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Abstract

In the paper we investigate the propagation conditions of monochromatic waves
in a saturated poroelastic material described by a generalization of Biot’s equa-
tions. This generalization concerns anisotropic properties of permeability. Mechan-
ical properties of the system are assumed to be described by isotropic constitutive
relations but the permeability is given in terms of a tensor of tortuosity. In partic-
ular we analyze the propagation in one of the principal directions of this tensor and
we show the existence of purely transversal waves for this particular monochromatic
wave. We prove the existence of two modes of such waves and investigate their be-
havior as functions of frequency. A practical application in nondestructive testing
of anisotropic materials is indicated.

1 Introduction

Anisotropic properties of porous materials are frequently encountered in biomechanics.
This concerns mechanical properties of bones (e.g. [5]) as well as diffusion properties
of soft tissues (e.g. [14]). However recent experiments made on various rocks and soils
show that these materials possess essentially different diffusion properties in different
directions [2, 11] as well and these result from anisotropic tortuosity. The latter notion
has been introduced by J. Bear [3] and then developed by means of a statistical analysis
of microstructures by J. Bear and Y. Bachmat [4].

An extensive research concerned with anisotropic mechanical properties of two-comp-
onent porous materials has been carried out by S.C. Cowin [5] and in his recent work
with L. Cardoso [6] the wave spectral analysis for such materials is presented. By means
of the so-called fabric tensor the set of classical Biot material parameters is extended
to cover the case of anisotropic dependence of partial stresses on deformations of both
components. However, the permeability remains in this work isotropic in the sense that
the flow-resistivity (permeability) tensor is given solely as an isotropic function of the
fabric tensor and does not possess anisotropic properties of its own (compare relation
(63) in the work [6]).

In spite of the practical importance of the research of Cowin and Cardoso for the
description of bones it seems to be not appropriate for the description of a true anisotropic
diffusion. We return briefly to this question in Section 3 of this work. Above quoted
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experiments on rocks indicate that mechanical response of the material is isotropic but
the flow is driven by an anisotropic tortuosity. Simultaneously, even though following
from geometry of microstructure within a Representative Elementary Volume (REV )
these two objects, fabric and tortuosity tensors seem to describe different properties of
the true material.

Influence of tortuosity on permeability properties of porous materials has been the
subject of research since the early work of J. Kozeny [8]. His formula for the description
of diffusivity has been later corrected by Blake and in the form proposed by N. Epstein
[7] it is as follows

K =
D2
hn0

bµvτ
2
, (1)

where K denotes the hydraulic conductivity, appearing in Darcy’s law, Dh is the hydraulic
diameter, n0 is the initial porosity, µv is the true dynamic viscosity of fluid in pores, b is
the capillary shape factor (e.g. 32 for circular pores and 48 for parallel slits) and τ denotes
the tortuosity. The latter is the fraction of the length of a real streamline between two
neighboring points to their distance. It is clear that such a definition does not account
for different diffusion conditions in different directions. This was the subject of the model
developed by Bachmat and Bear and we use their results in this work.

In this paper we present a few simple results of the wave analysis for saturated porous
materials with anisotropic permeability. We use the simplest generalization of Biot’s
model motivated by the analysis of microstructure of Bear and Bachmat and consider a
problem of a transversal wave. Existence of such a wave follows from a particular choice of
propagation conditions in this work. The main purpose of this choice is to show that there
exist two such modes of propagation and this, in turn, indicates certain new possibilities
for a nondestructive testing of porous materials.

2 Governing equations

The two-component model of a porous material considered in this paper is based on a
linearity assumption for which the partial balance of momentum equations have the form

ρS
∂vS

∂t
= divTS + p̂, ρF

∂vF

∂t
= − grad pF − p̂, (2)

where ρS, ρF are initial constant partial mass densities of skeleton and fluid, respectively,
vS,vF are the partial velocities of these components, TS is the partial stress tensor in
skeleton and pF is the partial pressure in fluid. p̂ denotes the momentum source.

Constitutive relations for these quantities are assumed to have the form

TS = TS0 + λSe1 + 2µSeS +Qε1, pF = pF0 −Qe− ρFκε, (3)

p̂ = p̂iei, p̂i = πij
(
vFj − vSj

)
, vF = vFi ei, vS = vSi ei,

where ei are Cartesian base vectors, ei · ej = δij, e
S is the Almansi-Hamel small de-

formation tensor of the skeleton, e = tr eS, ε are volume changes of skeleton and fluid,
respectively. They satisfy the compatibility equations
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∂eS

∂t
= symgradvS,

∂ε

∂t
= divvF , (4)

which, in turn, yield identically partial mass conservation laws for components.
As we consider a linear poroelastic problem in this work changes of porosity are im-

material (compare [13]).
The structure of the permeability tensor (flow-resistivity in terminology of S. C. Cowin)

πij is assumed to be as follows

πij = π0T
−1
ij , (5)

where

π0 =
µvb

D2
h

gρF0
n0

, (6)

and g is the earth gravity ([14]). The tortuosity tensor T = Tijei ⊗ ej is symmetric
and it may be interpreted as a static moment of channel openings on the boundary of
the Representative Elementary Volume (REV ) with respect to a chosen reference point
within REV [4]. It can be written in the following spectral form

T = Tijei ⊗ ej =
1

τ (3)
2
n⊗ n+

2∑

µ=1

1

τ (µ)
2
mµ ⊗mµ, (7)

where {n,m1,m2} are unit and perpendicular eigenvectors of the tensor T and{
τ (1), τ (2), τ (3)

}
are the square roots of inverse eigenvalues of this tensor. We call these

quantities principal tortuosities. According to Bear and Bachmat [4] principal tortuosi-
ties measure an average inverse of cosines of angles between a short straight interval in a
chosen principal direction and a streamline between the endpoints of this interval. Obvi-
ously, in the isotropic case they are all equal to τ appearing in Blake-Kozeny relation (1).
Hence, similarly to the fabric tensor introduced by Cowin the tortuosity tensor describes
purely geometrical properties of the microstructure.

Further we assume the material parameters

{
ρS, ρF , λS, µS, κ, Q, π0, τ (1), τ (2), τ (3),n,m1,m2

}
, (8)

to be given and constant.

3 Propagation of fronts

In order to see clearly the difference between an influence of anisotropy of stress-strain
relations and this of the permeability we reconsider here briefly the field equations of
Cowin and Cardoso [6]. They use two unknown fields of displacement u =ui,U = Uiei
which are described by the bulk conservation of momentum and the partial balance of
momentum for the fluid. These field equations have the following form (equations (31)
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and (32) in [6])

Aijkm

∂2uk
∂xm∂xj

+Mij

∂2wk
∂xk∂xj

= ρ
∂2ui
∂t2

+
ρF

n0

∂2wi

∂t2
, (9)

Mkm

∂2uk
∂xm∂xi

+M
∂2wk

∂xk∂xi
=

ρF

n0

(
∂2ui
∂t2

+ Jij
∂2wi

∂t2
+ µvRij

∂wi

∂t

)
,

where ρ = ρS + ρF is the bulk mass density, u,w = U− u are the dispalcement of the
skeleton and the relative displacement, respectively, the material tensors Aijkm, Mij, M
are given in terms of the fabric tensor, porosity n0, true compressibilities and some addi-
tional parameters describing anisotropic properties of stress-strain relations. The tensor
of inertia Jij is related to the extension of the so-called added mass effect which is im-
material for our considerations. The tensor of flow-resistivity µvRij and our permeability
tesor πij are identical.

On the front C of the acoustic wave the following compatibility conditions must be
fulfilled

[[ui]] = 0, [[wi]] = 0, ρ

[[
∂ui
∂t

]]
= ρS

[[
vSi
]]
+ ρF

[[
vFi
]]
= 0,

[[
∂wi

∂t

]]
=
[[

vFi − vSi
]]
= 0,

Ai =

[[
∂2ui
∂t2

]]
= c2

[[
∂2ui

∂xk∂xm

]]
nknm, (10)

Wi ==

[[
∂2wi

∂t2

]]
= c2

[[
∂2wi

∂xk∂xm

]]
nknm,

where [[...]] = (...)+ − (...)− denotes the jump across the front C. The continuity of dis-
placements, partial mass densities and velocities means that the wave is acoustic while the
conditions for amplitudes Ai, Wi follow from Hadamard conditions (e.g. [13]). Obviously,
n = niei is the unit vector perpendicular to the front C and c is the speed of propagation
of the front.

Application of the above relations to the field equations (9) yields

(
Qik − ρc2δik

)
Ak +

(
Cik −

ρF

n0
c2δik

)
Wk = 0, (11)

(
Cik −

ρF

n0
c2δik

)
Ak +

(
Mδik −

ρF

n0
Jik

)
Wk = 0,

where
Qik = Aijkmnmnj, Cik = Mijnjnk, (12)

are acoustic tensors (compare (54) in [6]). Obviously, relations (11) specify the egenvalue
problem whose eigenvalues define the speeds of propagation of various acoustic modes.
It is important to notice that the flow resistivity µvRij has no influence on these speeds.
However, the anisotropy of the problem yields more modes of propagation with different
speeds than it is the case for isotropic materials. In measuring devices we observe instead
of arrivals of classical P1-, S-, P2-modes additional arrivals of pseudotransversal waves.
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This is, clearly, also the property of monochromatic waves discussed in the work of Cowin
and Cardoso [6].

The situation is different in the case of isotropic stress-strain relations and anisotropy
of permeability which we consider in the present work. On the front of acoustic wave we
have the following conditions following from equations (2), (3), (4)

(
λSninj + µS (δij + ninj)− ρSc2δij

)
AS
j +QninjA

F
j = 0, (13)

QninjA
S
j +

(
ρFκninj − ρF c2δij

)
AF
j = 0,

where

AS
i =

[[
∂vSi
∂t

]]
, AF

i =

[[
∂vFi
∂t

]]
. (14)

Consequently, we have only the arrivals of classical P1-, S-, P2-modes. Anisotropy of
permeability has no influence on the structure of acoustic fronts. It has only an influence
on speeds of monochromatic waves as we show further in this work.

The above presented difference has an important practical bearing. For waves of very
high frequency the number of arrivals will be bigger for anisotropic stress-strain relations
than the number of arrivals for anisotropic permeability alone. This allows to distinguish
these two cases experimentally.

4 Monochromatic waves

We investigate the propagation of monochromatic waves of a given frequency ω, i.e. we
seek solutions of the governing equations in the following form

vS = VSE , vF = VFE , eS = ESE , ε = EFE
E = ei(k·x−ωt) ≡ e−((Imk)n·x)eiRe k(n·x−cpht), (15)

k = kn, n · n = 1, cph =
ω

Re k
.

where VS,VF ,ES, EF are constant amplitudes, k is the wave vector, k is the wave num-
ber, n denotes the direction of propagation and cph is the speed of propagation of the
monochromatic wave of frequency ω.

Compatibility equations (4) yield

ES = − 1

2ω

(
VS ⊗ k+ k⊗VS

)
, EF = − 1

ω
VF · k. (16)

Bearing in mind the momentum balance equations (2) and the constitutive relations
(3), (5) we arrive at the following set of algebraic relations

(
−ρSω21+λSk⊗ k+ µS

(
k21+ k⊗ k

)
− iπ0ωT

−1)VS+

+
(
Qk⊗ k+iπ0ωT

−1)VF = 0,

(
Qk⊗ k+iπ0ωT

−1)VS+ (17)

+
(
−ρFω21+ ρFκk⊗ k− iπ0ωT

−1)VF = 0.
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Obviously, this is the eigenvalue problem for the amplitudes of the waves. In this
paper, we investigate only a very particular special form of this set. This is the subject
of the next Section.

5 Transversal waves

We have made already the assumption that the tortuosity tensor is constant. Conse-
quently, its eigenvectors {n,m1,m2} can be chosen as global base vectors of the Cartesian
frame of reference. Then the amplitudes of velocities can be written in the form

VS = V S‖n+
2∑

µ=1

V S⊥
µ mµ, VF = V F‖n+

2∑

µ=1

V F⊥
µ mµ. (18)

We show that the system (17) admits the solution for which

k = kn, V S‖ = 0, V F‖ = 0, (19)

where k is the wave number. We call this solution a transversal wave.
Substitution of the assumption (19) in the set (17) yields

(

−ρSω21+µSk21− iωπ0

2∑

µ=1

τ (µ)
2

mµ ⊗mµ

)
2∑

ν=1

mνV
S⊥
ν +

+

(

iπ0ω
2∑

µ=1

τ (µ)
2

mµ ⊗mµ

)
2∑

ν=1

mνV
F⊥
ν = 0,

(

iπ0ω
2∑

µ=1

τ (µ)
2

mµ ⊗mµ

)
2∑

ν=1

mνV
S⊥
ν + (20)

+

(

−ρFω21− iωπ0

2∑

µ=1

τ (µ)
2

mµ ⊗mµ

)
2∑

ν=1

mνV
F⊥
ν = 0,

where the inverse of the spectral representation (7) of the tortuosity tensor has been used.
Orthogonality of eigenvectors leads to the following two sets of algebraic relations

(
−ω2 +

µS

ρS
k2ν −

iπ0ω

ρS
τ (ν)2

)
V S⊥
ν +

iπ0ω

ρS
τ (ν)2V F⊥

ν = 0,

iπ0ω

ρF
τ (ν)2V S⊥

ν −
(

ω2 +
iπ0ω

ρF
τ (ν)2

)
V F⊥
ν = 0, ν = 1, 2. (21)

For distinct tortuosities τ (1) and τ (2) there exist two solutions of this set, i.e. two modes
of propagation: either

(
ω2 − µS

ρS
k21 +

iπ0ω

ρS
τ (1)

2

)(
ω2 +

iπ0ω

ρF
τ (1)

2

)
+

+
ρF

ρS

(
π0ω

ρF
τ (1)

2

)2
= 0, V S⊥

1 	= 0, V F⊥
1 	= 0, (22)
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and then V S⊥
2 = 0, V F⊥

2 = 0, or
(

ω2 − µS

ρS
k22 +

iπ0ω

ρS
τ (2)

2

)(
ω2 +

iπ0ω

ρF
τ (2)

2

)
+

+
ρF

ρS

(
π0ω

ρF
τ (2)

2

)2
= 0, V S⊥

2 	= 0, V F⊥
2 	= 0, (23)

and then V S⊥
1 = 0, V F⊥

1 = 0. Both modes have amplitudes perpendicular to the
direction of propagation n. Dispersion relations (22), (23) can be written in the following
convenient form

ω

(
ω2 − µS

ρS
k2ν

)
+ (24)

+iπ0τ
(ν)2 ρS + ρF

ρSρF

(
ω2 − µS

ρS + ρF
k2ν

)
= 0, ν = 1, 2.

For equal principal tortuosities τ (1) = τ (2) this result is identical with the result for
isotropic permeability [1]. In the limit of very low and and very high frequencies it yields
the following phase speeds of propagation

lim
ω→0

ω

Re kν
=

√
µS

ρS + ρF
, lim

ω→∞

ω

Re kν
=

√
µS

ρS
, ν = 1, 2. (25)

respectively. Hence these speeds are the same for both modes and coincide with the
well-known results of the wave analysis for soils.

The existence of the pure transversal modes is not typical for anisotropic materials.
This results from a very strong assumption that the propagation direction n coincides
with one of the principal directions of the constant tortuosity tensor. Otherwise, it can
be shown that longitudinal and transversal modes do not exist in the pure form and, in
addition, there exists a coupling of pseudotransversal modes through the Biot coupling
constant Q. We shall not present these problems in this short note.

6 Phase speeds and attenuations

Dispersion relation (24) can be easily solved with respect to the wave number. We obtain

k2ν =
ω20
c2∞

(ω/ω0)
2

(ω/ω0)
2 + τ (ν)

4

[
(ω/ω0)

2 + irτ (ν)
2

(ω/ω0) + (1 + r) τ (ν)
4
]

, (26)

where

ω0 =
π0
ρF

, c2∞ =
µS

ρS
, r =

ρF

ρS
. (27)

This relation yields immediately phase velocities and attenuations of monochromatic
waves

cνph =
c∞
√
2

√
Aν +

√
A2
ν +B2

ν

, Im kν =
ω0

c∞
√
2

(ω/ω0)Bν√
Aν +

√
A2
ν +B2

ν

, (28)
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where

Aν =
1

(ω/ω0)
2 + τ (ν)

4

[
(ω/ω0)

2 + (1 + r) τ (ν)
4
]

,

Bν =
rτ (ν)

2

(ω/ω0)

(ω/ω0)
2 + τ (ν)

4
. (29)

Hence, in the limits of low and high frequency we obtain phase velocities given by relation
(25) and the limits of attenuation are as follows

lim
ω→0

Im kν = 0, lim
ω→∞

Im kν =
rω0τ

(ν)2

2c∞
=

π0τ
(ν)2

2
√

µSρS
. (30)

As expected the attenuation grows in square of the tortuosity which indicates an impor-
tance of this parameter in the description of waves. The behavior of both functions cνph
and Im kν of frequency ω is monotonous. Below we demonstrate a numerical example.

7 Numerical example

In order to appreciate the frequency dependence of speeds and attenuations we consider
a numerical example for which we use the following data

Ks = 48 [GPa], ν = 0.2, n0 = 0.3,

ρSR = 2500 [kg/m3], i.e. ρS = 1750 [kg/m3] (31)

r = 0.1714, π0 = 10
10 [kg/m3s],

τ (1) = 1.06, τ (2) = 6.50.

where Ks is the true compressibility modulus of the material and ν is the Poisson num-
ber. True and partial mass densities of the skeleton are connected by the relation
ρS = (1− n0) ρSR. These data correspond roughly to Alermoehe sandstone saturated
by water and it was investigated by a mobile NMR device by J. Arnold [2]. Then the
Gassmann and Geertsma relations (e.g. [1]) yield

µS =
3

2

1− 2ν
1 + ν

Ks

1 + 50n0
= 2.25 [GPa], (32)

c∞ = 1134 [m/s], ω0 = 33.3 ∗ 106 [1/s].

In the work [2] the values of tortuosity vary in the interval indicated by the data (31).
However, there is no direct information on anisotropy of the structure. This may be only
suspected because samples were extracted from a very similar depth, reported values of
porosity are similar and variations in permeability seem to be related to variations of
tortuosity. Similar conclusions follow from the work [11] in which the values of tortuosity
for various rocks vary between 3.45 and 7.69.
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According to (28), the frequency limits of phase speeds and attenuations for both
transversal modes are as follows

lim
ω→0

c1ph = lim
ω→0

c2ph = 1048 [m/s],

lim
ω→0

Im k1 = lim
ω→0

Im k2 = 0,

lim
ω→∞

c1ph = lim
ω→∞

c2ph = 1134 [m/s], (33)

lim
ω→∞

Im k1 = 2831 [1/m], lim
ω→0

Im k2 = 106460 [1/m].

These values indicate an enormous influence of tortuosity on the attenuation. In contrast
to the first transversal mode the second one is practically not measurable in the range of
high frequencies due to the high value of τ (2).

In Figures below we show the behavior of both characteristic quantities of waves for
a very large interval of frequency in order to indicate their asymptotic properties. The
frequency and the attenuation are normalized in the following way

ω → ω/ω0, ω0 = 33.3 ∗ 106 [1/s], (34)

Im kν → c∞
√
2

ω0
Im kν,

c∞
√
2

ω0
= 0.4816 ∗ 105 [m].

In Figure 1 we show the plots of phase velocities for frequency ω up to app. 108 [1/s].
For very low frequencies both speeds are almost constant and possess the value 1048 [m/s]
indicated in (33). Then they begin to grow for both tortuosities but the growth for higher
eigenvalue of tortuosity τ (2) = 6.50 is slower than for the lower value. In the range of very
high frequencies they converge to the same limit value 1134 [m/s]. This is shown again
in Fig. 2 and, obviously, it is a consequence of the hyperbolicity of the system for which
the limit value becomes the speed of front.

Fig. 1: Phase speed cνph [m/s] of monochromatic waves in function of dimensionless
frequency ω/ω0 for principal tortuosities τ (1) = 1.06 (solid line) and τ (2) = 6.5 (dotted

line)
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Fig. 2: Phase speed cνph [m/s] of monochromatic waves for large frequency range for
principal tortuosities τ (1) = 1.06 (solid line) and τ (2) = 6.5 (dotted line)

Fig. 3: Dimensionless attenuation
(
c∞
√
2

ω0
Im kν

)
of monochromatic waves in function of

dimensionless frequency ω/ω0 for principal tortuosities τ (1) = 1.06 (solid line) and
τ (2) = 6.5 (dotted line)

In Fig. 3 we see a peculiar behavior of attenuation for relatively low frequencies.
Namely, in spite of a larger resistance to the diffusive flow for higher values of tortuosity
the attenuation of monochromatic waves is smaller for large eigenvalue of tortuosity τ (2) =
6.50 than for the low value τ (1) = 1.06. It is only for very high frequencies where the
attenuation of waves for higher values of tortuosities becomes larger (106460 [1/m] in the
limit ω →∞) than this for lower values of tortuosity (2831 [1/m] in the limit ω →∞).
We show this behavior for low frequencies (up to app. 500 [kHz]) in Fig. 4.
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Fig. 4: Dimensionless attenuation
(
c∞
√
2

ω0
Im kν

)
of monochromatic waves for low

frequencies for principal tortuosities τ (1) = 1.06 (solid line) and τ (2) = 6.5 (dotted line)

This is similar to the properties of monochromatic waves in isotropic materials with
different permeabilities. As indicated, for instance, in the work of Wilmanski and Al-
bers [12] the attenuation curves for S-waves for different permeabilities intersect each
other (compare Fig. 9 in [12]). This property can be used in the experimental measure-
ments of anisotropic properties of tortuosity and, consequently, the permeability. The
low frequency waves in the direction of low tortuosity arrive earlier and they are stronger
attenuated than these in the direction of high tortuosity.

8 Conclusions

Even though presented only for a very special choice of propagation conditions transversal
waves in poroelastic media with anisotropic permeability indicate a property very impor-
tant for practical applications. It is well known that such an anisotropy yields also an
important correction of the equation for magnetization known as the Bloch-Torrey equa-
tion. This equation forms the basis of the Magnetic Resonance Imaging (MRI), a tool for
the modern diagnosis in medicine. Anisotropy of the diffusion measured by this method
yields, for instance, an information on various diseases of brain [9], [10]. Anisotropic prop-
erties of acoustic waves can deliver a similar information on the image of microstructure
of soils and rocks. In particular, transversal waves, or waves similar to them in a general
case of propagation, are easily measurable and a distinction of their modes yields a di-
rect information on the structure of the tortuosity tensor. As this tensor determines the
permeability it has a great practical bearing for such structures as tunnels, embankment
dams and road construction in which the intensity and directions of seepage processes
play an important role.
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