



Weierstrass Institute for Applied Analysis and Stochastics in Forschungsverbund Berlin e.V., Mohrenstrasse 39, D - 10117 Berlin, Germany

# Linear Sound Waves in Poroelastic Materials: Simple Mixture vs. Biot's Model

# **Krzysztof Wilmanski**

mail: wilmansk@wias-berlin.de
web:http://www.wias-berlin.de/people/wilmansk



International Symposium on Trends in Applications of Mathematics to Mechanics, STAMM'2004 Darmstadt, August 26, 2004

# **Contents:**

- unknown fields of the linear models
- balance equations
- linear constitutive relations
- linear field equations
- Gassman relations (micro-macro)
- changes of porosity
- numerical example
  - monochromatic S-waves; attenuation of the front
  - monochromatic P1- and P2-waves, velocities
  - monochromatic P1- and P2-waves, attenuation
- conclusions

# Unknown fields of the linear model - partial mass density of the fluid - velocity of the skeleton $\{\rho^{F}, \mathbf{v}^{S}, \mathbf{v}^{F}, \mathbf{e}^{S}, \mathbf{v}^{F}, \mathbf{v}^{F}, \mathbf{v}^{F}, \mathbf{v}^{F}, \mathbf{v}^{F}, \mathbf{v}^{F}, \mathbf{v}^{$ - porosity **Balance equations** - linear model $\frac{\partial \rho^{s}}{\partial t} + \rho_{0}^{s} div \, \mathbf{v}^{s} = 0, \quad \frac{\partial \rho^{F}}{\partial t} + \rho_{0}^{F} div \, \mathbf{v}^{F} = 0,$ $\rho_0^S \frac{\partial \mathbf{v}^S}{\partial t} = div \mathbf{T}^S + \hat{\mathbf{p}} + \rho^S \mathbf{b}^S, \quad \rho_0^F \frac{\partial \mathbf{v}^F}{\partial t} = div \mathbf{T}^F - \hat{\mathbf{p}} + \rho^F \mathbf{b}^F,$ $\frac{\partial (n-n_E)}{\partial t} + \Phi div (\mathbf{v}^F - \mathbf{v}^S) = -\frac{n-n_E}{2}.$ $\frac{\partial \mathbf{e}^S}{\partial t} = sym \, grad \, \mathbf{v}^S.$ 3

# Linear constitutive relations

## **Partial stresses**

$$\mathbf{T}^{S} = \mathbf{T}_{0}^{S} + \lambda_{s}^{S} e\mathbf{l} + 2\mu_{s}^{S} \mathbf{e}^{S} + Q\varepsilon\mathbf{l} - \mathbf{N}(n - n_{0})\mathbf{l},$$
  

$$\mathbf{T}^{F} = -p_{\text{int}}^{F}\mathbf{l} + \mathbf{N}(n - n_{0})\mathbf{l}, \quad p_{\text{int}}^{F} = p_{0}^{F} - (\rho_{0}^{F}\kappa\varepsilon + Qe),$$
  

$$e \coloneqq tr\mathbf{e}^{S}, \quad \varepsilon \coloneqq \frac{\rho_{0}^{F} - \rho^{F}}{\rho_{0}^{F}}.$$
  
**Porosity**  

$$n_{E} = n_{0}(1 + \delta e), \quad \Phi \equiv const.$$
  
**Interval constants**  
**Linear field equations**  
**Biot**  

$$\rho_{0}^{s} \frac{\partial \mathbf{v}^{s}}{\partial t} = \lambda^{s} grad e + 2\mu^{s} div \mathbf{e}^{s} + Qgrad\varepsilon + \pi(\mathbf{v}^{F} - \mathbf{v}^{s}) - \rho_{12} \left(\frac{\partial \mathbf{v}^{F}}{\partial t} - \frac{\partial \mathbf{v}^{s}}{\partial t}\right) - \mathbf{N} gradn,$$
  

$$\rho_{0}^{F} \frac{\partial \mathbf{v}^{F}}{\partial t} = Qgrad e + \rho_{0}^{F} \kappa grad\varepsilon - \pi(\mathbf{v}^{F} - \mathbf{v}^{s}) + \rho_{12} \left(\frac{\partial \mathbf{v}^{F}}{\partial t} - \frac{\partial \mathbf{v}^{s}}{\partial t}\right) + \mathbf{N} gradn,$$
  

$$\frac{\partial \mathbf{e}^{s}}{\partial t} = sym grad \mathbf{v}^{s}, \quad \frac{\partial \varepsilon}{\partial t} = div \mathbf{v}^{F}, \quad \frac{\partial}{\partial t} [n - n_{0}\delta e + \Phi(e - \varepsilon)] = -\frac{n - n_{0}}{\tau} - \frac{n_{0}\delta e}{\tau}.$$

# Linear constitutive relations

## **Partial stresses**

$$\mathbf{T}^{S} = \mathbf{T}_{0}^{S} + \lambda_{s}^{S} e\mathbf{l} + 2\mu_{s}^{S} \mathbf{e}^{S} + Q\varepsilon\mathbf{l} - \mathbf{N}(n - n_{0})\mathbf{l},$$
  

$$\mathbf{T}^{F} = -p_{int}^{F}\mathbf{l} + \mathbf{N}(n - n_{0})\mathbf{l}, \quad p_{int}^{F} = p_{0}^{F} - (\rho_{0}^{F}\kappa\varepsilon + Qe),$$
  

$$e \coloneqq tr\mathbf{e}^{S}, \quad \varepsilon \coloneqq \frac{\rho_{0}^{F} - \rho^{F}}{\rho_{0}^{F}}.$$
  
Porosity  $n_{E} = n_{0}(1 + \delta e), \quad \Phi \equiv const.$   
Interval constants  
Simple mixture  

$$\mathbf{Linear field equations}$$
  

$$p_{0}^{S} \frac{\partial \mathbf{v}^{s}}{\partial t} = \lambda^{S} grad e + 2\mu^{S} div \mathbf{e}^{S} + Qgrad \varepsilon + \pi(\mathbf{v}^{F} - \mathbf{v}^{S}) - \rho_{12} \left(\frac{\partial \mathbf{v}^{F}}{\partial t} - \frac{\partial \mathbf{v}^{S}}{\partial t}\right) - \mathbf{N}grad n,$$
  

$$\rho_{0}^{F} \frac{\partial \mathbf{v}^{F}}{\partial t} = Qgrad e + \rho_{0}^{F} \kappa grad \varepsilon - \pi(\mathbf{v}^{F} - \mathbf{v}^{S}) + \rho_{12} \left(\frac{\partial \mathbf{v}^{F}}{\partial t} - \frac{\partial \mathbf{v}^{S}}{\partial t}\right) + \mathbf{N}grad n,$$
  

$$\frac{\partial \mathbf{e}^{S}}{\partial t} = sym grad \mathbf{v}^{S}, \quad \frac{\partial \varepsilon}{\partial t} = div \mathbf{v}^{F}, \quad \frac{\partial}{\partial t} [n - n_{0} \delta e + \Phi(e - \varepsilon)] = -\frac{n - n_{0} - n_{0} \delta e}{\tau}.$$

### G

assmann relations:  

$$N = 0$$

$$K, C, M - \text{macroscopic compressibility moduli}$$

$$K = \frac{(K_s - K_b)^2}{K_s(1 + n_0\xi) - K_d} + K_d, \quad C = \frac{K_s(K_s - K_d)}{K_s(1 + n_0\xi) - K_d},$$

$$M = \frac{K_s^2}{K_s(1 + n_0\xi) - K_d},$$

$$Q = n_0(C - n_0M).$$

$$\boldsymbol{\xi} \coloneqq \frac{K_s}{K_f} - 1.$$

6

 $K_d$ 

 $K_s, K_f$  - true (microscopic) compressibility moduli,

- drained compressibility modulus.

## Berryman relation for tortuosity

$$\rho_{12} = \rho_0^F (1-a), \quad a = \frac{1}{2} (\frac{1}{n} + 1), \quad i.e. \quad 1 \le a \le \infty.$$

#### It follows

$$\lambda^{s} + 2\mu^{s} = \frac{3(1-\nu)}{1+\nu} \left\{ \frac{\left(K_{s} - K_{d}\right)^{2}}{\frac{K_{s}^{2}}{K_{W}} - K_{d}} + K_{d} \right\}, \quad \frac{1}{K_{W}} = \frac{1-n}{K_{s}} + \frac{n}{K_{f}},$$
$$\mu^{s} = \frac{3(1-2\nu)}{2(1+\nu)} \left\{ \frac{\left(K_{s} - K_{d}\right)^{2}}{\frac{K_{s}^{2}}{K_{W}} - K_{d}} + K_{d} \right\}, \quad \rho_{0}^{F}\kappa = n^{2}\frac{K_{s}^{2}}{\frac{K_{s}^{2}}{K_{W}} - K_{d}}, \qquad K_{d} = \frac{K_{s}}{1+50n}.$$

where v - Poisson's number.

# Changes of porosity

$$\frac{n-n_0}{n_0} = \delta e + \gamma(e-\varepsilon), \quad \delta \coloneqq \frac{K_V - K}{n_0(K_s - K_f)}, \quad \gamma \coloneqq \frac{\rho_0^F \kappa + Q - n_0 K_f}{n_0(K_s - K_f)}$$
$$K_V \coloneqq (1-n_0)K_s + n_0 K_f, \quad K \coloneqq \lambda^S + \frac{2}{3}\mu^S + \rho_0^F \kappa + 2Q.$$

-

## Changes of porosity - the solution of the porosity equation

$$\frac{\partial(n-n_E)}{\partial t} + \frac{n-n_E}{\tau} = -\Phi \operatorname{div}(\mathbf{v}^F - \mathbf{v}^S), \quad n_E = n_0(1 + \delta e).$$

Mass balance equations:

$$div\mathbf{v}^{S} = -\frac{\partial}{\partial t}\frac{\rho^{S}}{\rho_{0}^{S}} = \frac{\partial e}{\partial t}, \quad div\mathbf{v}^{F} = -\frac{\partial}{\partial t}\frac{\rho^{F}}{\rho_{0}^{F}} = \frac{\partial \varepsilon}{\partial t}.$$

Hence

$$\frac{n-n_0}{n_0} = \delta e + \frac{\Phi}{n_0} (e-\varepsilon) - \frac{\Phi}{n_0 \tau} \int_0^t (e-\varepsilon)(s) e^{-\frac{t-s}{\tau}} ds.$$

The micro-macrorelation follows provided

$$\tau \to \infty, \quad \gamma = \frac{\Phi}{n_0}.$$

8

memory effect

# Numerical example

 $K_s = 48 \times 10^9 Pa, \quad K_f = 2.25 \times 10^9 Pa$ Geertsma (empirical):  $K_d = \frac{K_s}{1 + 50n_0}.$ 



6.0 5.0 4.0 4.0 4.0 0.0 0.0 0.0 0.2 0.3 Porosity 6.0 0.4 0.5

# Coefficient $\delta$ for changes of porosity

#### Monochromatic S-wave: velocity



#### Monochromatic S-wave: attenuation



#### S-wave: attenuation of the front as a function of tortuosity



#### Monochromatic P1-wave: velocity



#### Monochromatic P2-wave: velocity



#### Monochromatic P1-wave: attenuation



#### Monochromatic P2-wave: attenuation



# **Conclusions:**

**1.** Properties of linear acoustic waves depend on Biot's contributions (relative accelerations and coupling of partial stresses) in a quantitative but not qualitative manner. Both models are hyperbolic (under a condition on the coupling parameter Q).

2. Influence of tortuosity through relative accelerations (Biot's model) yields the wrong behavior of the wave damping (tortuosity <u>reduces</u> the attenuation). This indicates that an influence of tortusity should enter a linear model rather through the permeability coefficient  $\pi$  which would then describe microscopic viscosity, tortuosity, scattering of waves etc. Added mass (relative acceleration) may have a bearing in the theory of suspension but not in the porous materials.

**3.** The Biot's coupling parameter *Q* flattens the velocity of monochromatic P1-waves contrarily to the experience. The difference between the low frequency velocity (both components move in a synchronized way) and the high frequency velocity (no influence of the fluid component) are better reflected in the simple mixture model. It indicates that Gassmann relations may give too big values of this coefficient.

**4.** Simple mixture model seems to give qualitatively reliable results and, consequently, it can be used in the analysis of such complex problems as the propagation of surface waves.