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1. APPEARANCE OF DIFFUSION
IN REAL POROUS SOLIDS
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D. FILTERS AND TRANSPORT E. CRYSTAL GROWTH
OF POLLUTANTS BY SUBLIMATION




F. TRANSPIRATION COOLING
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2. LINEAR POROELASTIC MODEL
OF SATURATED MATERIALS;
ISOTHERMAL PROCESSES
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- partial mass densities
- partial velocities

- Almansi — Hamel deformation tensor

- current porosity

Linearity conditions

Volume changes




Partial mass and momentum balance equations

Wilmanski K.: A Thermodynamic Model
of Compressible Porous Materials with
the Balance Equation of Porosity,
Transp. Porous Media 32 (1998) 21-47.




Constitutive relations for isotropic materials
TS =TS + el +2u’e’® +Qel+ Bn—n, )1-N(n—ny)1,

p" :p(f —Qe—p(fl(8+,8(n—nE)+N(n—n0),
ﬁS :_IA)F :ﬂ*(VF —VS),

n, =n,(1+Je),

Wilmanski K.: A few remarks on
Biot's model and linear acoustics
of poroelastic saturated materials,
Soil Dynamics & Earthquake Eng., _ _
26, 6-7 (2006) 509-536 Biot M. A Theory ofprgpagatlon
- of elastic waves in a fluid-saturated
Biot‘'s model: porous solid. I. Low-Frequency Range,
J. Acoust. Soc. Am., 28, (1956) 168-178.

=0, N=0, n=0. D
p n=ny|l+5e+—L(e—e))|,
Then porosity balance equation — n,




Influence of relative acceleration

—(1=¢)((v" —v*)-gradJv" — ¢ ((v" —v*) grad)v*
TS =T =TS + el +2u°e® + Qel+ B(n—n, )1-

_N(n_no)l_gplz(VF _VS)®(VF -V’ )’

p'=p, —Qe—p§K€+,B(n—nE)+
+N(n—n0)+%(1—g)p12(VF _VS)°(VF -V’ )

Wilmanski K.: Tortuosity and
objective relative accelerations
in the theory of porous materials,
Proc. Roy. Soc. A, 461 (2005)
1533-1561




Field equations without coupling 8 and porosity sources

POV, _
pO al_ 1012 at

_Qk_Na_n_”*(ViF —v; )+p(fbiF’
dx, d x,

de.
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Field equations without coupling 8 and porosity sources

Fields

S F _S
vV.,v ,€ 783

These parameters follow from
micro- macro transition

Wilmanski K.: On Microstructural Tests
for Poroelastic Materials and Corres-
ponding Gassman-type Relations,
Geotechnique, 54, 9 (2004) 593-603

S
j ag_aViF

: + ’ _ ’
t 2{dx; dx, ) dr dx,

| -@;(8—6) .




Remark: Fallacy of variational formulation of Biot‘'s model

increment of fluid content instead of volume changes of the fluid

{zno(é‘—e),

¥ does not
contribute!!

hence, the increment of fluid content measures deviations from thermodynamic
equilibrium. Consequently, there exists no variational principle for Biot‘'s model!

Porosity balance has in this variable 0
the form of evolution equation —
- no boundary conditions needed!




3. STRUCTURE OF MOMENTUM SOURCE;
PERMEABILITY, TORTUOSITY
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REMINDER: Momentum balance for the fluid without inertial forces

with the body force in direction of z-axis
Integration for the inclined column:

- Darcy’s relation!

K - hydraulic conductivity, related to the true dynamic viscosity of the fluid




Examples of hydraulic conductivity, intrinsic permeability
and permeability coefficient for a porous material saturated
with water (normal conditions)

K K,

[m/s] [darcy]=10-12[m?]

well sorted 1-1073 10° - 102 103 -
gravel
10 - 10°6 10 -10°! 107 -10°

107 - 10 102 — 103 1019 _ 101!

1011 - 1012 106 - 107 104 _ 1015

Necessary extensions of the permeability:

1. Tortuosity
2. Anisotropy
3. Hereditary
4. Nonlinearity




Blake-Kozeny-Epstein relation:

b — capillary shape factor (32 for circular pores, 48 for parallel slits)
D, — hydrolic diameter; e.g. N spheres of radius d in REV:

7 - tortuosity, i.e. ratio of the length of a streamline between two
points to their distance,




Anisotropic diffusion

Bear J., Bachmat Y.: Introduction to Modeling of Transport Phenomena
in Porous Media, Dordrecht, Kluwer Academic Publishers 1991

Fluid ,,discharge®” (relative velocity) for tensorial permeability

- symmetric tortuosity tensor defined as the surface average
(static moment) of the REV — boundary intersected by streamlines

2
DhnO

by

E - conductance given by the relation FE or B= ;(pz-z,




Schematic of the Representative Elementary Volume (REV)
with a streamline intersecting REV-boundary at a point of
the surface S. The latter is indicated by the thick line.

For REV — sphere of radius R




Spectral representation

Source of momentum for anisotropic media with dependence
on relative acceleration

M. A. Biot argument v, r_ p O0E _de
for necessity of added P2 Y +0. =0, Q. =p; Ka B dx B
mass:

-z (] =} )+ py by

F
“...the equation shows that when the solid is accelerated a force Qx

must be exerted on the fluid to prevent an average displacement of the latter”.
This is obviously not necessary. Hence, tortuosity may enter solely through permeability




4. MEASUREMENTS OF DIFFUSION PROPERTIES; NMR
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comp. G. Dagan this afternoon!

EXPERIMENTAL TECHNIQUES

1. Mechanical flow velocimeters — permeability
2. Electric resistivity (Nernst-Einstein relation
between diffusivity and conductance)
3. Diffusion Magnetic Resonance Imaging connections:

lightfibre
pressure

4. Damping of acoustic waves - permeability Purrent
5. Surface waves (SASW) - porosity
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NMR Primer
In qguantum mechanics description proton (spin-1/2 particle) possesses
- Intrinsic magnetic moment

- Intrinsic angular momentum
related to each other

n,=7,J
¥, =27rx42.5764x10° b - gyromagnetic constant

Tesla

Wave function for proton in magnetic field satisfies Schrodinger equation

1

=iB- ,
Yy n

This yields the following equation for the average macroscopic
intrinsic magnetic moment (,,observable®)




For the field

<,Up >3 - constant

Solution — precession with the Larmor frequency: eXp(— l a)ot), W, = ¥pb,.
It has the order of 100 MHz for the field 1 Tesla (,.radio frequency“ range —RF)

Macroscopic model of many interacting particles with spin:
macroscopic magnetization in a magnetic field

C T — absolute temperature

MO(I')_?,O(I')BO(I'), p - mass density

For the field
Bloch (phenomenological)
g equation:

dM 1 1 perpendicular to
= Q/MXB -— M -— ' parallel to m
dt T,

T',, T, —relaxation times




Influence of diffusion — Bloch-Torrey equation

M = yMxB —LMl —l(MH —M0)+ div(D gradM),
dt T, T,

D=D.e, e,
diffusivity tensor

Basic principle — measurements of relaxation times for different directions
of the magnetic field

Example 1: Results of Xenon NMR measurements for some rocks

Rock Sample Permeability K p [mD]; Tortuosity Effective Porosity Absolute Porosity
T [kg/m3s] (pycnometer)

Fontainebleau 559 +/- 93; 3.45 0.113 +/- 0.007 0.125
1.53-2.15x 108

Bentheimer 123 +/- 24; NA 0.112 +/- 0.012 NA
10.1-6.8 x 108

Edwards Limestone 7.0 +/- 0.9; . 0.151 +/- 0.011
1.27-1.63 x 1010

Austin Chalk 2.6 +/- 0.3; . 0.184 +/- 0.9
3.44-4.35 x 1010

Cutbank H 0.64 +/- 0.1; 0.0603 +/- 0.004
1.35-1.65 x 10!

Indiana Limestone 0.18 +/- 0.03; . 0.071 +/- 0.006
4.76-6.67 x 101"




Example 2: Some results for core plugs of Alermoehe
sandstone from various depths

Sample Permeability (gas) Tortuosity Porosity
K, T (pycnometer)
3224.45 [m] 0.16; 1.06 0.02
6.25 x10'"

3235.34 [m] 11.6: 5.04
8.62 x 10°

3236.79 [m] 3.59: 5.36
2.79 x 1010

3240.69 [m] 20.7; 3.8
4.83 x10°

3241.44 [m] 3.13; 6.12
3.19 x 101




5. MONOCHROMATIC ACOUSTIC WAVES;
SPEEDS AND ATTENUATION
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Governing equations

[av.s av“?j
l + J ]
2\ dx, ox,

dx, dx
(I)O
n=n, 1+5e)¢nL e—e)|.
0

immaterial




Biot argued that the analysis of a flow of viscous fluid

in channels of a porous material yields a dependence

of the permeability on the frequency of a monochromatic
wave. After inversion of the Fourier transform the following
relation should follow for isotropic materials

Biot M. A.: Theory of propagation
_ 2 ( ) of elastic waves in a fluid-saturated
T (t ) =TT OT F > porous solid. Il. Higher Frequency
Range, J. Acoust. Soc. Am., 28,
2 (1956) 179-191.

where the dimensionless function F depends on the frequency o in

the following way

for the flow between
parallel walls

in a circular duct




Real (upper curves) and imaginary (lower curves) parts of functions F(é)

Solid lines correspond to the case of parallel walls and dotted lines to the circular duct

E=1 corresponds for water to app. 1 kHz frequency



Fallacy of relation between tortuosity and added mass

Quotation from: Johnson D. L., Koplik J., Dashen R.: Theory of dynamic permeability and
tortuosity in fluid-saturated porous media, J. Fluid Mech. 176 (1987) 379-402.

“Under the stated assumptions is obviously linearly related to the pressure gradient at any frequency

—MVP. (2.1a,b),
Ui

( in the notation of this lecture). The frequency-dependent tortuosity 55((0) is

defined in (2.1a) by analogy with the response of an ideal (nonviscous) fluid. ... The frequency—dependent

permeability is defined in (2.1b) by analogy with the steady-state (a) = ()) definition.

The above argument is physically and
mathematically wrong. Physically, both
(t) |) equations (2.1) follow from different
= simplifications of momentum balance —
comparison of apples and oranges.
Mathematically, the first relation

Albers B., Wilmanski K.: On modeling is hyperbolic, the second — parabolic.
acoustic waves in saturated poroelastic media,

J. Engng. Mech., 131, 9 (2005) 974-985.
Added mass has only a little influence on propagation of acoustic waves




Monochromatic waves
v, =V°E v/ =V'E e =EE €=E"E,
€= exp[i(ijj - a)t)]

Propagation conditions and dispersion relations

S S
sz +i”"’j§i}. +/1—Skl.kj +2 (s, +kikj)}VjS —( O ki, +i”“s’§..jvf -0,

£y i £y 2y Py

Q T S 2 . T F
(Fkikj_’F@ijj J{(w +1Fj5ij+’(kfkj:|vj =0.

Po Py Po

The solution of this eigenvalue problem yields two longitudinal
waves: P1 and P2 (slow, Biot, second sound), and the transversal
(shear) wave.




Relation for the wave number in the case of transversal waves

k? =

1+;ﬂ{c32[

Numerical example for the data

F
p8 =2500[kg/m?], r=22 =01,

S
0

¢f =5 =1500 [mvs] 7, =10° [kg/m’s)
0

a=10"|m], u, =1.002x107" [kg/m-s].
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6. CONCLUDING REMARKS;
NONISOTHERMAL PROCESSES; NONLINEARITIES

40



1. Nonisothermal processes do not yield essential
changes in permeability properties for linear models

of fully saturated materials. Otherwise couplings with
temperature changes influence the degree of saturation,
surface properties of channels, capillary forces, etc.

2. Nonlinearities are essential, particularly for large Reynolds

numbers, changes in microstructure (piping), liquefaction.
The simplest (quadratic) correction was proposed by P. Forchheimer,
many other models are applied as well.

3. Both nonlinearities and the nonisothermal character
play an important role in the range of low temperatures
(freezing and cryosuction) as well as in the range of
high temperatures (melting, boundary layers). Little
has been done.




42



