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The enormous and the minute
are interchangable
manifestations of the eternal

William Blake (1757 — 1827)

The Parable of the Wise and Foolish Virgins 5

To see a World in a Grain of Sand And a Heaven in a Wild Flower, Hold Infinity in the palm of your hand And Eternity in an hour*
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Phenomenology of micro- and macroworld - a few pictures
4
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Multiscaling in space-time




ACS - Visible _ . NICMOS = Infrared

Cone Nebula Hubble Space Telescope - NICMOS
NASA, The NICMOS Group (STScl, ESA), The NICMOS Science Team (Univ. Arizona) = STScI-PRCO02-13a

Multiscaling in space-time - Boltzmann (relativistic)



Saturn‘s ring systems -
a two-dimensional dry
granular system

Thickness ~200 m, mass ~60 g/cm?, speed <1 mm/s

Multiscaling in space and time - granular gas



Patterns in vertically
oscillated granular layers
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Multiscaling in space



Oscillon

Multiscaling in space and time - granular gas




Alveolae (lungs)
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Multiscaling 1n space




Twinning 1n steel

Multiscaling 1n space




Austenite - martensite phase transformation

Multiscaling 1n space




Pore casts (epoxy replicas, Bourbié) Sandstone in diagenesis

Nummulite limestone

Microscaling in space




Toilet paper

1

1scaling 1n space
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Scaling of time and space -
synchronization and coarse-graining for gases

N ——
Newton‘s equations: - F, = _ZOCDQF(Y;Y yj‘). (N)
— i

]_19
J#i

Initial conditions: ~ ¥;(t=0)=y;, ¥;(t=0)=y;. (NIV)

r-Space: r e {yl ’yl’l — 1,, ces ]V} = 6N-dimenSi0nal.

Equivalent form - microdistribution function:

D(x;,v;,t) |_|5X —y,;(£))3(v; —y;(¢)).

It satisfies the equation (+ initial conditions)

N

oD D 1. D)

oz gL _F.Q‘L - 0. M

o1 +,-=1(Vl e av,.j (MDE) 5

l
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Smooth extension:

* in order to smooth out a wild motion of particles (local existence
of solutions of (MDE)!) - coarse-graining in [ -space
* a statistical distribution of initial values (NIV)

A smooth distribution function of N particles satisfies
Joseph Liouville equation (1809 — 1882, eqn. app. 1856)

N N N N
oF + \F; |__‘?F7+1Fl' il - O,
01 - axi m aVl'

- (L)

IFNdxlva :1, FN(Xi,Vi,t :O)ZFON(Xi,Vi).
r

T
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From particles to continua for gases - BBGKY hierarchy,
kinetic theories, extended thermodynamics

Dimensionless potential: CDQXZ- —X ]‘) =PyU;;, Dy =const.

oF° i[ LQF j_ ®, [aU,.j OF* Uy 9F° | _
X;

2
ot P mv I<i<j<s aXl' aVi aX] aV]
_N-s d oU, Jaiat
(nro Po Z [ ﬁ’ v (BBGKY)
I’I’IVO
FS=— L [FVaxgy..dvy, s=1,...,N
' VN—s s+l ---%VN> 2t 1y - range of potential,
_ 1 _N Vo - thermal velocity,
stdxl...dvs— Noo ME . 0 4
V Op :=— - time duration of a single collisior

) 17
N. Bogolubov (1959), M. Born (1949), H. S. Green (1949), 1. R. Kirkwood (1935), Yvon (1958)
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Characteristic parameters:
70 _ strength of interactions,

mv
”7”()3 - number of particles in the range of interaction
Hence - categories:
P
1) weakly coupled gas: nry =1, €=—7<< 1,
my
. . _ 3 Py
2) dilute gas with short-range forces: =nry <<l, 5 Il
myv
1
3) gas with Coulomb forces in Debye regime: I”H”O3 =— —02 = £<<],
€ my
4) dilute weakly coupled gas: iy = —02 = e<<]
mv

18
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Distribution of the models with respect to the parameters

Hence: existence of characteristic relaxation times

o : . . _ [ f :
Byp = — - time of collision, I === o meE free time,
Vo 0
L : D
to =49 _ macroscopic time, £, - Poincare period. 19
c

sound
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@ appears in the first equation of the BBGKY-hierarchy only on the right hand side

and the coefficient nro3 makes it small. Thus in time intervals 6, F : changes little

while all F°,s =2 change a great deal. This is the collision time scale.

Bogolubov: for sufficiently large times distribution functions F° s > 2 depend
on time solely through / !

FS(Xl,...,VS,Z)=FS(X1,...,VS Fl(t))>522

Boltzmann kinetic equation

1 1 2
ai+v i (n’”o3)[ = JJ.GUU é?F dx,dv,. (B)

ot axl mvg aXI avl

BGK-approximation

1 1
ai +v ﬁi = —L(Fl -l ) O, - relaxation time.

at Bxl 90 20
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Macroscopic theories - moments of one-point distribution function
and extended thermodynamics

Generic moments of the one-point distribution function:

— 1
Fk1k2~-kn —jmvklvk2...vknF av =

mass density F=p,
momentum density Fr =pu, k=123,
momentum flux Fyy =—ty +pugy,
| 1 1.
energy density EFkk =p| €+ Eukuk ,
1 1. ). :
energy flux 5 Pl = qie * P &%ty fige ~ Ly

Result: balance equations, closure problem - the second law of thermodynamics.

21
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Structure of the macroscopic model in extended thermodynamics

oFq , OF; =G, F,=F,(u)00", uODO”,
at an (FE)
Fk:Fk(ll)DDn, G:G(H)DDn,

where u 1s the unknown field vector. All solutions of (FE) must fulfil the second law
of thermodynamics

Ohy . Oh
> tO + ax,li >0, hy=ho(u), h =h(u), (SL)

and sources G are zero for conservation quantities. Otherwise they relax to
zero in thermodynamical equilibria.

Equations for microstructural variables may be evolutionary, 1.e.
the corresponding components of F, are zero. Then time evolution
to equilibrium - scaling with respect to the relaxation time.

22
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Kinetic equation for granular gases

In contrast to classical gases forces between particles are dissipative: the force acting
on a particle 1 has the follwing structure

— C D
mt; = > (FS +F)
J#i
where the conservative and dissipative part are (e.g. T. van Noije, M. H. Ernst (2001))

FS =Y(o-r Jolo-r )ty BP ==y, (vi - v, )E;0(0 -7 )iy

= s 1 J
Vij _\/(ri_rj)mri_rj)a r; == ;
and Y i1s the elasticity of spheres, y, — coefficient of normal friction (restitution),

L denotes the charcteristic function, 0 is the diameter of the sphere.

Boltzmann equation

oF! QFI 5
t v jdejdrle 0-1s) 1’12[Vn ~v, )y, ‘Y(G"’ij)]F :
Ot 01‘1 m avl
and F 2 factorizes. Results: scarce and solely for quasistatic processes

e.g. J. T. Jenkins, I. Goldhirsch (1998), etc.). 23



WGL

Examples of microstructural equations in geophysics

* R. Bowen (1982): evolution equation for volume fractions,

*M. A. Goodman, S. C. Cowin (1972) modified by K. Hutter, B. Svendsen,
Y. Wang (1996), (1999): equilibrated force balance

PV —divh —pf =0,
where V - volume fraction of solid phase, k - coefficient of equilibrated inertia,
h and f - equilibrated stress vector and intrinsic equilibrated body force

» K. Wilmanski (1996): balance equation for porosity

r'z+div[nE(VF —VS)]: Pl , Ng =nE(E§}

B t
where n - porosity, vF', vS - partial velocities, pfj pf - current partial mass densities.

24
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Examples of microstructural equations in geophysics, cont.

 Prandtl — Reuss equation for small elasto-plastic deformations
(microstructural variable — plastic deformation)

é= CT+)\6—CD
oT’

where e — Almansi-Hamel deformation tensor, T — Cauchy stress, C — compliance,

* D. Kolymbas (1977): hypoplasticity of granular materials with 4 material
parameters C,, C,, C;, C, (evolution equation for stresses)

2 2
T=C/(T)D+C t’”(TD)T e, L rn? +Cy 2"\ D?,
: * 0T i\ trT

where D is the rate of logarithmic strain, T — Cauchy stress.

The first order equations can be incorporated in ET-structure!

25E
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From crystal lattice to continuum mechanics

- the most prominent example for multiscaling in space.

Ergodicity in time averaging (,,time upscaling®): equivalence of ensemble
and time averages

(PO ansempe = anm (PO)yie = j pie=s)ds.  (T)

,,Ergodicity* in space averaging (,,space upscaling®): equlvalence of ensemble
and space averages

<p( )>ensemble an (%), p( )>Space 7 J‘p(X+Z)dZ (S)

RE V
If there 1s a time relaxation then (T) 1s plausible for large T;

there 1s no space relaxation. Hence (S) 1s not very plausible.
There exist systems in which space differentiation and REV averages
do not comute as they do with ensemble averages (e.g. in wave
scattering theory). Application: effective material parameters!
Kroner, Hasihin, Shtrikman, Duvaut, etc. 28 E
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Real porous media and thermomechanics of porous
and granular continua with microstructure

Transition from the pore level of real porous materials to the macroscopic
level (upscaling) can be performed by means of at least three methods:

* homogenization,
e averaging over a representative elementary volume (REV),
e averaging over an ensemble.

All require the existence of a characteristic length of microstructure.
We consider solely REV averaging.

For REV: V(RE V) <<’ , where L 1s the characteristic macroscopic length.

Result: macroscopic one-component or multicomponent (mixture) models

27
Examples of mixture models: Biot, Goodman, Cowin, Bowen, Hutter, Svendsen, Wilmanski.
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Then macroscopic and microscopic mass densities and momenta of a two-
component porous medium are related as follows

1
pf(x,t):V(R—EVR;‘;;fR X+z t)HF(x+z t)dz,

p? (x,7) = @ J'pr (x +z,t)(1 -HT (x +z,t))dz,

FRy R (x+z,t)HF(x+z,t)dz,

IpSR R (x +1g, t)(l ~HY (x+2, t))HF (x +z,)de,
REV

where index ¢ denotes the current configuration and H * is the characteristic function
for the microdomain of the fluid (pore spaces).

p2vo (x,1) =

V(REV

Solely 1n exceptional cases constitutive relations on the level of

microstructure can be transferred to the macrolevel! -
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Example of the macroscopic model with microstructure:

poroelastic saturated materials
Balance equations

apt +dzv(prF): 0, @ + a’iv(prS)= 0,

ot ot
F_F
—apfa: +div(pva DvF—TF)=ﬁ+pbe,
S_S
—0p3tv +div(pf SOve - TS) p+pt
0_n+v @mdn+dzv[nE(v VS]:ﬁ,
o . ot
Constitutive relations
1 = B} 1) e o)
S
. n—n _ p P
i S onp =gt
T Po Py

where the macroscopic form of equations follows from upscaling in space and the evolution
of porosity with the relaxation time T - from the multiscaling of time. 29
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Linear poroelastic saturated materials

Constitutive relations (Wilmanski; simple materials)

TS =Ty +A (rre”)1+2G e® +B(n—np)L,
F _ F
T =-pf1-k(p" -p{ N -P(n—np)1,

p=-ni(vi —v),

Biot‘s constitutive relations (second order material):

TS =T +\° (tre” )1+2G e® +nyN 1,

T = —pL1-RU+ngN@weSH)1, ¢:="E—"0
no

f)=noNgradZ—T[(VF —VS), n=ng

5
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Example:  Micro-macrotransition for granular materials,
homogeneous microstucture

Macroscopic model: two-component, elastic, Biot-type

Assumptions

* Microstructure 1s homogeneous within REV;  volume REV<<macrovolume

» transition 1s defined by volumetric Gedankenexperiments with control of pressure

(shear modulus is not modelled); Gedankenexperiments are possible in reality

» material consists of two components and REV 1s material with respect to the skeleton,
1.e. the following relation holds

d(p5RvS) .
dt
SR SR

where P ,pg", e denote the current and initial real mass densities of skeleton,

S _ 1,8
R _ % where V> ,VOS denote
Vo

volume contributions of the skeleton to REV in current and initial conﬁgurattions31

and volume change of REV, respectively, e
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* volume fraction of the fluid is identical with macroscopic porosity

i
I’ZO ——

Ve =Vo-Vy, VE=v-v°
Yo

* porosity 1s given by changes of macroscopic mass densities

* micro and macrodensities are related to each other

« all processes are quasistatic.

32
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microscopic change of fluid volume

macroscopic change of fluid volume

Definitions
F 1, F
R_V" W
Vi
F
g=P0 _4
-~ F
Py
e=J> -1,

macroscopic change of volume of skeleton

S

J° =1+tre , e° - Almansi-Hamel deformation tensor of skeleton

Geometric micro-macrorelations

R

l1+¢€

1+eR'
e:
1+¢X
1
€=

_n0(1+eR)+(1—n0)(1+8R)]—1

2

:n0(1+eR)+(1—nO)(l+€R)] -1

(E1)

33
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micro macro

Constitutive relations

SR FR

where p real pressures, partial macropressures

S S : :
Kgs,KF real bulk modulae, A, N ,G", R macroscopic elastic parameters
Equilibrium conditions

=™ i-n| L

p' - confining pressure

(E1), (E2) and (E3) yield solution

(pSDPFapSR pFR) :P(p';)\S,R,N,Ks,KF;GS,nO) 34
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Two additional scalar relations would define two relations between Kg,Kr and

)\S,N ,GS,R,nO —  two Gedankenexperiments

Gedankenexperiments of Biot and Willis

FR _
1/ drained jacketed pF =0 2/ unjacketed p =P

v

/
N

N
AN

35



WGL

Resultant equations

()\ngs)( n _1+n0j+R( ) —2n0]+n0N£2n0—1+3n0j+120,
3 Kr Kg Kr Kg Kr Ky

()\S + %GS j(R —ngN)=(R +3nyN)ngN +

2n3

25 () K1~ 20 )R] =0

+KF

They relate (K g, K F) and ()\S ,R,N ) with (GS , no) as parameters

Application: with a given Poisson‘s ratio or a drained
compressibility modulus as well as speeds of P1 and S wave
one can find the porosity by in sifu measurements. 36
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Porosity predicted at Pisa site for measured speeds of bulk waves.
Comparison with data from Laval and Osterberg laboratories (C. G. Lai)
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Concluding remarks
Example on scaling of independent variables

. 0%u N Ou _ 2 0’ u _ . -hyperbolic (wave) eqn.
Example: telegraph equation —az2 M FY _axz > with damping.

a) to expose vibrations and damping: T=¢, & =&€x, €<<Il. Then

0%u  Ou 2
—tH—- c*X—— = 0; - ordinary differential equation w.r.t. time.
a'[2 ot 2

b) to expose static deformations: T =€, ¢ =x, €<<I.Then
2 2
g2 5 6u —c? 6—2 = (; - ordinary differential equation w.r.t. space.
t 4 Ox
¢) to expose diffusion: T=¢€¢, & = \/Ex, € <<1. Then

2
€ s + p.ea—u — czea— =(; - parabolic (diffusion) equation.

0 0t ag

Geophysical application: Partial momentum balance for fluid vs. Darcy‘s law

< hyperbolic parabolic : 38
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Concluding remarks

On field multiscaling

.

Multiscaling in time yields a possibility to construct a hierarchy of fields
which relax one after another to a macroscopic thermodynamical equili-
brium. Dynamics of the last few steps in the hierarchy can be reflected

by a time synchronization. Consequences: kinetic regime, thermodynamical
regime, ergodicity.

In contrast to the theory of 1deal gases (BBGKY') modeling by means of
time multiscaling for granular materials has not been performed for the
whole hierarchy. In the kinetic regime one has to introduce a dissipation
in the microscopic range (friction and energy restitution). The classical
H-theorem of Boltzmann‘s theory — a precursor of the second law of ther-
modynamics — does not hold.

39
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Multiscaling in space yields the existence of microstructure on which

a hierarchy of fields can be constructued. They do not have to relax (some
do — e.g. dynamical changes of porosity described by evolution equations).
Different averaging procedures — homogenization, space averaging in REV,
ensemble averages — do not have to be equivalent.

4. Multiscaling in space for porous materials should yield the existence of
such additional fields as a local curvature of channels (tortuosity), micro-
structural anisotropy (a tensor of permeability), influence of corners, micro-
vorticities, creation of large gradients of porosity (liquefaction of sands), etc.
These problems have not been yet addressed in continuum modeling.

40



