

Weierstrass Institute for Applied Analysis and Stochastics in Forschungsverbund Berlin e.V., Mohrenstrasse 39, D - 10117 Berlin, Germany

The enormous and the minute are interchangable manifestations of the eternal

William Blake (1757 – 1827)

The Parable of the Wise and Foolish Virgins

"To see a World in a Grain of Sand And a Heaven in a Wild Flower, Hold Infinity in the palm of your hand And Eternity in an hour" 1

Weierstrass Institute for Applied Analysis and Stochastics in Forschungsverbund Berlin e.V., Mohrenstrasse 39, D - 10117 Berlin, Germany

Przejścia mikro-makro w modelowaniu ośrodków granulowanych

KRZYSZTOF WILMANSKI

mail: wilmansk@wias-berlin.de
web:http://www.wias-berlin.de/people/wilmansk

Wykład w Zakładzie Teorii Ośrodków Ciągłych Instytut Podstawowych Problemów Techniki PAN Warszawa, 12 marca, 2004

Contents:

1. Linear poroelastic model

- macroscopic unknown fields of the linear model
- linear constitutive relations

2. Micro-macrotransitions

- geometrical compatibility
- changes of porosity
- changes of porosity solution of the porosity equation
- Gedankenexperiments for homogeneous microstructure
- solutions of field equations and geometrical compatibility
- numerical example

3. Dependence of μ^{S} , K_{d} and K_{b} on porosity? 4. Conclusions

1. Linear poroelastic model

Macroscopic unknown fields of the linear model

$$\{\rho^F, \mathbf{v}^S, \mathbf{v}^F, \mathbf{e}^S, n\}$$

- partial mass density of the fluid
- velocity of the skeleton
- velocity of the fluid
- Almansi-Hamel deformation tensor of the skeleton
- porosity

$$\frac{\partial \rho^{S}}{\partial t} + \rho_{0}^{S} div \mathbf{v}^{S} = 0, \quad \frac{\partial \rho^{F}}{\partial t} + \rho_{0}^{F} div \mathbf{v}^{F} = 0,$$

$$\rho_0^S \frac{\partial \mathbf{v}^S}{\partial t} = div \mathbf{T}^S + \pi (\mathbf{v}^F - \mathbf{v}^S) + \rho^S \mathbf{b}^S,$$

$$\rho_0^F \frac{\partial \mathbf{v}^F}{\partial t} = div \mathbf{T}^F - \pi (\mathbf{v}^F - \mathbf{v}^S) + \rho^F \mathbf{b}^F,$$

$$\frac{\partial (n-n_E)}{\partial t} + \Phi \operatorname{div}(\mathbf{v}^F - \mathbf{v}^S) = -\frac{n-n_E}{\tau}.$$

Balance equations – linear model

$$\frac{\partial \mathbf{e}^S}{\partial t} = sym \, grad \, \mathbf{v}^S \, .$$

Linear constitutive relations

Partial stresses

 $\partial \mathbf{e}^{S}$

 ∂t

$$\mathbf{T}^{S} = \mathbf{T}_{0}^{S} + \lambda_{\star}^{S} e\mathbf{1} + 2\mu_{\star}^{S} \mathbf{e}^{S} + Q\varepsilon\mathbf{1} - N(n-n_{0})\mathbf{1},$$

$$\mathbf{T}^{F} = -p_{\text{int}}^{F}\mathbf{1} + N(n-n_{0})\mathbf{1}, \quad p_{\text{int}}^{F} = p_{0}^{F} - (\rho_{0}^{F}\kappa\varepsilon + Qe),$$

$$e := tr\mathbf{e}^{S}, \quad \varepsilon := \frac{\rho_{0}^{F} - \rho^{F}}{\rho_{0}^{F}}.$$

Porosity

$$n_{E} = n_{0}(1 + \delta e), \quad \Phi = const.$$

Linear field equations

$$p_{0}^{S} \frac{\partial \mathbf{v}^{S}}{\partial t} = \lambda^{S} grad e + 2\mu^{S} div \mathbf{e}^{S} + Qgrad\varepsilon + \pi(\mathbf{v}^{F} - \mathbf{v}^{S}) - Ngradn,$$

$$\rho_{0}^{F} \frac{\partial \mathbf{v}^{F}}{\partial t} = Qgrad e + \rho_{0}^{F}\kappa grad\varepsilon - \pi(\mathbf{v}^{F} - \mathbf{v}^{S}) + Ngradn,$$

$$= sym grad \mathbf{v}^{S}, \quad \frac{\partial \varepsilon}{\partial t} = div \mathbf{v}^{F}, \quad \frac{\partial}{\partial t} [n - n_{0}\delta e + \Phi(e - \varepsilon)] = -\frac{n - n_{0} - n_{0}\delta e}{\tau}$$

 How to find material constants in "simple" laboratory and field experiments?
 How to find microstructural properties such as porosity, permeability or saturation?

> Micro-macrotransitions? Statistical averaging (REV)? Time averaging? Kinetic theory and macroscopic moments?

2. Micro-macrotransitions

(homogeneous microstructure)

Geometrical compatibility

Micro-macrorelations for partial mass densities in homogeneous microstructure

e.g.:
$$\rho^{F} = \frac{1}{V} \int_{REV(\mathbf{x})} \rho^{FR}(\mathbf{z},t) H(\mathbf{z},t) dV_{\mathbf{z}} \equiv n(\mathbf{x},t) \rho^{FR}(\mathbf{x},t),$$
$$n(\mathbf{x},t) \coloneqq \frac{1}{V} \int_{REV(\mathbf{x})} H(\mathbf{z},t) dV_{\mathbf{z}}, \quad V \coloneqq \text{volume } REV \quad \text{homogeneity}$$

where $H(\mathbf{z},t)$ is the characteristic function for the fluid component. Then

$$\begin{split} \rho^{F} &= n\rho^{FR}, \quad \rho^{F} = \rho_{0}^{F} (1+\varepsilon)^{-1}, \quad \rho^{FR} = \rho_{0}^{FR} (1+\varepsilon^{R})^{-1} \implies \\ \Rightarrow \quad \frac{n}{n_{0}} = \frac{1+\varepsilon^{R}}{1+\varepsilon}, \quad n_{0} = \frac{\rho_{0}^{F}}{\rho_{0}^{FR}}, \\ \rho^{S} &= (1-n)\rho^{SR}, \quad \rho^{S} = \rho_{0}^{S} (1+\varepsilon)^{-1}, \quad \rho^{SR} = \rho_{0}^{SR} (1+\varepsilon^{R})^{-1} \implies \\ \Rightarrow \quad \frac{1-n}{1-n_{0}} = \frac{1+\varepsilon^{R}}{1+\varepsilon}. \end{split}$$

Linearity (small deformations) yields geometrical compatibility conditions:

$$e = e^{R} + \frac{n - n_{0}}{1 - n_{0}}, \quad \varepsilon = \varepsilon^{R} - \frac{n - n_{0}}{n_{0}}.$$
 (1) 9

Changes of porosity

Constitutive relations:

- macro

$$p^{S} - p_{0}^{S} = -(\lambda^{S} + \frac{2}{3}\mu^{S})e - Q\mathcal{E} + N(n - n_{0}),$$

$$p^{F} - p_{0}^{F} = -Qe - \rho_{0}^{F}\kappa\mathcal{E} - N(n - n_{0}),$$
equilibrium:
$$\Delta p = (p^{S} - p_{0}^{S}) + (p^{F} - p_{0}^{F}) =$$

$$= -(\lambda^{S} + \frac{2}{3}\mu^{S} + Q)e - (\rho_{0}^{F}\kappa + Q)\mathcal{E}.$$
(2)

- micro

10

(3)
$$p^{FR} - p_0^{FR} = -K_f \mathcal{E}^R, \quad p^{SR} - p_0^{SR} = -K_s e^R,$$

equilibrium: $\Delta p = n_0 (p^{FR} - p_0^{FR}) + (1 - n_0) (p^{SR} - p_0^{SR}).$

It follows

$$\frac{n-n_0}{n_0} = \delta e + \gamma(e-\varepsilon), \quad \delta \coloneqq \frac{K_V - K}{n_0(K_s - K_f)}, \quad \gamma \coloneqq \frac{\rho_0^F \kappa + Q - n_0 K_f}{n_0(K_s - K_f)},$$
$$K_V \coloneqq (1-n_0)K_s + n_0 K_f, \quad K \coloneqq \lambda^S + \frac{2}{3}\mu^S + \rho_0^F \kappa + 2Q.$$

Changes of porosity - the solution of the porosity equation

$$\frac{\partial(n-n_E)}{\partial t} + \frac{n-n_E}{\tau} = -\Phi \, div(\mathbf{v}^F - \mathbf{v}^S), \quad n_E = n_0(1 + \delta \, e).$$

Mass balance equations:

$$div\mathbf{v}^{S} = -\frac{\partial}{\partial t}\frac{\rho^{S}}{\rho_{0}^{S}} = \frac{\partial e}{\partial t}, \quad div\mathbf{v}^{F} = -\frac{\partial}{\partial t}\frac{\rho^{F}}{\rho_{0}^{F}} = \frac{\partial \varepsilon}{\partial t}.$$

Hence

$$\frac{n-n_0}{n_0} = \delta e + \frac{\Phi}{n_0} (e-\varepsilon) - \frac{\Phi}{n_0 \tau} \int_0^t (e-\varepsilon)(s) e^{-\frac{t-s}{\tau}} ds.$$

The micro-macrorelation follows provided

$$\tau \to \infty, \quad \gamma = \frac{\Phi}{n_0}.$$

11

memory effect

Gedankenexperiments for homogeneous microstructures Preliminaries – Biot's notation

Change of the fluid content:

Fluid contained in a reference volume dV_0 of the skeleton

- reference configuration:
- current configuration:

$$\rho^F(1+e)dV_0$$

 $ho_0^F dV_0$

- normalized change - increment of the fluid content:

$$\frac{1}{\rho_0^{FR}} \Big[(1+e)\rho^F - \rho_0^F \Big] dV_0 \coloneqq \zeta dV_0 = n_0 \Big[\frac{1+e}{1+\varepsilon} - 1 \Big] dV_0 \quad \Rightarrow \quad \zeta \approx n_0 (e-\varepsilon).$$

Bulk stress and pore pressure

Biot's constants

$$\mathbf{T} \approx \mathbf{T}^{S} + \mathbf{T}^{F} = \mathbf{T}_{0} + (H - 2\mu^{S})e\mathbf{1} + 2\mu^{S}\mathbf{e}^{S} - C\zeta\mathbf{1}, \qquad H \coloneqq \lambda^{S} + 2\mu^{S} + \rho_{0}^{F}\kappa + 2Q = \\ p \coloneqq -\frac{1}{3}tr\mathbf{T} = p_{0} - Ke + C\zeta, \qquad H \coloneqq \lambda^{S} + 2\mu^{S} + \rho_{0}^{F}\kappa + 2Q = \\ = K + \frac{4}{3}\mu^{S}, \qquad K + \frac{4}{3}\mu^{S}, \qquad K + \frac{4}{3}\mu^{S}, \qquad K = \frac{p_{f}^{F}\kappa}{n_{0}} = p_{f}^{O} - Ce + M\zeta - N\frac{n - n_{0}}{n_{0}}. \qquad C \coloneqq \frac{1}{n_{0}}(Q + \rho_{0}^{F}\kappa), \quad M \coloneqq \frac{\rho_{0}^{F}\kappa}{n_{0}^{2}}.$$

Gedankenexperiments for homogeneous microstructures **Unknown:** $\{e, \zeta, n, e^{R}, \varepsilon^{R}, p - p_{0}, p_{f} - p_{f}^{0}\} = 7;$ Equations: 2 geom., 1 equilib., 4 constit., 1 test = 8.

General equilibrium conditions:

$$\Delta p = (p^{S} - p_{0}^{S}) + (p^{F} - p_{0}^{F}) =$$
$$= (1 - n_{0})(p^{SR} - p_{0}^{SR}) + n_{0}(p^{FR} - p_{0}^{FR}).$$

Unjacketed test:

$$p_f - p_f^0 = \Delta p,$$

Jacketed drained

$$p_f - p_f^0 = 0,$$

and undrained tests:

$$\zeta = 0$$
, i.e. $e = \mathcal{E}$.

Solutions of field equations and geometrical compatibility jacketed undrained

 $\frac{1-\frac{K}{K_W}}{1-\frac{C}{K}}\frac{\Delta p}{K},$

 Δp \overline{K} ,

 $\frac{K}{K_s}$

0

C

14

$$e = -\frac{\Delta p}{K}, \quad \zeta = 0, \quad \frac{n-n_0}{n_0} = -\frac{C-K_f}{K(K_f - N)} \Delta p, \quad C > K_f \quad \Rightarrow \quad N < K_f.$$

$$p_f - p_f^0 = \left(\frac{C}{K} + N \frac{C-K_f}{K(K_f - N)}\right) \Delta p, \quad \text{unjacketed}$$

$$\boxed{K = K_V - n_0(K_s - K_f) \frac{C-K_f}{K_f - N},}{K_V := (1 - n_0)K_s + n_0K_f.}$$

$$\frac{K_s = (1 - n_0)K_s + n_0K_f.}{K_v := (1 - n_0)K_s + n_0K_f.}$$

$$\frac{e = -\frac{\Delta p}{K_b} - \frac{NC}{K_bM} \frac{\Delta p}{K_n}, \quad \zeta = -\frac{1 - \frac{K}{K_W}}{1 - \frac{C}{K}} \frac{\Delta p}{K}, \quad \zeta = -\frac{1 - \frac{K}{K_W}}{1 - \frac{C}{K}} \frac{\Delta p}{K}, \quad \frac{n-n_0}{1 - n_0} = \left(\frac{K}{K_s} - -\frac{1 - \frac{C}{K_W}}{1 - \frac{C}{K}}\right) \frac{\Delta p}{K}, \quad \frac{n-n_0}{n_0} = -K_n \Delta p, \quad \frac{n-n_0}{n_0} = -K_n \Delta p, \quad K_h := K_s \frac{(1 - n_0)\frac{K_b}{K_h} - n_0}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_s \frac{(1 - n_0)\frac{K_b}{K_h} - n_0}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_s \frac{(1 - n_0)\frac{K_b}{K_h} - n_0}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_s \frac{(1 - n_0)\frac{K_b}{K_h} - n_0}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_s \frac{(1 - n_0)\frac{K_b}{K_h} - n_0}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_s \frac{(1 - n_0)\frac{K_b}{K_h} - n_0}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_s \frac{(1 - n_0)\frac{K_b}{K_h} - n_0}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_s \frac{(1 - n_0)\frac{K_b}{K_h} - n_0}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_s \frac{(1 - n_0)\frac{K_b}{K_h}}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_s \frac{(1 - n_0)\frac{K_b}{K_h}}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_s \frac{(1 - n_0)\frac{K_b}{K_h}}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_s \frac{(1 - n_0)\frac{K_b}{K_h}}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_b \frac{(1 - \frac{N}{K_b})^{-1}}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_b \frac{(1 - \frac{N}{K_b})^{-1}}{1 - (1 - n_0)\frac{K_b}{K_h}}}, \quad M_h := K_b \frac{(1 - \frac{N}{K_b})^{-1}}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_b \frac{(1 - \frac{N}{K_b})^{-1}}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_b \frac{(1 - \frac{N}{K_b})^{-1}}{1 - (1 - n_0)\frac{K_b}{K_h}}}, \quad M_h := K_b \frac{(1 - \frac{N}{K_b})^{-1}}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_b \frac{(1 - \frac{N}{K_b})^{-1}}{1 - (1 - n_0)\frac{K_b}{K_h}}}, \quad M_h := K_b \frac{(1 - \frac{N}{K_b})^{-1}}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_b \frac{(1 - \frac{N}{K_b})^{-1}}{1 - (1 - n_0)\frac{K_b}{K_h}}, \quad M_h := K_b \frac{(1 - \frac{N}{K_b})^{-1}}{1 - (1 - \frac{N}{K_b}$$

$$\begin{aligned} & \mathbf{Full set of equations for } K, C, M, N: \\ & \frac{K = K_V - n_0 (K_s - K_f) \frac{C - K_f}{K_f - N}}{\frac{K_s}{K_b} (n_0 - \frac{K_s}{K_h} (n_0 - \frac{N(K + C)}{K_b M})) = 0, \quad K_V \coloneqq (1 - n_0) K_s + n_0 K_f, \\ & \frac{\frac{K_s}{K_b} (n_0 - \frac{C}{M}) - \frac{K_s}{K_h} (n_0 - \frac{N(K + C)}{K_b M}) = 0, \quad K_b \coloneqq K - \frac{C^2}{M}, \\ & \frac{K = \frac{C - M + \frac{MK_b}{K_W}}{1 - \frac{C}{K}} - N \frac{1 - n_0}{n_0} \left(\frac{K}{K_s} - \frac{1 - \frac{C}{K_W}}{1 - \frac{C}{K}} \right), \quad \frac{1}{K_W} \coloneqq \frac{1 - n_0}{K_s} + \frac{n_0}{K_f}, \\ & \frac{K_d = K_b \left\{ 1 + \frac{NC}{K_n M} \right\}^{-1}, \quad K_n \coloneqq K_s \frac{(1 - n_0) \frac{NC}{K_b M} - n_0}{1 - (1 - n_0) \frac{K_s}{K_b}}. \end{aligned}$$

A): For N=0:

$$\boldsymbol{\xi} \coloneqq \frac{K_s}{K_f} - 1.$$

B): N belongs to the set of macroscopic material parameters but it is small in comparison with other compressibilities - iteration

C) Full solution for K, C, M, N

$$\begin{split} K = & \frac{\left(K_s - K_b\right)^2}{K_s \left(1 + n_0 \xi\right) - K_b} + K_b, \quad C = \frac{K_s \left(K_s - K_b\right)}{K_s \left(1 + n_0 \xi\right) - K_b}, \\ M = & \frac{K_s^2}{K_s \left(1 + n_0 \xi\right) - K_b}, \end{split}$$

Numerical example

$$K_{s} = 48 \times 10^{9} Pa, \quad K_{f} = 2.25 \times 10^{9} Pa$$

Geertsma (empirical): K_{b} or $K_{d} = \frac{K_{s}}{1 + 20n_{0}}$.
$$Q = n_{0}(C - n_{0}M).$$

$$\int_{q \neq 10^{0}} \frac{1}{\sqrt{C}} \frac{K_{b}}{\sqrt{C}} \frac{1}{\sqrt{C}} \frac{1}{\sqrt{C}}$$

16

Material parameters K, C, M in the zerothMaterial parameters K, C, M in the first
approximation (Gassmann)approximation (Gassmann)approximation (Gassmann)

Material parameters *K*, *C*, *M* in the zeroth approximation (Gassmann)

Material parameters *K*, *C*, *M* in the first approximation (Gassmann)

Comparison with the full solution (green)

19

Carlo Lai (July 2002)

in the low frequency approximation

3. Dependence of μ^{S} , K_{d} and K_{b} on porosity

In the drained simple test the material behaves as there were no fluid in pores. Hence the stress – strain relation should be the same as in the classical elasticity with the compressibility modulus K_d and shear modulus μ^{S} , i.e.

$$\mu^{S} = 3K_{d} \frac{1 - 2\nu}{2(1 + \nu)} = 3K_{b} \frac{1 - 2\nu}{2(1 + \nu)} \Big|_{N=0}$$

where v is the Poisson's number.

Simultaneously speeds of propagation react weakly on changes of Poisson's number – see: results of Carlo Lai. Hence we can choose, for instance, v=0.2 and either calculate $K_d(K_b)$ from the above formula provided μ^{S} was measured by the speed of shear wave or calculate μ^{S} provided $K_d(K_b)$ is given empirically.

Important practical case: given two speeds of propagation (P1- and shear wave) and the Poisson's number. Then by means of MICRO-MACRO one can calculate porosity (inverse problem).

Experimental measurements: c_{P1} , c_{S} and porosity profiles

Pisa site. After: FOTI,S., LAI, C., LANCELLOTTA, R.; Porosity of Fluid-saturated Porous Media from Measured Seismic Wave Velocities, Géotechnique, Vol. 52, No. 5, 359-373 (2002).

LAI, C.; Recent Advances in the Solution of Some Parameter-Identification Problems Relevant To Soil Dynamics, Lecture, Oct. 21, 2002, ROSE School, Pavia, Italy.

Testing of soils by surface waves (SASW)

Politecnico di Torino, 2003

4. Conclusions

1. Biot's model follows as a limit case of a general thermodynamic model provided the relaxation of porosity is neglected.

2. Gassmann – like relations, derived for the extended model with a dependence on porosity gradient by means of the Micro-MacroTransition for homogeneous microstructure satisfy ALL compatibility relations for simple tests and yield in the limit the classical Gassmann relations.
3. In order to fulfil geometrical compatibility relations of

micro-macrotransition the porosity balance equation must be corrected on an equilibrium contribution to the source term.

4. Micro-MacroTransition gives rise to a possibility of a natural description of processes in unsaturated granular materials.

Newton (1795)

The Ghost of a Flea (ca. 1819) 26