interest in this work.
Conduction in isotropic materials is usually described by the linear Fourier law

qc = −λgradθ, (9)

where θ is the absolute temperature. The coefficient λ, the heat conductivity, is for
soils heavily dependent on the morphology. This dependence cannot be reflected by a
one-component model either. We return to this problem in Section 4.3.
The form of the equation for abrasion has a long history and it goes back to the work of
G������ and C��� [19]. However, in this pioneering work the equation was proposed
rather for changes of volume fraction than for the abrasion. It was first the series of
works of K. H����� (e.g. [34], [35]) and the PhD Thesis of N. K��� ��� [23] where
this equation was thermodynamically justified. Its form follows from the assumption that
microstructural changes of the configuration caused by the abrasion must be accompanied
by the so-called configurational forces. Then the abrasion ȧ, corresponding to the classical
notion of momentum, must satisfy a balance law which is assumed to have the form

ρk
∂2a

∂t2
=

∂hi
∂xi

+ ρ (l + f) , (10)

where k is the material parameter describing the resistance of the material to changes of
its internal surface. According to K��� ��� [23]: ’change of surface properties includes
the smoothening of initially rough grain surface (that is, ȧ < 0) as well as the roughening
of initially smooth grain surfaces (that is, ȧ > 0)’. hi is the surface stress of abrasion. l and
f are supply and production, respectively and the latter must be given by a constitutive
law of its own.
The above sketched one-component model of dry geomaterials is often extended by an
equation describing the flow of water through the saturated granular material. All equa-
tions described above are assumed to remain unchanged. The seepage process through the
saturated material is supposed to satisfy some additional balance law which is justified
experimentally. Such a justification goes back on works of D���� [12] and it has been
incorporated in soil mechanics by !�� T��#�$ � [32]. In the local form this law can be
written in the form

Qi = −
kij
µ

∂p

∂xj
, (11)
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where Qi is the so-called specific discharge, i.e. a relative velocity of water with respect
to the skeleton, kij is the matrix of permeability which reduces to a scalar k for isotropic
materials and µ is the kinematic viscosity of water. It has been shown that such a relation
holds for small relative velocities which are connected with a laminar flow of the water (low
Reynolds number, Re < 1÷10, J. B��� [4]). In the case of fast flows yielding turbulence
(high Reynolds numbers) the Darcy law does not hold. Most likely F���  ����� [16]
was the first who proposed nonlinear corrections to (11) in order to describe such flows.
They play a particularly important role in processes of piping, commonly appearing in
embankment dams. A more rational procedure of description of seepage is proposed by
theories of multicomponent systems.

3 Two-component modeling of geomaterials

The thermomechanical model of a one-component geomaterial can be considerably im-
proved when one applies a theory of immiscible mixtures. We shall do so first for fully
saturated materials. In this case the extension yields a better physical insight but for pur-
poses of geotechnics it is not necessary. However, for partially saturated materials such
extensions are unavoidable and, simultaneously, they are similar to two-component models
in many technical details. We will see this in the following sections on multi-component
modeling.
In the case of two components one has to describe the partial macroscopic fields for each
component. These are partial mass densities ρS, ρF with the bulk mass density ρ = ρS+ρF ,
partial velocities vS, vF with the bulk (barycentric) velocity v =

(
ρS/ρ

)
vS+

(
ρF/ρ

)
vF ,

partial Cauchy stresses TS = σSijei⊗ej, TF = σFijei⊗ej with the bulk stress T ≈ TS+TF .
These quantities must satisfy balance laws

∂ρα

∂t
+

∂

∂x
(ραvαi ) = 0, α = S, F, (12)

∂ (ραvαi )

∂t
+

∂

∂xk
(ραvαi ⊗ vαk ) =

∂σαik
∂xk

+ p̂αi + ραbαi , p̂Si + p̂Fi = 0. (13)

It is easy to check that conservation laws of a one component model are then identically
satisfied provided we neglect quadratic terms in relative velocities vα − v which seems
to be well justified for processes in soils far from the structural loss of stability such as
fluidization. The momentum source p̂S = p̂Si ei = −p̂F = −p̂Fi ei is related to the diffusion
force. In the case of an isotropic model linear in relative velocities it can be written in
the form

p̂S = π
(
vF − vS

)
, (14)

where π is the permeability coefficient. In the case of water one can assume that the
partial stress tensor TF is spherical, i.e. it reduces to the partial pressure pF . Then the
momentum balance for the fluid written in Cartesian coordinates has the form

ρF
(

∂vFi
∂t

+ vFk
∂vFi
∂xk

)
= −∂pF

∂xi
+ π

(
vFi − vSi

)
+ ρF bFi . (15)

This equation yields Darcy’s law for processes with small changes of porosity and negligible
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inertial forces. In such a case, it follows

pF = n0p,
(
vFi − vSi

)
= −n0

π

∂p

∂xi
, (16)

where n0 is the initial porosity and n ≈ n0. This is identical with (11) for isotropic
materials with an appropriate definition of the permeability k/µ = n0/π. Hence the
two-component model yields the one-component model as a particular case.
On the other hand, the general form of partial momentum balance (12) admits also
nonlinear contributions which yield the loss of stability of the fluid motion. If changes of
porosity and relative velocity are not small one can introduce the following relation for
the source of momentum (see: W�� ���, W�������� [37])

p̂Si = π
(
vFi − vSi

)
−
(

p + ρS
∂ψS

∂n

)
∂n

∂xi
, (17)

where p is the pore pressure and ψS is the Helmholtz free energy of the solid component
dependent on deformations, porosity and relative velocity. This form of the source is
justified by thermodynamic considerations which we shall not discuss in this work. The
simplest choice of the dependence on the relative velocity which yields piping is as follows

ρS
∂ψS

∂n
=

Γ√
2

(
1 +

W − Y

|W − Y |

)√
W, (18)

Γ, Y > 0, W =
1

2

(
vFi − vSi

) (
vFi − vSi

)
,

where Γ is a material parameter and Y is the threshold velocity. As shown in [37] this
model yields a quantitative agreement with experiments on sands.

3.1 Changes of porosity

Changes of porosity may be described by the relation (7) following from the assumption
on incompressibility of grains. However, there is an evidence stemming from poroacoustics
that such an assumption eliminates an important P2-wave from the model (e.g.W�����-

��� [42]). Many other problems must also account for changes of porosity. For instance,
within soil mechanics these are large plastic deformations (e.g. E. B���� [2]), damage
(for instance, in freezing and thawing) or, for granular materials, combustion problems of
solid fuels.
Generally, there are a few different approaches to changes of porosity. We mention here
the five most commonly appearing in the literature:

1. Constitutive assumption, e.g. equilibrium changes coupled on volume changes of
skeleton (F. G������� [17]),

2. Incompressibility assumption (R. M. B��� [7]),

3. Evolution equation (R. M. B��� [8]),
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4. Second order equation based on a principle of equilibrated pressure (M. G���-

��� ��� S. C��� [19], extended by P������, N��#���� ��� W��� [29], K.
H����� et al. [14]),

5. Balance equation (K. W�������� [38], [39]).

Gassmann’s model follows from a simplified micro-macro description and results in the
relation

n = n0 (1 + δe) , (13)

where e denotes small volume changes of the skeleton and δ is a material parameter related
to compressibilities of components. n0 is the initial porosity. We show some properties of
this model further in this Section.
The assumption of incompressibility which is essential for Bowen’s approach [7] states

ρSR = const., (14)

which yields the following form of the macroscopic mass balance equation for the skeleton

ρSR
∂

∂t
(1− n) + ρSRdiv

[
(1− n)vS

]
= 0, (15)

provided there is no mass exchange with other components.
Easy integration of this equation yields for small deformations

n = n0

(
1 +

1− n0
n0

e

)
, (16)

which is, obviously, equation (7) of the one-component model and it reminds Gassmann’s
relation (13) but there is no relation to material parameters. In this case δ = (1−n0)/n0.
We will not discuss the next two models and mention only that the evolution equation
proposed by Bowen is a particular case of the balance equation of porosity, at least for
small deformations, when one neglects the influence of diffusion. The Goodman and
Cowin proposition is related to some microstructural considerations which have a bearing
in the case of combustion problems for powders. K. Hutter and his coworkers have shown
that some extensions of this model describe well the behavior of snow avalanches and mud
flows.
The porosity balance of the last model, mentioned above, is thermodynamically admissible
and yields a consistent model for large deformations (K.W�������� [43]). As we will see
below, in the case of small deformations of soils this equation can be immediately solved.
Its linear version for two-component systems has the form

∂∆n

∂t
+Φdiv

(
vF − vS

)
= −∆n

τ
,

(17)
∆n = n− nE, nE = n0 (1 + δe) ,

where vF is the macroscopic velocity of the fluid, τ , δ,Φ are material constants. In the
case of soils, one can usually neglect relaxation effects described by the right-hand side of
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Figure 2: Coefficients δ and γ of the linear porosity relation without source. Left: co-
efficient δ for compressibilities of the skeleton 35 and 48 GPa with water or air filling
the pores, middle: δ for incompressible skeleton (ρSR = const.), right: coefficient γ for
nonequilibrium contribution.

the equation. This means that one can take the limit τ →∞. Then, the equation can be
integrated and the following relation follows

n = n0 (1 + δe + γ (e− ε)) , γ =
Φ

n0
, (18)

where ε is the volume change of the fluid component. The quantity ζ = (e− ε) /n0 is
called the increment of fluid content. The above relation can be easily extended to three
components (see: B. A����� [1]). We shall not present this equation in this work.
Similarly to the Gassmann relation, it can be shown that material parameters δ, γ can be
identified by means of compressibilities of components (K. W�������� [40]). Simultane-
ously, they coincide with coefficients of porosity changes predicted by Biot’s model (M.

A. B��� [6]). In Figure 2, we present a few examples of the behavior of these parameters.
The left panel shows the dependence of the coefficient δ (equilibrium changes of porosity)
as a function of the initial porosity, n0. The curves correspond to the compressibility of
the solid skeleton 48 GPa and 35 GPa, respectively. The two lower curves are plotted for
water and the two coinciding upper curves are plotted for air. The middle panel shows
the illustration of δ for an incompressible skeleton (relation (16); in this case γ ≡ 0).
There is almost no difference between this curve and the curves for air in the left panel.
Finally, the right panel shows the behavior of γ which reflects the influence of diffusion
on changes of porosity. Obviously, this influence is rather small and the values for the
saturation with air are so small that the curves are not visible in the scale of Figure 2.

3.2 Tortuosity

The notion of tortuosity contributes to numerous confusions in modeling porous media.
It is still disputable in what way one should include this measure of complexity of mi-
crostructure.
The tortuosity, τ , is taken as the ratio of the average pore length to the macroscopic
characteristic length along, for instance, the major flow (i.e. the longest local streamline).
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Figure 3: Different tortuosities for three morphologies of the same porosity.

An example of different values of tortuosity for a medium with the same local porosity
is exemplified in Figure 3. The left situation yields the smallest value of τ and the right
situation — the largest value of τ among these three cases. The value of τ is the ratio of
the distance of points A and B to the length of channels indicated by the arrows.
As shown by N. E-����� [13] the tortuosity influences the intensity of diffusion by en-
tering a material parameter relating the pressure gradient and the diffusion velocity. We
return to this coefficient in the next Section. However, it should be mentioned that it is
the square of τ which appears in this relation. The error of the linear dependence made by
J. K�#��� [26] has been corrected in many works and the quadratic dependence seems
to be well established.
In many papers on acoustics of porous media it is claimed that the tortuosity enters the
model by the so-called added mass effect. This has been introduced by M. A. B���

[5] in the form of a off-diagonal contribution ρ12 to the partial mass matrix. It can be
understood as a coupling of components through inertial forces. One can show in a simple
thermodynamic analysis (K. W�������� [41]) that such a coupling is nondissipative.
This means that the tortuosity cannot have an influence on the damping of acoustic waves.
This is, of course, a nonsensical conclusion. This contribution, can be indeed introduced
to poroelastic models after some nonlinear corrections, but it cannot be interpreted as an
influence of tortuosity.

3.3 Permeability

The notion of permeability of porous media is usually related with the Darcy law which
expresses a total discharge of fluid in a one-dimensional flow in terms of the pressure
difference. However, there is still a bit of confusion in the terminology. We use in the model
of porous materials the term of a coefficient of permeability or coefficients of permeability
if we deal with more than one fluid component. We proceed to introduce these notions in
a systematic way.
The fundamental notion of intrinsic permeability, κ, is related solely to the morphology
of a porous skeleton and it is independent of the kind of fluid in the channels. It may be
related to the effective diameter of the pores, d, by the relation

κ = Cd2, (19)

where C is a dimensionless constant. The units of κ are [m2] but in practical applications
often the unit 1 [darcy] ≡ 1 D ≈ 10−12 [m2] is used.
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In the second column of Table 1 we quote some typical values of this parameter.

Table 1: Intrinsic permeability, κ and hydraulic conductivity, K for some formations

soil κ [darcy] K [m/s]
well sorted gravel 105 − 102 1− 10−3

oil reservoir 10− 10−1 10−4 − 10−6

sandstone 10−2 − 10−3 10−7 − 10−8

granite 10−6 − 10−7 10−11 − 10−12

In order to characterize the flow of a particular fluid one has to account also for properties
of this fluid. If the kinematic viscosity is µ and its mass density ρFR then the parameter

K =
κγFR

µ
, γFR = ρFRg, (20)

is called the hydraulic conductivity; g is the earth acceleration. A few typical values for
water (pressure 105 Pa, temperature 200 C, µ = 1.002 × 10−3 Pa·s) are quoted also in
Table 1. Then the typical form of the Darcy law is as follows

Q
(
ρFRg

)
= KA

∆p

L
, (21)

where Q [m3/s] is the total discharge through the surface A, ∆p = pa− pb is the pressure
difference and L is the distance between two faces a and b.
In addition, for horizontal aquifers one uses the notion of transmissivity, T , which is the
product of the hydraulic conductivity, K, and the thickness, d, of the aquifer.
If we refer the diffusive flow to the difference of the concentration rather than to the
difference of the pressure — one speaks then about the first Fick law — then the diffusion
flux and the gradient of concentration are connected by the diffusion coefficient, D. This
notion is, of course, related to the hydraulic conductivity, K, by a simple change of
variables.
Finally, let us remark that the constant C of the relation (19) is dependent on the porosity
and on the tortuosity (a quadratic dependence as we argued before).
Theories of porous media are based on the model of immiscible mixtures. Then Darcy’s
law does not enter the model at all. It is replaced by partial momentum equations. In
the case of a linear model of two components the simplest form of this equation is the
following

ρF
∂vF

∂t
= −gradpF + π

(
vF − vS

)
. (22)

If we neglect the acceleration it becomes a precursor of Darcy’s law. The coefficient π
which is inversely proportional to the hydraulic conductivity is called the coefficient of
permeability.
The microstructural justification of the above relations for parameters of permeability is
difficult. Such laws are known from the kinetic theory of mixture of gases and, in the case
of granular materials, they are mimicked by assuming that grains have a very big mass in
comparison to the gas in pores and, consequently, can be assumed to be immobile. One
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obtains the so-called gas-dust diffusivity (e.g. J. A. W�������$ , R. K��� �� [36])
which is the counterpart of the hydraulic conductivity. Some results, also experimental,
are obtained for regular geometries of channels. Otherwise, one has to rely on purely
macroscopic observations.
We leave out considerations concerning heat conduction. This problem shall be presented
in some details in Section 3 on three-component models.
One can conclude the above remarks that the two-component model may play an impor-
tant role in geotechnics for processes in which nonlinearities are essential. This concerns
large deformations and, consequently, large changes of porosity and permeability. Of par-
ticular importance are, however, large relative (seepage) velocities which yield the loss of
stability and piping. Otherwise one-component models seem to be acceptable for both
dry and wet granular materials of geotechnical bearing.

4 Three-component modeling of geomaterials

As indicated in the previous Section, for three-component continuous models besides the
porosity at least one more microstructural variable appears, namely the saturation, i.e. the
fraction of the volumes of one of the pore fluids to this of the void space. Then, in the
thermodynamical analysis the following fields have to be considered:

1. partial mass densities, ρS, ρF , ρG,
2. velocities of components, vS,vF ,vG,
3. common temperature of components, T,
4. porosity, n,
5. saturation, S.

The physical significance of the first and second group will be explained in the following
subsection.

4.1 Micro-macro transitions for porous materials

The construction of thermodynamic models of materials with small randomly distributed
voids requires always a smearing-out procedure which transforms functions on complicated
and different domains to a common domain, say B0, which, in turn, is identified with
a continuous porous medium. Such constructions for multicomponent systems with a
relative motion (diffusion) yield the so-called immiscible mixtures. Quantities appearing in
such models are not directly measurable and require, as we indicated in the introduction to
this work, certain identification rules. In some cases these rules can be simply constructed
by volume averaging and in some other cases they require more sophisticated methods of
identification. We begin our presentation with a few typical quantities which follow from
the former procedure.
The volume averaging is performed by means of the so-called Representative Elementary
Volume (REV , e.g. J. B��� [4]) consisting of points Z. REV is small enough to be
replaced by a material point X of B0 at which a set of macroscopic quantities replaces
real (true) quantities of the microdomain REV . For three-component systems which we
consider in this section, the following quantities are defined by averaging over REV (X, t)
prescribed to the point X ∈B0 at the instant of time t:
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1. Porosity

n (X, t) = 1− 1

vol (REV )

∫

REV (X,t)

χS (Z, t) dVZ ,

VS =

∫

REV (X,t)

χS (Z, t) dVZ, (23)

where χS (., t) is the characteristic function of the skeleton, i.e. it is equal to one if the
point Z is occupied by a particle of the skeleton (solid phase) at the instant of time t, and
zero otherwise, and vol (REV ) = V is the volume of REV . In continuous models, the
porosity is usually identical with the porosity available for the transport in pores. This
means that, for instance, contributions of dead-end channels are not included in n. The
latter contribute to changes of the true (real) effective properties of the skeleton.

2. Mass density of the skeleton

ρS (X, t) =
1

vol (REV )

∫

REV (X,t)

ρSR (Z, t)χS (Z, t) dVZ , (24)

where ρSR (Z, t) is the real (true) mass density of the skeleton at the point Z and at the
instant of time t.

3. Mass density of the fluid

ρF (X, t) =
1

vol (REV )

∫

REV (X,t)

ρFR (Z, t)χF (Z, t) dVZ,

VF =

∫

REV (X,t)

χF (Z, t) dVZ , (25)

where ρFR (Z, t) is the real (true) mass density of the fluid at the point Z and at the
instant of time t, and χF (., t) is the characteristic function of the fluid, i.e. it is equal to
one if the point Z is occupied by a particle of the fluid at the instant of time t, and zero
otherwise.

4. Mass density of the gas

ρG (X, t) =
1

vol (REV )

∫

REV (X,t)

ρGR (Z, t)χG (Z, t) dVZ,

VG =

∫

REV (X,t)

χG (Z, t) dVZ , (26)

where ρGR (Z, t) is the real (true) mass density of the gas at the point Z and at the instant
of time t, and χG (., t) is the characteristic function of the gas, i.e. it is equal to one if the
point Z is occupied by a particle of the gas at the instant of time t, and zero otherwise.
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In many cases of practical importance, one assumes a microhomogeneity of the microstruc-
ture which means that true mass densities are approximately constant on REV . Then

ρS = (1− n) ρSR, ρF = nSρFR,
(27)

ρG = n (1− S) ρGR, n =
VF + VG

V
,

where S denotes the saturation

S =
VF

VF + VG
, (28)

and ρSR, ρFR, ρGR are evaluated in an arbitrary point Z0 ∈ REV (X, t) (microhomogene-
ity!).
Sometimes the product

θ = nS ≡ VF
V

, V = VS + VF + VG, (29)

is called the volumetric water content. This should be distinguished from the gravimetric
water content (a moisture fraction)

w ≡ mW =
MF

MS
=

ρFRVF
ρSRVS

,

(30)
VL = nSV, VS = (1− n)V,

i.e. it is the fraction of the mass of fluid to the mass of the (real, true, dry) skeleton.
Certainly, bearing relations (27) in mind, it can be written in the form

mW =
ρF

ρS
. (31)

Consequently, in contrast to porosity, n, and saturation, S, neither the volumetric water
content, θ, nor the moisture fraction, mw, are independent microstructural quantities.
However, the latter is sometimes used as a measure of compactness of soils reflected by
the partial mass density of the skeleton, ρS.
The construction of volume averages illustrated above fails in the case of transport coef-
ficients. This concerns both classical coefficients such as heat conductivity or hydraulic
conductivity, as well as partial stresses. In the latter case, one makes sometimes simpli-
fying assumptions

pS = (1− n) pSR, pF = nSpFR,

pG = n (1− S) pGR, pL = pF + pG = npLR, (32)

pLR = SpFR + (1− S) pGR,

where pS = −1/3trTS is the partial pressure in the skeleton (TS denotes the partial
Cauchy stress tensor in the skeleton) and pSR denotes the true (real) pressure in the
skeleton, pF and pFR are partial and, respectively, real pressure in the fluid, pG and
pGR — in the gas, and pLR is the pore pressure. One can show that relations (32) are a
combination of volume averaging under very restrictive conditions and Dalton’s law for
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fluid components. However, one should bear in mind that they may not hold, for instance,
near boundaries or for dynamical processes such as shock waves. The following quantity

pc = pGR − pFR, (33)

is identified with the capillary pressure and used in constitutive relations for the satura-
tion, S.
Fields of velocities of components are more difficult to interpret in terms of microstruc-
tural quantities. It is obvious that deviations of real velocities of the skeleton and of the
fluid components from their macroscopic counterparts, both with respect to directions
and the magnitude, are usually very large. Such fluctuations cannot be easily estimated
by averaging. Hence, the terminology: diffusion velocities vF − vS, vG − vS, with re-
spect to the skeleton — or frequently appearing in soil mechanics — seepage velocity or
velocity of filtration should be understood as macroscopic notions and their interpreta-
tion may change from one process to the other. For instance, in cases of catastrophic
phenomena such as liquefaction the filter velocity cannot be identified with any of the
macroscopic average velocities. Macroscopic models based on the above notions must be
then correspondingly extended.
At the first glance, the problem of averaging of velocities can be replaced by the averaging
of momenta. These are volume densities and, consequently, one could write

ρSvS =
1

vol (REV )

∫

REV (X,t)

ρSR (Z, t)vSR (Z, t)χS (Z, t) dVZ ,

ρFvF =
1

vol (REV )

∫

REV (X,t)

ρFR (Z, t)vFR (Z, t)χF (Z, t) dVZ, (34)

ρGvG =
1

vol (REV )

∫

REV (X,t)

ρGR (Z, t)vGR (Z, t)χG (Z, t) dVZ ,

where vSR,vFR,vGR denote real (true) velocities in channels. However, this is not much
of the help. First of all, the macroscopic momentum balance equations which yield field
equations for vS,vF ,vG must contain source terms such as diffusive forces reflecting in-
teractions through walls of channels or frictional forces between fluid components. Such
terms are not present in microstructural momentum balance equations and must be intro-
duced by some additional surface or line integrals on REV which, of course, has nothing to
do with volume averaging. Secondly, average momentum densities do not describe strong
deviations (fluctuations) of true momenta from average values anyway. These would have
to be introduced additionally to averaged momentum balance equations. One of the mi-
crostructural variables designed for this purpose is the tortuosity described in Section 3.2.
Consequently, in spite of a few attempts to develop this procedure it seems to be easier
to deal directly with purely macroscopic models.
The assumption on a common temperature of components, T , is related with difficulties
of thermodynamic procedures for mixtures with multiple temperatures. Such procedures
are scarce in literature and usually not directly applicable to porous media (e.g. see: T.
R�$$���, S. S���Č [30], D. I�Ş�� [22]).
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The field of porosity, n, has been discussed in detail in the last Section about two-
component models. In the following subsection, the notion of saturation, S, is discussed
in some details.

4.2 Capillary pressure, saturation, retention curves

As mentioned earlier, the construction of a relation for the saturation as one of the fields for
a three-component immiscible mixture is based on considerations concerning mechanical
properties of the microstructure. They are still limited to isothermal conditions.
Between two immiscible fluids, of which one may be gaseous, e.g. water and air, a dis-
continuity in pressure exists across the interface separating them. The difference is called
capillary pressure (compare (33))

pc = pGR − pFR, (35)

where pGR is the true pressure in the nonwetting phase (gas in our case) and pFR the
corresponding value in the wetting fluid (water in our case). The fluid phase whose
molecules or atoms preferentially are adsorbed on a solid surface is called the wetting
fluid while the superseded material is denoted as nonwetting fluid.
In a fluid-gas-mixture, the Young-Laplace equation describes the capillary pressure dif-
ference due to the phenomenon of surface tension σ and relates it to the radius of the
bubbles r

pc = 2
σ

r
. (36)

For a porous medium, the capillary pressure is a measure of the tendency to suck in
the wetting fluid or to repel the nonwetting phase. In soil science, the negative of the
capillary pressure (expressed as the pressure head) is called suction. The radius r then
is of the order of magnitude of the pore or grain size. The capillary pressure, thus,
depends on the geometry of the void space, on the nature of the solids and fluids and on
the degree of saturation. As we have already pointed out, in soils, the geometry of the
void space is extremely irregular and complex. Hence, only an idealized model may be
adopted (e.g. capillary tubes, spheres of constant radius or a bundle of parallel circular
rods). Laboratory experiments are probably the only method to derive the relationship
pc = pc (S) .
In the experimentally determined capillary pressure curves a hysteresis occurs. This
means that different capillary pressures may be obtained for a certain degree of saturation,
depending on whether a sample is initially saturated with a wetting or with a nonwetting
fluid. In both cases the fluid initially saturating the sample is slowly displaced by the
other fluid. When the sample is initially saturated with a wetting fluid, the process is
called drainage, otherwise imbibition. Figure 4 which is taken from J. B��� [4] shows
a typical capillary pressure - wetting fluid saturation relationship (kerosene and water in
a sandstone) including the effect of hysteresis. In theoretical approaches the hysteresis
is neglected for simplification. The capillary pressure curve is known also under several
other denotations, e.g. it is also called retention curve, pF-curve or soil-water characteristic
curve.
Inspection of Figure 4 shows that a certain quantity of wetting fluid remains in the sample
even at high capillary pressures. The value of the water saturation at this point (Bear
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Figure 4: Typical capillary pressure-wetting fluid saturation curves illustrating hysteresis.
(J. B���).

denotes it by Sw0 otherwise it is often described by SrF — r stands for residual) is called
irreducible saturation of the wetting fluid. Something similar appears if one looks at the
imbibition curve. It is observed that at zero capillary pressure there remains a certain
amount of the nonwetting fluid — the residual saturation of the nonwetting fluid (Bear
denotes it by Snw0 otherwise it is often described by SrG). It indicates the amount of
entrapped air in the pores. This leads to the introduction of the term effective saturation
(for more information see e.g. R. H����$ [21])

Se :=
S − SrF

1− SrF − SrG
or Se :=

S − SrF

1− SrF
. (37)

The measured capillary pressure curves for several soil types differ considerably. Partic-
ularly, the range of the saturation which in a special soil can appear is rather distinct. A
rough overview for sands, silts and clays is given in Figure 5 which is a modification of
a figure of K. H. H���$� & R. H��� [20]. The entire curve, according to P. S� ���
[31], can only be obtained by combining several measuring techniques because the range
of capillary pressures can cover up to seven orders of magnitude while each technique is
applicable only up to three orders of magnitude.
There are some attempts to put the once experimentally measured curves into formulae.
The most common approaches are those of R. H. B����� & A. T. C���� [9] and M.

T. !�� G���� ��� [10]. According to the latter the relationship is described by

pc =
1

αvG

[
S(−1/mvG)
e − 1

]1/nvG
, (38)

where αvG, mvG, nvG are parameters which depend on the type of the soil and Se is the
effective water saturation (37). For simplicity mostly it is assumed that Se ≡ S. Obviously,
the van Genuchten equation is a nonlinear relation in the saturation S.
It is clear that the relation (38) can be incorporated in a macroscopic model only under
the condition that we know how to transfer true pressures pGR and pFR to the macroscopic
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Figure 5: Range of capillary pressure curves for sands, silts and clays. Modified figure
form H���$� & H���.

level. The simplest possibility is to use relations (32) but they may be too simplistic as we
have already indicated. They may give reasonable results in linear models but, in general,
the problem is still open.

4.3 Heat conduction

In Section 2 on one-component models the Fourier law (9) has been already introduced. It
was mentioned that the coefficient λ, the heat conductivity, is for soils heavily dependent
on the morphology and that this dependence cannot be reflected by a one-component
model. Therefore we return here to this point in order to describe it by a three-component
model. In Figure 6 (compare: F������ [15]) we show an example of a nomogram in which
the dependence of λ is demonstrated for various moisture contents (i.e. for various mass
densities of the fluid if the mass density γd = ρS of the skeleton is fixed), saturations (i.e.
the volume fraction of the gas to the fluid component) and mass densities of the skeleton.
As we see, in this example λ varies between 0.1 to 1.4 W/mK.
Unfortunately, the heat conductivity, λ, cannot be derived by means of any averaging
procedure from microscopic conductivities of components. For this reason, we have to
rely on empirical relations. These were proposed for soils some 30 years ago.
Recently developed experimental equipment such as TP O2 probe allow to make non-
steady-state measurements of heat conductivity (e.g.A. G�����#���� [18]) for various
morphologies of soils. In a work, published in 2008, S �� X���$ C �� [11] has proposed
the following empirical relation for the conductivity

λ = λ1−n0 λnw [(1− b)S + b]cn , (39)

where S is the saturation, λ0 is the grain heat conductivity, λw = 0.61 [W/mK] —
heat conductivity of water and b, c are fitting parameters. For example, for sandy soils
λ0 = 7.5 [W/mK], b = 0.0022, c = 0.78. In an implicit way, this relation accounts as well
for a dependence on temperature through λ0 and λw.
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Figure 6: in dependence on the soil density, saturation and moisture content.

The results for the heat conductivity and corresponding theoretical one-component and
multicomponent models play a particularly important role in description of freezing and
frost heaving of soils.

Field equations for the above fields follow either from balance equations or from additional
constitutive assumptions (saturation). Balance equations contain fluxes and sources and
these, in turn, require additional information on material parameters.

5 Concluding remark

Three important issues of theoretical modeling should be mentioned.
The first one is the formulation of boundary conditions. In one-component models these
are classical and extensively discussed in elasticity or plasticity. In multicomponent models
the problem is more complicated because one has to formulate additional conditions for the
extended set of partial differential equations. Even in the case of impermeable boundaries
and such are phreatic surfaces of contact between saturated and dry domains of soils one
has to formulate an equation of motion of the surface itself. Such moving boundaries
yield the boundary value problems with free boundaries and these are usually ill-posed
and create big mathematical problems. A physical presentation of this problem can be
found in the book of B��� [4]. The situation is even worse on permeable surfaces. A part
of the conditions on such surfaces has been formulated by von Terzaghi who had shown
that the external loading must be taken over by the whole stress vector Tn = σiknk
where n = nkek is the unit normal vector of the boundary. The second condition was
extensively discussed in the literature and it concerns the flow through the boundary.
This boundary condition for inviscid fluids relates the pressure difference and the velocity
of flow through the surface. It contains an additional material parameter, the so-called
surface permeability. It plays a very important role on contact surfaces between different
layers saturated with water and on the external surface which is the seepage face.
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The second issue appears if the transition zones of not fully saturated soils appear. They
are created, for example, by infiltration processes. In such processes one has to account
for the capillary effects and an appropriate theoretical model must describe more than
one fluid component. In the last few years such models are being developed. Presentation
of a linear three-component model with capillary effects in applications to poroacoustics
can be found in the book of B. A����� [1].
The third important issue is the development of software for geotechnical engineers which
would account for all those theoretical problems which we have mentioned above. Such
computational packages do not exist yet. It is only very recent that the research in
this direction has been intensified. In particular, it concerns the formulation of some
macroscopic constitutive laws in terms of microscopic material properties in which the
micro-macro transition would be done in a numerical way. H. M�������, J. G. I.

H������3�, S. L������3� [28] formulate this problem in their extensive survey work
from the year 2008 in the following manner: ’The main objective with this literature
survey is to elucidate the state of the art of internal erosion in embankment dams in order
to be able to formulate a research program for numerical modeling of internal erosion in
a physically sound manner.’

Acknowledgement: A part of this research has been carried out by one of the authors
(K. W.) under the exchange program (2008/2009) between the University of Zielona Góra
(Poland) and the Technical University of Graz (Austria). The collaboration with prof. E.
Bauer of TU Graz and his coworkers is greatly appreciated.

References

[1] B. A�����; Modeling and Numerical Analysis of Wave Propagation in Saturated
and Partially Saturated Porous Media, Shaker Verlag, Aachen (2009).

[2] E. B����; Constitutive modeling of critical states in hypoplasticity, Proc. of the
Fifth Int. Symp. on Numerical Models in Geomechanics, Pande, Pietruszczak (eds.),
A. A. Balkema, Rotterdam, 15-20 (1995).

[3] E. B����, S. F. T������, Y. Z �, S. L��, K. K���;Modeling rheological prop-
erties of materials for rockfill dams, in: Y. Zhu at al (eds.), Long Time Effects and
Seepage Behavior of Dams, Hohai University Press, 73-80 (2008).

[4] J. B���; Dynamics of Fluids in Porous Media, Dover (1972).

[5] M. A. B���; Theory of propagation of elastic waves in a fluid saturated porous solid.
I. Low frequency range, J. Acoust. Soc. Am., 28(2):168—78 (1956).

[6] M. A. B���, D. G. W�����; The Elastic Coefficients of the Theory of Consolidation,
J.Appl. Mech., 24, 594-601 (1957).

[7] R. M. B���; Incompressible porous media models by use of the theory of mixtures,
Int. J. Engng. Sci., 18, 1129-1148 (1980).

20



[8] R. M. B���; Compressible porous media models by use of the theory of mixtures,
Int. J. Engng. Sci., 20(6), 697-763 (1982).

[9] R. H. B�����, A. T. C����; Hydraulic properties of porous media. In: Hydrology
Papers, vol. 3. Colorado State University, Fort Collins (1964).

[10] M. T. !�� G���� ���; A closed-form equation for predicting the hydraulic con-
ductivity of unsaturated soils, Soil Sci. Soc. Am. J., vol. 44, 892-898 (1980).

[11] S. X. C ��; Thermal conductivity of sands, Heat and Mass Transfer, 44, pp. 1241-
1246 (2008).

[12] H. D����; Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris (1856).

[13] N. E-�����; On tortuosity and the tortuosity factor in flow and diffusion through
porous media, Chem. Eng. Sci., 44, 777-779 (1989).

[14] S. H. F����, K. H�����, N. K��� ���, Y. W��$; Continuum description of
granular materials, Springer, Heidelberg (2009).

[15] O.T. F������; Ground thermal properties, in: Thermal Design Considerations in
Frozen Graound Engineering, T. G. Krzewinski, R. G. Tart (eds.), 186-203, ASCE,
New York (1985).

[16] P. F���  �����; Wasserbewegung durch Boden, Z. Ver. Deutsch. Ing., 45, 1782-
1788 (1901).

[17] F. G�������; Über die Elastizität poröser Medien, Vierteljahresschrift der Natur-
forschenden Gesellschaft in Zürich 96, 1, 1–23 (1951).

[18] A.G�����#����; Thermophysical Properties of Soils in Vicinity of Zielona Gora
in Relation to Soil Frost Depth, PhD-thesis (in Polish), University of Poznan (2006).

[19] M. A. G������, S. C. C���; A continuum theory for granular materials, Arch.
Rat. Mech. Anal., 44, 249-266 (1972).

[20] K. H. H���$�, R. H���; Einführung in die Bodenphysik, Schweizerbart, Stuttgart,
(in German), (1999).

[21] R. H����$; Multiphase Flow and Transport Processes in the Subsurface, Springer,
Heidelberg (1997).
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