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William Blake (1757 – 1827)

The enormous and the minute 
are interchangable

manifestations of the eternal

The Parable of the Wise and Foolish Virgins

To see a World in a Grain of Sand And a Heaven in a Wild Flower, Hold Infinity in the palm of your hand And Eternity in an hour“
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Phenomenology of micro- and macroworld - a few pictures



5Multiscaling in space-time
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Multiscaling in space-time - Boltzmann (relativistic)
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Saturn‘s ring systems -
a two-dimensional dry
granular system

Thickness ~200 m, mass ~60 g/cm2, speed <1 mm/s

Multiscaling in space and time - granular gas
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Patterns in vertically
oscillated granular layers

Multiscaling in space
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Oscillon

Paul Umbanhowar (Northwestern Univ.)

Multiscaling in space and time - granular gas
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Alveolae (lungs)

Multiscaling in space
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Twinning in steel

Multiscaling in space
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Austenite - martensite phase transformation

Multiscaling in space
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Pore casts (epoxy replicas, Bourbié) Sandstone in diagenesis

nonpolarized light polarized light

Microscaling in space
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Toilet paper

Multiscaling in space
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Scaling of time and space -
synchronization and coarse-graining for gases

Newton‘s equations:
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Smooth extension:

• in order to smooth out a wild motion of particles  (local existence
of solutions of (MDE)!) - coarse-graining  in Γ-space

• a statistical distribution of initial values (NIV)
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A smooth distribution function of N particles satisfies
Joseph Liouville equation    (1809 – 1882, eqn. app. 1856)
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N. Bogolubov (1959),  M. Born (1949), H. S. Green (1949), I. R. Kirkwood (1935), Yvon (1958)

Dimensionless potential: ( ) ., 00 constUijji =ΦΦ=−Φ xx

- range of potential,0r

- thermal velocity,0v

- time duration of a single collision.
0

0
0 :

v
r=θ

(BBGKY)

From particles to continua for gases - BBGKY hierarchy,
kinetic theories, extended thermodynamics
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Characteristic parameters:
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0nr - number of particles in the range of interaction
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1)  weakly coupled gas:

2) dilute gas with short-range forces:

3) gas with Coulomb forces in Debye regime:

4) dilute weakly coupled gas:



19
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Distribution of the models with respect to the parameters

Hence: existence of characteristic relaxation times
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Φ appears in the first equation of the BBGKY-hierarchy only on the right hand side 
3
0nrand the coefficient makes it small. Thus in time intervals 1

0 Fθ changes little

while all 2, ≥sF s change a great deal. This is the collision time scale.

2, ≥sF sBogolubov: for sufficiently large times distribution functions depend

on time solely through  1F
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Macroscopic theories - moments of one-point distribution function
and extended thermodynamics

Generic moments of the one-point distribution function:

⇒= ∫ vdFvvmvF nn kkkkkk
1

2121 KK

mass density
momentum density

,ρ=F
,3,2,1, =ρ= kuF kk &

momentum flux ,lkklkl uutF &&ρ+−=

,
2
1

2
1







 +ερ= kkkk uuF &&energy density

,
2
1

2
1

lklkllkkll utuuuqF &&&& −





 +ερ+=energy flux

Result: balance equations, closure problem - the second law of thermodynamics.



22

Structure of the macroscopic model in extended thermodynamics
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where u is the unknown field vector. All solutions of (FE) must fulfil the second law
of thermodynamics 
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and sources G are zero for conservation quantities. Otherwise they relax to
zero in thermodynamical equilibria.

Equations for microstructural variables may be evolutionary, i.e.
the corresponding components of Fk are zero. Then time evolution
to equilibrium - scaling with respect to the relaxation time.
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Kinetic equation for granular gases
In contrast to classical gases forces between particles are dissipative: the force acting
on a particle i has the follwing structure
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where the conservative and dissipative part are (e.g. T. van Noije, M. H. Ernst (2001))
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and Y is the elasticity of spheres, 
σ is the diameter of the sphere. υ denotes the charcteristic function,

γn – coefficient of normal friction (restitution),

Boltzmann equation
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and F 2 factorizes. Results: scarce and solely for quasistatic processes
e.g. J. T. Jenkins, I. Goldhirsch (1998), etc.).
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Examples of microstructural equations in geophysics

• R. Bowen (1982): evolution equation for volume fractions,

• K. Wilmanski (1996): balance equation for porosity
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tρ, - current partial mass densities.

,0=ρ−−νρ fdivk h&&

where ν - volume fraction of solid phase, k - coefficient of equilibrated inertia,

•M. A. Goodman, S. C. Cowin (1972) modified by K. Hutter, B. Svendsen,
Y. Wang (1996), (1999): equilibrated force balance

h and f - equilibrated stress vector and intrinsic equilibrated body force
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Examples of microstructural equations in geophysics, cont.

The first order equations can be incorporated in ET-structure!

• D. Kolymbas (1977): hypoplasticity of granular materials with 4 material
parameters C1, C2, C3, C4 (evolution equation for stresses)
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where D is the rate of logarithmic strain, T – Cauchy stress.

• Prandtl – Reuss equation for small elasto-plastic deformations
(microstructural variable – plastic deformation)

,
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where e – Almansi-Hamel deformation tensor, T – Cauchy stress, C – compliance,
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From crystal lattice to continuum mechanics
- the most prominent example for multiscaling in space.

Ergodicity in time averaging („time upscaling“): equivalence of ensemble
and time averages
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„Ergodicity“ in space averaging („space upscaling“): equivalence of ensemble
and space averages
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If there is a time relaxation then (T) is plausible for large T;
there is no space relaxation. Hence (S) is not very plausible.
There exist systems in which space differentiation and REV averages
do not comute as they do with ensemble averages (e.g. in wave
scattering theory). Application: effective material parameters!

(T)

(S)

Kröner, Hasihin, Shtrikman, Duvaut, etc.
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Real porous media and thermomechanics of porous
and granular continua with microstructure

Transition from the pore level of real porous materials to the macroscopic
level (upscaling) can be performed by means of at least three methods:

• homogenization,
• averaging over a representative elementary volume (REV),
• averaging over an ensemble.

All require the existence of a characteristic length of microstructure. 

We consider solely REV averaging.

For REV: ( ) ,3LREVV << where L is the characteristic macroscopic length. 

Result: macroscopic one-component or multicomponent (mixture) models

Examples of mixture models: Biot, Goodman, Cowin, Bowen, Hutter, Svendsen, Wilmanski.  
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where index t denotes the current configuration and H F is the characteristic function
for the microdomain of the fluid (pore spaces).

Solely in exceptional cases constitutive relations on the level of
microstructure can be transferred to the macrolevel!

Then macroscopic and microscopic mass densities and momenta of a two-
component porous medium are related as follows 
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Example of the macroscopic model with microstructure:
poroelastic saturated materials

Balance equations ( ) ( )
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where the macroscopic form of equations follows from upscaling in space and the evolution
of porosity with the relaxation time τ - from the multiscaling of time.
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Linear poroelastic saturated materials

Constitutive relations (Wilmanski; simple materials)

),(ˆ

,)()(

,)(2G)(

00

0

SF
E

FFFF
E

SSSSSS

nnp

nntr

vvp

111T

1e1eTT

−π−=

−β−ρ−ρκ−−=

−β++λ+=

Biot‘s constitutive relations (second order material):
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Micro-macrotransition for granular materials,
homogeneous microstucture

Assumptions

Example:

• Microstructure is homogeneous within REV;     volume REV<<macrovolume
• transition is defined by volumetric Gedankenexperiments with control of pressure
(shear modulus is not modelled); Gedankenexperiments are possible in reality

• material consists of two components and REV is material with respect to the skeleton,
i.e. the following relation holds

⇒=ρ 0)(
dt

Vd SSR

where RSRSR e,, 0ρρ denote the current and initial real mass densities of skeleton,

and volume change of REV, respectively,
S

SS
R

V
VVe

0

0−= where SS VV 0,

volume contributions of the skeleton to REV in current and initial configurations

denote

Macroscopic model: two-component, elastic, Biot-type
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• volume fraction of the fluid is identical with macroscopic porosity
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• all processes are quasistatic.
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Definitions
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Geometric micro-macrorelations
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Constitutive relations

micro macro
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where FRSR p,p real pressures, FS p,p partial macropressures

FS KK , real bulk modulae, RGN SS ,,,λ macroscopic elastic parameters
Equilibrium conditions
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(E1), (E2) and (E3) yield solution
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Gedankenexperiments of Biot and Willis

1/ drained jacketed 0pF = 2/ unjacketed p'pFR =

Two additional scalar relations would define two relations between FS KK ,

⇒λ 0,,,, nRGN SS

and

two Gedankenexperiments
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Resultant equations
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They relate ( )FS KK , and ( )NRS ,,λ ( )0,nGSwith as parameters

Application: with a given Poisson‘s ratio or a drained
compressibility modulus as well as speeds of P1 and S wave

one can find the porosity by in situ measurements.
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Comparison of experimental and theoretical results

Porosity predicted at Pisa site for measured speeds of bulk waves.
Comparison with data from Laval and Osterberg laboratories (C. G. Lai)



38

Concluding remarks
Example on scaling of independent variables
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a) to expose vibrations and damping: τ .1,, <<εε=ξ= xt
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b) to expose static deformations: .1,, <<ε=ξε=τ xt Then

- ordinary differential equation w.r.t. time.
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c) to expose diffusion: .1,, <<εε=ξε=τ xt Then
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Then

- ordinary differential equation w.r.t. space.

- parabolic (diffusion) equation.

Geophysical application: Partial momentum balance for fluid vs. Darcy‘s law

hyperbolic parabolic
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Concluding remarks

On field multiscaling

1. Multiscaling in time yields a possibility to construct a hierarchy of fields
which relax one after another to a macroscopic thermodynamical equili-
brium. Dynamics of the last few steps in the hierarchy can be reflected
by a time synchronization. Consequences: kinetic regime, thermodynamical
regime, ergodicity.

2. In contrast to the theory of ideal gases (BBGKY) modeling by means of
time multiscaling for granular materials has not been performed for the
whole hierarchy. In the kinetic regime one has to introduce a dissipation
in the microscopic range (friction and energy restitution). The classical
H-theorem of Boltzmann‘s theory – a precursor of the second law of ther-
modynamics – does not hold.
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3. Multiscaling in space yields the existence of microstructure on which
a hierarchy of fields can be constructued. They do not have to relax (some
do – e.g. dynamical changes of porosity described by evolution equations).
Different averaging procedures – homogenization, space averaging in REV,
ensemble averages – do not have to be equivalent.

4. Multiscaling in space for porous materials should yield the existence of
such additional fields as a local curvature of channels (tortuosity), micro-
structural anisotropy (a tensor of permeability), influence of corners, micro-
vorticities, creation of large gradients of porosity (liquefaction of sands), etc.
These problems have not been yet addressed in continuum modeling. 


