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A. Units of pressure and stresses
(p and partial pressures in mixtures, Piola-Kirchhoff P and Cauchy T;
pressure in SI: 1Pascal=1kg/s?m)

Pa:% at:(}% atm bar torr mmWS:%
1 1.02-107° 9.87-107% 107° 75-1074 0.102
9.81-.10* 1 0.968 0.981 736 10%
1.013-10> 1.033 1 1.013 760 1.033-10%
10° 1.02 0.987 1 750 1.02-10%
133 1.36-107% 1.32-10~% 1.33-107° 1 13.6

9.81 10~4 9.68-10° 9.81-10~° 7.36-107% 1

B. Units of the force
(body forces pb have the ST unit: [Newton/m?]; force in SI: 1Newton=1kg-m/s*)

N kp Mp p dyna

1 0.102 1.02:107* 102 10°
9.81 1 1073 103 9.81-10°
9.81-10% 103 1 108 9.81-108
9.81-107% 1073 10-° 1 981
107° 1.02-107% 1.02-107 1.02-1072 1

C. Units of energy and work
(energy density pe has the SI unit: [Joule/m?3]; energy in SI: 1 Joule=1kg-m?/s?)

J kpm kWh kcal erg eV

1 0.102 2.78-10°7 2.39-107%* 107 6.24-10'8
9.81 1 2.72-107% 2.34-107%  9.81-10" 6.12-10"
3.6-10° 3.67-10° 1 860 3.6-101  2.25.10%°
4.19-10% 427 1.16-1073 1 4.19-101%  2.61.10*
1077 1.02:107%  2.78.107* 2.39-107'* 1 6.24-101!

1.6:107Y 1.63-1072° 4.45.1072° 3.83-107% 1.6-1072 1

D. Units of power
(working of body forces pb - v, energy radiation pr, working of stresses P-%—f
and T - L have ST unit: [Watt/m?]; power in SI: 1Watt=1kg-m?/s?)

W kW ®n PS cal  kal
1 1073 0.102 1.36-10 > 0.239 0.86
10° 1 102 1.36 239 860
9.81 9.81-107° 1 13310 234 843
736 0.736 51 176 632
419 4.19107% 0427 5.69-107° 1 3.6

1.16 1.16-107% 0.119 1.58-1073 0.278 1

Remark: Heat fluxes Q and q have SI unit: [Watt/m?];
entropy has SI unit: [Joule/m? - KJ; entropy fluxes H and h have SI unit: [Watt/m? - K];
entropy radiation ps has the ST unit: [Watt/m? - K].



Lecture 1: Introduction to the theory of continua
Thermodynamics of continua is based on four fundamental principles

1. Continuity,

2. Balance equations,

3. Local action,

4. Thermodynamical admissibility.

The principle of continuity means that we consider functions on a three-dimensional
manifold By called a body which satisfy certain mathematical assumptions on a continuity
with respect to the volume measure defined on this manifold. These assumptions yield
the existence of densities. For example, instead of mass of material points of the classical
mechanics we deal with masses of subbodies which are certain three-dimensional subsets
of By. Such masses are given by integrals of mass densities over subbodies. In continua
it does not make any sense talking about a mass of a material point. The material point
X €B, is only a geometrical notion and densities (fields) of a continuum are functions of
these points and of the time. Values of these functions have no direct physical meaning
known from the classical mechanics. We speak about mass density, momentum density,
energy density, etc. but we measure in laboratories their integrals over finite volumes.

Continuity means that densities are continuous functions of the point X of the body
and of time t except of sets of volume measure zero. This means that these functions may
possess finite discontinuities on surfaces, lines and at separate points. This is, for example,
the case when we consider the propagation of waves. We return to this point later.

The continuity assumption means as well that we consider a special form of changes
of the shape of the body due to motions. The motion is defined by a differentiable global
mapping (diffeomorphism) of the manifold By on the three-dimensional Euclidean space
3. This space is called the space of configurations. For our purposes we can identify the
body By with a domain in this space occupied by the body at a chosen reference time,
say to!. Then the function of motion

£(.,.):ByxT —R°, (1)

defines for each instant of time t € 7" a current configuration of the body. The derivative
of this function with respect to X is called the deformation gradient F (X, t) (see: Fig.1)
and the derivative with respect to time is the velocity v (X,t) at the material point X.
We discuss these notions further in details. The deformation gradient is a linear mapping
defined on the so-called tangent space to the material manifold and it defines material
vectors essential for the description of deformations of the body.

We assume that the mapping f (.,¢) is invertible which means that each position x
can be occupied only by one material point X. This requires

det F + 0. (2)

!Certain models do no not admit such an identification. For example, there are continuous models of
dislocations which require a more general structure of the manifold than this indicated by the Euclidean
space.



F(X,t).)

Fig. 1: Local configuration of a continuum

The existence of a continuous function of motion f imposes severe limitations on
possible motions of the body. For instance, a creation of new surfaces (opening of a crack
in solids, tearing or a creation of vortices) is forbidden by the topological continuity. Also
the description of strong mixing (e.g. cigarette smoke in the air) is not possible.

The second principle — balance equations — means that some most fundamental
quantities appearing in models of the continuum satisfy relations describing their time
changes in terms of surface and volume supplies. In thermomechanical models which we
consider in this course these quantities are: mass density, momentum density, angular
momentum density, energy density and entropy density. In particular cases balance equa-
tions become conservation laws of mass, momentum, angular momentum and energy.
We discuss further the detailed structure of these equations. Apart of balance equations
a particular model may contain additional equations such as evolution equations of in-
ternal variables but we assume that the above listed conservation laws are unconditionally
satisfied in any model. The violation of conservation laws of mass, momentum or energy
leads to perpetuum mobile, i.e. the system may do a useful work without any time limit
and without any supply from the surrounding. Even though it may not be excluded in
a microscopic world described by a quantum theory the existence of perpetuum mobile
contradicts our macroscopic observations.

The principle of local action requires that a reaction of the body on external actions
is transmitted to material points by interactions of parts of the body through surfaces of
contacts, i.e. a reaction of each material point is limited to an influence of its infinitesimal
neighborhood. Direct interactions of two or more material points at finite distances are
not possible. Consequently, such actions as gravitational forces between parts of the body
or Coulomb electromagnetic interactions are not modelled by a continuum. Attempts to
include these nonlocal interactions failed and only some approximations of such actions
by the so-called higher gradient theories are possible without the violation of some basic
mathematical assumptions of the continuum. We discuss this problem within the subject
of constitutive (material) relations.

Finally the principle of thermodynamical admissibility reflects the requirement that
the second law of thermodynamics and certain thermodynamical stability con-
ditions are satisfied. These will be the main subject of this course.

We proceed to discuss the geometry of the body changing in time due to the motion.
As already mentioned the current configuration of the body is defined by the function f.



Let us choose an arbitrary smooth curve Cy in the initial configuration By and investi-
gate its current image C; := f (Co,t) . It is convenient to write the equation of Cy in the
parametric form

X =X(5), (3)
where S is the parameter defining the distance along the curve. Then the vector

dX
T="= 4
ds’ (4)

is a unit vector (i.e. T -T = 1) tangent to the curve. The infinitesimal vector
dX = TdS (5)

is then also tangent to the curve Cy. According to the definition of the current image C;
its tangent infinitesimal vector dx is given by the relation

VX €Cy: dx=(Gradf)dX =tdS, t:=FT, F :=Gradf, (6)

where F' is the deformation gradient at the point X and the instant of time ¢. Hence the
infinitesimal vectors dx tangent to the curve C; which deforms with the body are given by
a linear transformation of the infinitesimal vector dX. This transformation is defined by
the quadratic matrix which is given by components of the deformation gradient F. It is
easy to be seen in the representation in Cartesian coordinates which are admissible due to
the assumption that configuration spaces are Euclidean. If we choose the unit orthogonal
base vectors {ex},K = 1,2,3 for the initial configuration and {e;},k = 1,2,3 for the
current configuration then the above relations can be written in the form

dX = dXKeK = TKeKdS, (7)
dx = dxkek = tkede, tk = FkKTK-

The tangent vector t is the current image of the vector T and it is given by the rule defined
by the relation (6). This rule of transformation defines the so-called material vectors. Not
all vectors transform according to this rule and we see an example of a different rule of
transformation in the sequel.

The most important property of the above transformation is that it is independent of
the choice of curve going through a chosen point X. The deformation gradient F depends
only on X and ¢ and defines the transformation of an arbitrary tangent vector T located
at the point X. We say that the gradient F considered as a mapping maps a tangent
space at point X into the tangent space at the point x = f (X, t).

Let us consider the transformation of a vector which is perpendicular to a material
surface Sy. Such a surface is defined as a collection of material curves and, for simplicity,
we assume that it is parametrized by two orthogonal families of such curves. At a chosen
point X we consider two orthogonal parametric curves whose unit tangent vectors are T4
and T, respectively. Then a unit vector perpendicular to the surface Sy is given by the
vector product

N=T, xT,. (8)



This surface in the current configuration S; has at the point x = f (X,t) the following
tangent and unit orthogonal vectors

ty xt
t, =FT,, t;=FT,, n=—"—"2 (9)
‘tl X tg‘
Simultaneously we have
(tl X t2) e = 5kmnt1mt2n - 5kmnFmMT1MFnNT2N -

= gimnFiPFJ;lemMFnNTlMTQN = 5PMNJFElelMTzM =
= JNpFp., J:=detF >0.

Consequently

F TN

N 10
" TIFIN| (10)

This is the rule of transformation for vectors perpendicular to material surfaces.

The Jacobian J, as we see further determines changes of infinitesimal volume elements
caused by the transformation from the reference to current configuration. Its value for
the identical mapping is equal to one. According to the condition (2) it cannot cross the
line of zero values and consequently, due to continuity, it must be positive.

As already mentioned the transformation of vectors dX caused by the motion deter-
mines local deformations of the body. We need only changes of length of infinitesimal
vectors in an arbitrary direction in order to find the local changes of the size and shape
of material elements. These length changes follow from the relation

dx-dx = (FdX) - (FdX) =dX -CdX, C:=F'F=C" detC=J%>0,/11)

where the symmetric tensor C is called the right Cauchy-Green deformation tensor. There
arises the question what happens to nine components of the deformation gradient F if
six components of C are sufficient to describe the deformation. The answer is given by
the polar decomposition theorem: under the assumption of nonsingularity of motion (2)
there exists a unique decomposition of the deformation gradient of the following form?

F=RU, R '=R’ U'=U, (12)

i.e. there exist a unique orthogonal tensor R (it rotates vectors without changing their
length) and a unique symmetric stretch tensor U whose product is equal to the deforma-
tion gradient.

The proof of the theorem is easy and, simultaneously, it shows the procedure of
calculating these two tensors. Namely, for the right Cauchy-Green tensor we have the
following eigenvalue problem

(C—Ac1) Ko =0, (13)

where the eigenvalues \¢ satisfy the characteristic equation

1
Ne—IDNe+HTIN\c—1II =0, [=trC, II= 3 (I —trC?), III =detC,(14)

2the dual foom F= VR, R !'=R”, V7T =V, holds true as well.



and I, 1,11 are the so-called principal invariants of C. Hence, there exist three eigen-
values A&, o = 1,2, 3, and due to the symmetry of C they are all real. They are called
principal stretches. The corresponding three unit eigenvectors K¢ are linearly indepen-
dent and this yields the following spectral representation of the deformation tensor C

3
C =) MK&aKg. (15)

a=1
Simultaneously for the stretch tensor U we have the following eigenvalue problem
(U-Xy1)Ky =0. (16)
If we multiply this relation by U from the left and use (13) we obtain
(C-N1)Ky=0 = M=+, Ky=Ko, (17)
where we have used the relation
C =1U% (18)

This means that the spectral representation of the stretch tensor is as follows

3
U= Z VAcKe @ K. (19)
a=1

As both the determination of C as the product of the deformation gradient F with itself
and the solution of the eigenvalue problem for C are straightforward the above relation
determines easily the stretch tensor U = C'/2. Tt remains to find the inverse of U and we
have

R=FU' = R'R=U'F'FU=U'CU'=1, (20)

and, consequently, R is orthogonal.

The above considerations show that local changes of geometry are given only by the
tensor U and, consequently, by the tensor C. The orthogonal tensor R possesses, of
course, 3 independent components (e.g. Euler angles) and it determines local rotations
as an infinitesimal material element were a rigid body.

Depending on a particular application there are many possibilities to define deforma-
tion tensors. They are all equivalent. Some of them are quoted in the Table 1.



Table 1: Measures of deformation

Name Definition | Eigenvalues Eigenvectors | Author
ight h
neomdy 1o | PIE A2 =22 K=Ko | G Green, 1841
-reen
left h
‘; Cau(CF,y : B | FF” A2 k = FK J. Finger, 1894
-reen mger

right stretch U Ccl/? A K Euler?

left stretch A% B'/? A k Euler?

Cauchy c B! 1/)2 k L. A. Cauchy, 1827
Green-St.Venant 9
(Lagrange) E 05(C—-1) 05N\ —1) K A. de St.Venant, 1844
Al 5i-H 1
(Emlan;l e 05(1—¢) [05(1—1/3) |k E. Almansi, 1911

uler
Piola Cc! 1/)2 K G. Piola, 1833

We proceed to discuss kinematics of the continuum. The main notions are the velocity
field v (X,t) and the acceleration field a (X, ¢). They are defined by the following relations

v (X,t) =

of

ot

(X, 1),

ov

a(X,t)=—(X,1).

ot

(21)

Another quantity frequently appearing in the theory of continuous bodies is the gra-
dient of velocity L. It is defined by the time derivative of the deformation gradient F

OF

L=—F"

ot

Later we discuss this notion in some details.
In relation to kinematics of the body it is useful to introduce a ceratin transformation

(22)

group which has a great influence on the construction of constitutive relations. Namely,
it is assumed that material properties of bodies cannot change by changing the reference
frame in such a way that distances of material points in the configuration space remain
unchanged. If we introduce two reference systems, say, with position vectors without and
with star — in Figure 2 we demonstrate such systems without a rotation of the body —
then we require that in both systems the distance between two arbitrary points of the
body must be the same. Vectors ro — r; rj — rj may not be the same due to the rigid
rotation of the body but for both reference systems (observers) we have

(23)

[ry — 1| = [r5 —r]|.



Fig. 2: Change of a reference system in Euclidean spaces

This is the property of the configuration space which we call isometry. The most

general form of the transformation which leads to the relation (23) is as follows
x"=0(t)x+c(t), O"=07", (24)

where O is an arbitrary time dependent orthogonal tensor and c an arbitrary time depen-
dent vector. This class of transformations forms an isometry group and each member of
this group is called an Fuclidean transformation. We require that material properties are
independent of the choice of two reference systems which differ on the isometry transfor-
mation. Incidentaly, the transformation in which O and c are constant is called Galilean.
Classical equations of motion are invariant with respect to these transformations.

It is useful to check the transformation properties of objects which we were discussing
in this lecture. After easy calculations we obtain

*(X,t) = O@)f(X,t)+c(t),

. . . . 00 . Oc
v = Ov+Ox+¢, O.fat, ¢c:= TR
F* = OF,
C* = C, B*=0BO7, (25)
2 2
a* = Oa+20v+Ox+& O::%, é::%,

L = OLOT+Q, Q:=00".

Scalars which do not change due to the transformation (24): ¢* = ¢, vectors which
change according to the rule: b* = Ob, and tensors which transform according to the
rule: T* = OTO? are called objective. Hence in the above quoted examples B is ob-
jective, F behaves like a collection of three objective vectors (objects in parenthesis):
F = (Fixer)ek, C behaves like a collection of six scalars Ckr. The remaining objects
are nonobjective. It is convenient to write them in the form in which the deviation from
the objectivity is better exposed. For the velocity and acceleration we have

Ov = v"-Q(x"—c)—¢, Q:= OOT, Q' = -Q, (26)
Oa = a"—2Q(v' — &)+ Q2 (x* —¢) —Q(x* —c) — &,

10



where the antisymmetric tensor €2 denotes the spin matrix (matrix of relative angular
velocities of both reference systems). The contributions to the acceleration are called:
2Q (v* — &) — Coriolis, —Q2 (x* — ¢) — centrifugal, Q (x* —¢) — Euler and & — relative
translational accelerations, respectively. They play an important role in the description
of motion with respect to the so-called noninertial reference frames.

It is also convenient to separate objective and nonobjective contributions to the ve-
locity gradient L

L = D+W,

D = %(L+LT)—DT, D* = ODO’, (27)
1

W = J(L-LT)=-W' W' =0WO"+Q.

Hence the stretching tensor D is objective and the spin tensor W is nonobjective.
Finally, we consider the problem of the so-called objective time derivatives. This
problem appears in constructions of constitutive laws.

de=F(X,1)dX

f (x,7)

dx=F(X,t)dX

Fig.3: Relative deformation gradient

Let us begin with the analysis of a change of the reference configuration. This is
demonstrated in Fig. 3. The purpose is to use the current configuration at the instant of
time t as the reference configuration for the motion in the vicinity of the instant t. The
function of motion defined on the current configuration will be denoted by f; (.,.). For an
arbitrary point & in the configuration at the instant of time 7 it is given by the following
relation

E=f[f"(x0),7] =f (x7). (28)
Corresponding deformation gradients are as follows

d¢ = F(X,7)dX=F (f ' (x,t),7)F ' (£ (x,¢t),t)dx = (29)
= F,(x,7)dx = F,(&7)=F, (f[1 (&,71) ,7') ,

with an appropriate change of variables given by (28). The quantity F; (x,7) is called the
relative deformation gradient with respect to the current configuration.

11



In order to see time changes at the current configuration we investigate a material
vector Q (X). Its images in two instances of time ¢ and 7 are as follows

q(x,t) = F (f*1 (x,t) ,t) Q (f*1 (x, t)) ,
a¢,7) = F({'(E7),)Q(f (1) = (30)
= a(xt)=F (1) a0

We define the time derivative of q (x, ) as a limit 7 — ¢ of the time derivative of q (&, 7).
In this way we account for time changes due to explicit dependence on time, due to the
changes of position of the material point X as well as due to rotation of basis vectors along
the trajectory. Such an operator is called Lie derivative related to the field of velocity v.
We have

d[F' (&) al€t)]

v 1) = =
Lyq(x,1) o B
~ 0q(x,t) d[Fi(6,7)]
= T+V'gr3dQ(X7t)+T tQ(Xat)
Bearing (29) in mind we get
dF;'F, dF;! _,dFy dF;! L dFy
=0= F,+F, — =-F, —F
dr 0 dr t+td7’ — dr Eodr Tt
le.
d[F;'(&7)] dF (f1(x,t),t)
Lt > A = U F T (Y (x,t),t) = —Li(x, ¢
dr » dt ( (X7 )7 ) (X7 )
Hence
0 t
aten = 200y g s - Lix a e = (1)
= q— Lq.

It is easy to check that this derivative is objective, i.e.
Lyq" (x*,t) = O(t) Lvq (X, )|, _orys - (32)

In the similar way we can define the time derivatives for material tensors of the second
order. For example, one can introduce the following Rivlin-Ericksen tensors describing
the rate of deformation

i/ as the time derivative of the right Cauchy-Green tensor C is nonobjective
one defines the Lie derivative of the relative Cauchy-Green tensor

Ci(r)=F/ (1)F, (1) = A (t)= 8%7(7) = L7 + L =2D, (33)

T=t

ii/ higher order Rivlin-Ericksen tensors

12



o a"Ct (’7’)
o ’

T=t

A, () =C™ (1) n=1,.., (34)

In the same way one can introduce objective time derivatives of nonmaterial vectors
and tensors. For instance, the time derivative of a unit vector orthogonal to a material
surface has the following form

n(xt) = FTOF (NnE7)|xop 1 = (35)
§:f(X77)
. T . on
— Ln=n+L"n, n:za—l—v'gradn.

Let us mention in passing that the time derivative () introduced above is the so-
called material time derivative. It describes time changes along trajectories of material
points and it is applied in the Eulerian description which we discuss in the next Lecture.

13



Lecture 2: Balance equations and field equations. Con-
stitutive relations for thermomechanical processes

As we have already mentioned in the first Lecture fundamental quantities describing
thermomechanical processes such as mass, momentum, angular momentum, energy and
entropy satisfy balance equations. These notions are defined on a family of measurable
subsets of the body By. Let us choose a member of this family, say P C By. Then ® (P, t)
denotes any of the above quantities prescribed to the subbody P at the instant of time ¢. It
is the quantity which can be measured in laboratories. It is assumed that the set function
® (.,t) is additive, i.e. for two subbodies P; and P, which are separate P; N Py = 0,
O (P U Py, t) =P (Py,t)+ D (Po,t). For instance, the energy of two subbodies which are
not overlapping is the sum of energies of both subbodies. This assumption is usually a
bit weaker in order to admit a concentration of energy on interfaces. We skip here these
details. In addition, it is assumed that this set function is continuous with respect to the
volume measure, i.e. there exist a constant a such that for any subbody P

|® (P, t)] < avol P, (36)

where vol P is the volume of P. According to the measure theory, these two assumptions,
additivity and continuity, yield the existence of the density ¢ (X,t), X €B, (the so-
called Radon-Nikodym derivative) such that

O (P,t) = /P o (X, 1) dV, (37)

where on the right hand side we have the so-called Lebegue integral. The above repre-
sentation is the most fundamental feature of continuous models. It is obvious that the
requirement of additivity eliminates long-range interactions from the model (compare re-
marks in Lecture 1). A contribution of such interactions would mean, for instance, that
the energy of two separate subbodies would not be equal to the sum of energies of both
subbodies but it would contain as well an energy of interaction.

The quantity ® is assumed to satisfy the balance equation

dd
V'P E (7)7 t) - q]S (87)’ t) + qj'P (7)’ t) ) (38)
where W describes the flur of the quantity ® through the surface P of the subbody P
and Up is the sum of the volume supply of the quantity ® from the external world and
of the production of ® in the subbody P. These two functions are assumed to satisfy
axioms similar to (36) and, consequently, it can be proved that they possess the following

representations

Vs (OP.0)= § us(X.0)dS. Wn(P.t)= /P Wy (K1) + 6 (X, 0] dV,  (39)

where s is the flux density per unit surface and unit time of the field density ¢, ¥y is
the density of the volume supply of ¢ and ¢ is the production (source) per unit volume
and time of the field 3.

3The difference between the volume supply v and the production ¢ can be recognized only in relation
to the constitutive definition of the material. Then the volume supply is a quantity which is controlled
from the external world — it can be, for instance, switched off, and the production (source) is controlled
by constitutive variables which characterize a particular material.

14



Additionally it is assumed that the surface 0P is orientable and the dependence
of the flux 15 (X,t) on the surface reduces only to the dependence on the unit vector
N (X, t) orthogonal to the surface at the point X and oriented outwards, i.e. ¥s (X,t) =
¥ (N, X, t). Then one can show the following Cauchy Theorem: there exists a function
1 (X, t) such that

Vs (X’ t) = (Xv t) N (X’ t) . (40)

It means that ¢s is a linear homogeneous function of the unit vector N. We prove this
property.

We show first that s changes sign when the surface changes orientation: N — —N.
We divide a subbody P into two subbodies P; and Ps, P; U P, such that they have a
common part of the boundary §. This surface has the outward orientation N for P; and,
consequently, it has the outward orientation —IN for P,. Then the balance equation has
the form

pdV = b sdS + / [y + @] dV.
dt Jp,up, op PLUPs

Using the balance equations for P; and P, separately we obtain

/S YsdS = — /S ¥_sdS,

where —§ indicates the opposite orientation of the surface. Hence 1) = —1_g or, bearing
the assumption on dependence on the normal vector in mind,

(N, X, t) = =1 (=N, X, ). (41)

Now we are in the position to prove the linearity of the above function with respect to
N. As this function is defined only for unit vectors we define first the following extension
on the space V3 of arbitrary vectors W

W] 2 (‘g‘ X t) for W £ 0,

(42)
0 for W =0.

&(W,X,t)—{

We show that this extension is the linear function with respect to W, i.e. for two arbitrary
numbers a and b we have 1) (aW; +bWq, X t) = ap (W1, X, t) + bp (Wo, X, t). This
condition can be replaced by the following two conditions:

i/ for any real number a and any vector W: ¢ (aW, X.t) = ay (W Xt),
i/ for any two vectors Wi, Wy: V(W14 Wy, X t) = (W, Xt)
¢ (W2> X>t) :

It is clear that the function (42) satisfies the above conditions for either a = 0 or
W =0ora>0,W #0. Hence we confine our interest to the case a < 0 and W # 0.
We have

&(&W,X, t) = 1; (_ |a‘ W>X7t) = ‘CL|1;(—W,X,I€) =
= —|CL|’;/~}(W,X,t):a1;(W,X,t),

15



which proves i/.
In the case of linearly dependent vectors Wy, Wy the property ii/ reduces to i/.
Therefore we assume that these vectors are linearly independent. Let

W3 =— (Wi +Wy). (43)

Let us consider a triangular block Ps, containing X, with the faces Si, S, S3 normal to
Wi, Wy, W3, respectively, and the two parallel end triangles Sy, S5 apart by the distance
6 (Fig. 4). Let € be the height of the triangles Sy, S5 and A;,i = 1,2, 3 be the areas of S;.
From the construction of the block we have
A Ay Az
(Wil Wy [W5]

(44)
The balance equation written for Py yields

1 Op 1
— — =Yy — | dV — - N, X,t)dS =
5/735 (at v ('0) v 5/34U55 wS( T ) 5

3

1 / W,
= - Y (—,X, t) ds.
5; Si i Wi

Fig. 4: Triangular block used in the proof of Cauchy’s Theorem
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It is easy to see that vol Ps and A4, A5 are of the order €2 whereas A;,7 = 1,2,3 is of
order €. Hence, we obtain

3
1 W,
li — — X.t]dS =0.

Now let us apply the mean value theorem to the above relation. We have

1 W; -
li “Aps | ==, XD ) =0
1m : c ¢S <‘W1|7 ) ) ;

where X € S;. Bearing (44) in mind, we finally arrive at
3
W; -
lim ‘W1|w5 <—Z>X(l)7t) =

W, W, W;
=W —, X, t A% —, Xt ] - |W —, X, t | =

which yields the condition ii/. This completes the proof.
Bearing the above results in mind we can write the general balance equation in the
following form

Vp 4 e (X, t)dV = ¢ P (X,t)-N(X,1) dS+/ [Py (X, 1) + ¢ (X, )] dV.(45)
dt Jp op P

This result can be transformed to the local form. We consider two special cases of
this form — one which holds in regular points, i.e. in points X €8, in which all densities
appearing in (45) are continuous and, secondly, in points of a singular surface S which may
move through the body with a speed UN. This is the velocity of the points on the surface
in direction perpendicular to the surface. As we see further the balance equation does not
contribute anything to the description of motion which is tangential to the surface, i.e.
gliding of § along tangential directions is immaterial for our considerations. In points of
a singular surface limits of densities of the relation (45) may be different on both sides of
the surface, i.e. they may suffer finite jumps.

Let us first consider the case of a regular point X €B,. We construct an infinite
descending family of subbodies {P;};-, with three properties: i/ each set of this family
contains the point X, ii/ for each i P;;; C P; and iii/ lim; ., vol P; = 0, where vol P; =
fPi dV is the volume of P;. Then using the Stokes Theorem for the surface integral we
obtain

i—oo Vol 'PZ ot

and, accounting for the mean value Theorem for integrals,

1
lim / la_@ — Divep—yy—¢| dV =0,

9
a—‘f = Div by -+, (46)

for almost all points of By.
In thermomechanics this equation is written for mass, momentum, angular momen-
tum, energy and entropy. We list the corresponding densities in Table 2.
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Table 2: Densities of thermomechanics

Name density ¢ flux ¥ supply ¥y source @
mass density £0 0 0 0
momentum density pov P pob 0
angular momentum density | pox X v EkimTiPmyer | pox X b 0
density of energy po(e+20?) | -Q+P'v [p(v-b+r)]|0
density of entropy pon —-H PoS i

All densities are, of course, referred to the unit volume in the undeformed (reference)
configuration By. P is the so-called Piola-Kirchhoff stress tensor, b is the body force
per unit mass, € denotes the specific internal energy per unit mass, %pOUQ = %pov -V is
the density of kinetic energy per unit reference volume, Q is the heat flux vector in the
reference configuration, r is the density of energy radiation per unit mass, 7 is the specific
entropy per unit mass, H is the entropy flux vector in the reference configuration, and 7
is the source of entropy per unit mass. We return later to the detailed discussion of the
definition and the interpretation of all these quantities.

Let us note that except of entropy all other sources are zero. Such balance equations
are called conservation laws. We see in the theory of multicomponent systems that for
some field quantities of mixtures it does not have to be the case.

Now let us turn our attention to points on a singular surface S. We construct again a
descending family of subbodies {P;} with three properties:i/ for each i P,NS = P11 NS,
ii/ for each i P;1; C P; and iii/ lim; o vol P; = 0. Such a family is demonstrated in Fig.
5.

Fig. 5: Transition to a singular surface

First we estimate the derivative on the left hand side of the balance equation. We
have

d d d
- dV = — dV + — dV =
dt 731'80 dt Pjgp T 79;90

/ a—%V—/ 90+Uds+/ aﬁdv+/ o~ UdS,
p+ Ot SnoP; p- Ot SnaP;

3 7
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where P;", P, are the part of P; lying above and below the surface S, respectively, o™, o~
are limits of ¢ calculated from the positive (with respect to the orientation IN) and negative
sides of S. The difference in sign in surface integrals follows from the opposite orientation
of the surfaces SN IP; and S N IP; .

In the limit ¢ — oo volume integrals vanish. The flux term can be written in the

form

v,b-NdS:/

oP;NIP;

¥ - NdS + / 4 - NdS. (47)

oP; oP; 0873[

Taking the limit in the whole balance equation we obtain
/ (" — ) U — ("N —3~N)]dS = 0.
SNP;

We can localize this relation as well and for an arbitrary point of the surface S we obtain
the following Kotchine condition

el U+ ()] N=0, [[.]]:==(.)" = (). (48)

It has been assumed that the source is volume continuous, i.e. that the surface S
does not contribute to the production. It does not have to be the case for some surfaces
such as membranes. We discuss this problem later.

For thermomechanical fields the balance equations are collected in Table 3 in the
same order as in Table 2.

Table 3: Balance equations of thermomechanical model in Lagrangian description
Left — regular points, right — points of a singular surface

%0 — oo} U =0

o0 = DivP + pob loov]] U + [[P]N =0
PF? = FPT identity

o (e +10%) +Div (Q=PTv) = | [[po (4 22)]] U~

= pov - b+ por —HQ—PTVH-N:O
poSL + DivH = pos + 1) [lpon]] U — [H]] - N =0
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In the evaluation of the second law of thermodynamics it is convenient to work with
field equations of the first order. Then neither F should be considered as the gradient of
the function of motion f nor v should be the time derivative of this function. The function
f does not appear in such an approach. Its existence is secured by the integrability
conditions of F and v

F 2
9F _ Gradv, GCradF =(GradF)" " e

OFx  OFyg
ot '

0X;, 0Xg

(49)

Clearly, these relations are identically satisfied if we introduce the function f. Otherwise
they have to be used in the model in the same way as other field equations. Usually the
second condition is directly incorporated in the evaluation of thermodynamical admissi-
bility. However, the first one remains as an additional equation.
It is convenient to write the above integrability condition in the form of balance
equation. We have
OF d

F bDivve1) =0 — —/FdV—]{ v & NdS = 0. (50)
ot dt J, o

It means that we have an additional kinematical jump condition on singular surfaces
[[F]]U + [[v® N]] = 0. (51)

This is one of the so-called Hadamard kinematic compatibility conditions which form the
basis of wave analysis in continua. We return to this problem in further Lectures. It
yields two important conclusions: on singular surfaces on which the velocity is continuous
also the deformation gradient must be continuous and on material surfaces of contact of
two bodies (U = 0) the velocity is continuous.

The above form of balance equations related to the reference configuration at a chosen
instant of time t; is often inconvenient in practical applications. For instance, the fluid
mechanics never relies on such a description and it uses a current configuration as the
reference. We call the above presented description Lagrangian and we proceed now to
formulate Eulerian description in which the current configuration is used.

Let us begin with the proof of an identity which is frequently used by the transfor-
mation of balance equations. Namely*

Div (JF~") = 0. (52)
We write it in Cartesian coordinates
O(F) _ 0 py 0Fg _
0Xx 0Xx "7 09Xk
JFJS%FK,% - JFK}FLJS%,

4In a similar way one can prove a dual identity

div (J7'FT) =0.
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and (52) follows when we use the symmetry g—f(& = %—l;(lﬁ. In the derivation we have used
K L
the identity

0 (FiFir) OF ) OFy OF iy OFy
AV KRTRY 9= KkF + 1 = Kk _ FﬁlF 1
0X 0X KL+ Fich X5 0X KT Lk g X,

- (53)

The transformation of Lagrangian to Eulerian description relies on the substitution
of the inverse function of motion X = f~1 (x,t). We have, for instance

v = v(x,t)=v (' (xt),t), a=a(xt)=a(f"'(xt),t),
L = L(x,t)=L(f"(xt),t), (54)
B = B(x,t)=F(f ' (xt),t)F" (7' (x),t).

Transformation of the velocity gradient L has a special bearing. We have

F
L _%_tF = (Gradv)F ' = grad v, (55)
and this relation explains the name of L.
We have also the following relations for derivatives of J
oJ )
Fril JF -E—JtrL—Jdlvv7 (56)
GradJ = FTgradJ.

Whenever it will be clear from the context that we work in spatial coordinates (x,t)
we shall skip the bar over Eulerian quantities.
Let us investigate the balance equations. The transformation X — x in (45) yields

d

G [eran = qupt (J'F) nds + / [y + @] Jdv, (57)

N . o —1 P
¢ = (x1),t),

where we have used the formula for the transformation of variables X — x known from the
classical analysis. The domain of integration is given by the transformation of the material
volume P; = f (P, t), where OP; is its boundary and n the unit normal vector given by (10).
This formula explains the presence of the contribution J~'F in this relation. dv denotes
the infinitesimal volume element in the current configuration and ds the infinitesimal
surface element in the current configuration. J—! = J~1 (x,t) is in this relation, of course,
the Jacobian of the transformation.

We introduce the following notation which will be particularly useful in thermody-
namics of multicomponent systems

Yt = 90']717 ’(bt = Jle’(b? ¢Vt = wV']717 @t = @Ia (58)

all of them being functions of (x,¢). Then the general balance equation in Eulerian
description has the form

d

p gptdv = 1, nds + / [ + @] do. (59)
Py P,
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As in the Lagrangian description we can derive the local form of this equation in
regular points and in points on a singular surface.
In the first case the left hand side has the form

d 8 (9901,
gpdv— Ly —i—f gpv-nds:/ [ +d1V(§DV):|d, (60)
dt t p Ot op. P | Ot t

which results from the fact that the domain is material.
Hence by means of Stokes Theorem and the localization procedure discussed before
we obtain

¢
ot
for almost all points of f (By,t). This is the Eulerian counterpart of the equation (46) in

the Lagrangian description.
We illustrate the above general considerations by the mass balance. We have

d d
dV = —
at ), V= P

L div (pev —aby) = ¢, (61)

ﬁoj_ldv =0.

Consequently, it is convenient to introduce the following notion of the current mass density

p (6 t) = po (E1 (1)) T (£ (x,0),1) (62)
It satisfies the following balance law (conservation of mass)

d

p pdv =0, P :=f(P,t) (63)

In regular points, we can transform this relation in the following way

d

pdv = —dv + j{ pv - ndv = (64)
dt P, 0 oP,

. op ..
- / {815 + div (,OV)} dv=0 \i.e. % + div (pv) = 0.

We have used in these manipulations the fact the surface 9P; of the material domain P,
(i.e. the domain whose motion in the current configurations is determined by material
points forming the domain) moves with the speed v - n, where n denotes the outward
normal vector of this surface.

Making use of relations (56) it can be easily shown that the relation (62) p = pgJ ' i
the solution of the equation (64) with the initial solution p (x,t = t9) = po (f (X, tp)). This
is the reason that, in contrast to fluid mechanics, in solid mechanics in which Lagrangian
description is used the continuity equation (i.e. conservation of mass (64)) is not included
in the set of fundamental field equations.

For a singular surface S; which moves with the speed cn we can derive the jump
condition. The procedure is similar to this used in the Lagrangian description. We have

0
pdv = / 9P v + j{ pw - nds + j{ pw - nds, (65)
Py prup; Ot ap; ap;
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where w - n = v - n on material surfaces 9P, N dP; and P, N IP; and w - n = 4c on
the singular surface S; N 9P, The difference in sign appears again due to the difference
in the orientation. As before we form a descending family of subsets and taking the limit
of balance equations we obtain

/SmPt [P"’ (V"’ . n—c) —p (v_ . Il—c)] ds =0 —>

= [p(v-n—0¢] =0 (66)

This Eulerian jump condition (continuity of mass through the singular surface) is the
counterpart of the Lagrangian relation quoted in Table 3.
In the case of momentum balance, we have

d
— [ pvdv = % Tnds + / pbdv, (67)
dt Jp, P, Py

In order to find the relation between the tensor T and the Piola-Kirchhoff stress tensor
P of the Lagrangian description one can use either the general relation (57) or transform
directly the local momentum balance in a regular point

OpI V) OV 0T [OGY) T o
5 = J 5 +pv8t =J 5 +v-gradv| + pvJdivv =
j{%—i—div(ﬁﬁ@?)} =

= Jdiv (JPE") 4p0 1Jb =] (div T+7b)
i.e. skipping the bar for Eulerian quantities

% +div(pv®@v —T) =pb, T=J'PF.. (68)
This is the local form of momentum conservation law. T is called the Cauchy stress
tensor.

Inspection of the above relations shows that the transformation from Lagrangian to
Eulerian description in regular points requires the following transformation of operators

0 0 G BT
5% + v- grad, rad — F* grad. (69)
The time derivative appearing in the above relations is called material and it is sometimes
denoted by a dot on top of the symbol.

In Table 4 we have collected the balance equations in Eulerian description.

We complete the considerations of balance equations with a few remarks concerning
particular cases of jump conditions (conditions on a singular surface).

We have already mentioned that a singular surface which is material, i.e. a surface
of contact between two bodies does not move in the Lagrangian description (U = 0) and
it means that ¢ = v - n in the Eulerian description. The jump of the mass density can be
in such cases arbitrary and the remaining conditions have the following form

[T]n=0, [[a]-n=0, [h] -n=0. (70)
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We have used the fact that on material surfaces not only the normal component of velocity
v -n but the full velocity v is continuous. This is the consequence of the Hadamard
condition (51).

Table 4: Balance equations of thermomechanical model in Fulerian description
Left — regular points, right — points of a singular surface

%f—l—div(pv):(), p=poJ [p(v-n—¢)]] =0

%) | diy (v v —T) = gb, T=JPF | [p(v-n—v]] - [Tn=0
T =TT identity

Zlp(e+30Y)] +div(p(e+30*) v+q—Tv) = [p(v-n—c)(e+30?)]] +
=pv-b+pr, q=J'FQ +[q-Tv]]-n=0

o) o Qivh = ps+ 7, o =J ) [p(v-n—c)n]] +[h]] -n=0

The first two relations play an important role in the formulation of boundary condi-
tions for continua. The first one — continuity of tractions, means that we may prescribe
forces on the boundary and these will be transmitted into the body by the stress vec-
tor Tn. The second one — continuity of the heat flux is used as one of the boundary
conditions in the theory of heat conduction. The second two conditions have the great
importance for properties of the so-called ideal walls which are a part of the second law
of thermodynamics. We discuss them further.

On surfaces carrying jump of velocity, we can write the above conditions in the
alternative form

m:=p" (c—=vim)=p (¢c—v m),

m He—:—l—%vQH —[[a=Tv]] n=0.

These equations for the stress tensor reduced to pressure T = —p1, which is characteristic
for gas dynamics, are called Rankine-Hugoniot conditions and they form a foundation for
the theory of shock waves in gases. The coefficient m — the mass transport coefficient is
related to the Mach number.

We close this lecture with a few remarks on the formulation of field equations for a
particular material which frequently appears in engineering applications. Thermoelasticity
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is the theory which describes changes of two fields: the function of motion f describing
time dependent large deformations of the material and the temperature T responsible for
the energy transfer in the material in the form of heat conduction. Further we discuss in
details the notion of temperature. For the purpose of this example we do not go into any
details concerning this field. In the Lagrangian description we do not need to consider
the mass density py because, according to the mass conservation, it does not change in
time. In the case of homogeneous materials it is even constant.

For the fields {f,T} as functions of variables (X,t) € By x 7 we must formulate
field equations. As we require from the model that it satisfies the conservation laws of
momentum, moment of momentum and energy, these laws are chosen as the foundation
for the construction of field equations

0*f Oe

of
poﬁ = DIVP + /)Ob> IOOE + DIV Q = P . Grad — + pr. (72)

ot

In addition we have the restriction P (Grad f)" = (Grad f) P”. The energy conservation
law was reduced by means of the momentum conservation. Consequently, we obtain the
balance energy for the internal energy ¢ which does not have the form of the conservation
law (the so-called divergent form). There appears a source term which describes the power
of stresses P - Grad %.

Equations (72) are not yet field equations. We must perform the so-called closure
which defines the Piola-Kirchhoff stress tensor P, the internal energy ¢, and the heat flux
Q in terms of the fields f, 7. This is done in the form of constitutive relations which
limit the applicability of the model to a particular class of materials. For thermoelastic
materials it is assumed that constitutive relations have the following form

P = P(v,FT,G), e=¢(v,F,T,G), (73)
Q = QWV,F,T,G), G:=GradT,

These are the simplest possible relations which do not yield a triviality of the model.
They possess a few features characteristic for such a construction

i/ among variables we have the first gradients of the fields F = Gradf,
G =Grad T which account for the influence of a neighborhood of a point
X €B, on the properties of the material at this point,

ii/ they do not contain a dependence on the function of motion f. This is
related to the principle of material objectivity which we discuss further; as a
mater of fact the same principle eliminates a dependence on the velocity v as
well,

iii/ the constitutive relations are functions and not functionals which would
be able to account for the dependence on the past history of processes. Such
functionals would appear, for instance, in cases in which at least one of the
constitutive quantities P.c, Q would be given by an evolution equation. We
discuss such classes of materials (e.g. viscoelastic solids) further in this course.

The constitutive relations must be further restricted by, for example, a condition of
thermodynamical admissibility. This will be the subject of the next lecture. However, if
we are lucky we may formulate the above relations on the basis of experiments and then
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no further restrictions would be needed. This does not seem to be the case ever. At least
some hints from a general model how to conduct experiments are always needed and this
is the motivation for the thermodynamical construction of models.

We close this example with an alternative formulation of the thermoelastic model
which is more convenient for thermodynamical considerations. It has been mentioned
already that the field f can be replaced by two fields F,v and then we have to require
certain integrability conditions in order to be able to integrate F and v a posteriori in
order to find the motion f. The model in this setting has the following form

i/ fields {v,F.T'}

ii/ conservation laws

ov OF

Pogy ~ DivP = pb, i Gradv = 0, (74)

pO%—i-DiVQ = P-Gradv + por,

iii/ constitutive relations
P=PWVv,FT,G), e=¢(v,FT,G), Q=Q(v,F.T.G). (75)

This problem still contains a dependence on the temperature gradient G which yields the
set of the second order equations. This can be changed as well by exchanging the role
of G and Q. We demonstrate further this way of constructing field equations which is
known as the extended thermodynamics.
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Lecture 3: Second law of thermodynamics: entropy
inequality, thermodynamic admissibility

Since a long time it has been clear to scientists that macroscopic processes are irre-
versible. This means that there exists no macroscopic systems which, when disturbed,
return spontaneously (i.e. without any influence of the external world) to their initial
state. Since XIXth century there exist models of physical systems in which macroscopic
properties of processes are being derived from microscopic description, in most cases stem-
ming from the classical mechanics of discrete systems. It has been observed that such a
construction of models yields the contradiction. Microscopic mechanical models are re-
versible, i.e. all processes possible for a given choice of the time variable are also possible
after a reversal of time. This contradicts the macroscopic irreversibility. It can be shown
rigorously, for example, that equations of dynamics of many interacting particles lead to
solutions in which after a sufficiently long time the system spontaneously returns to an
arbitrarily small neighborhood of its initial state. This time is called the recurrence time
of Poincare’s cycle. One can estimate this time and for large systems containing, say 10?3
particles (the order of magnitude of the Avogadro number), the recurrence time exceeds
the time of existence of the Universe by many orders of magnitude.

The above described properties of large systems led to vehement discussions among
physicists of the end of XIXth century and the beginning of XXth century. L. Boltzmann
proposed a model of gases — the so-called kinetic theory, in which the microscopic model
was reversible (noninteracting particles flying free in space and exchanging momentum
and energy in elastic collisions) and the macroscopic result described by the so-called
H-Theorem, was irreversible. This result has been opposed by many physicists who were
using, for instance, the argument based on the Poincare cycle, that the model must
contain some flaws. On Zermelo’s criticism pointing out the existence of the recurrence
time Boltzmann supposedly replied: ” You should wait that long!” However for Boltzmann
the result of this discussion has a tragic end. He committed suicide.

Before we present the modern version of the principle of macroscopic irreversibility
we discuss briefly two simple models motivating this principle on the basis of microscopic
considerations.

The first example has been constructed by P. and T. Ehrenfest in 1907 and it is called
"Dog and flea model” or "urn model”. We present the idea of this model in Figure 6.

For urn model we consider the dynamics of two urns containing N balls labelled from
1 to N. For simplicity, let us assume that initially all balls are in the urn (1) and the urn
(2) is empty. The motion of balls is given by random drawing a number between 1 and
N and then moving a ball with this number from one urn to the other. In the dog-flea
model the motion occurs because fleas are jumping from one dog to the other looking for
better breeding conditions. It is obvious that the ”flux” must start from the urn (1) in
direction of urn (2). It may happen that we draw the same number again and the ball
then returns to the urn (1). However, for a very large N, say N = 10?3, it is much more
probable that we get a different number and another ball moves from the urn (1) to the
urn (2). Hence, despite small fluctuations, an average flux of balls has a definite direction
until we reach the macrostate in which both urns have almost equal number of balls N/2.
Although it cannot be excluded that we draw the sequence of numbers which would make
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the urn (2) empty again, it is clear that such a process is extremely exceptional. This is
connected to the fact that the state with all balls in one urn is only one while the state of
equally distributed balls may appear in W = 2% variations if we ignore the numbering
of balls. It is said that the equal distribution between two urns yields the maximum of
the entropy S = In W. We shall return to this definition later.

(a) =
B

/
@

Fig. 6: Ehrenfest’s dog-flea (urn) model (1907)
a/ state of the system at time ¥; b/ a particular microtrajectory to which two fleas jump from the dog
on the left and one flea jumps from the dog on the right; ¢/ occupancies of the dogs at time ¢ + At
(K. Gosh at al., Am. J. Phys. 74(2), 2006)

Let us note that the above analysis assumes a very large number of possible states of
the system. It is still a matter of dispute how small a system may be in order to admit a
macroscopic modelling. For instance, the diffusion process of DNA particles within cells
(translation through nanopores) is described by a variation between a few hundred states.
Still some macroscopic thermodynamical arguments are applied to such systems.

We proceed to present an ingenious model of Marc Kac which illustrates the prob-
lem of irreversibility of Boltzmann’s kinetic theory. Simple calculations presented below
demonstrate that the irreversibility results from a certain assumption on randomness of
the system (”Stoflzahlansatz”) and this is, of course, related to the large number prop-
erties of the above presented dog-flea model.
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Fig.7: [Irreversibility and Stofizahlansatz — model of M. Kac (1956).

The system consists of N white or black circles distributed in the equal distance At
on the circumference of a large circle (Fig. 7). Dynamics of the system is introduced by
the rotation of the wheel with the set, S, of M spokes distributed at random in different
middle positions between small circles. Whenever the wheel rotates on the angle At the
color of the small circle through which the spoke passes changes the color. We assume that
both N and M are very large but simultaneously M < N. The instantaneous number
of white and black circles is described by the following ”equation of motion” with the
discrete time

Ny (t 4+ At) = Ny (t) + Ny (S, t) — Ny (S, 1), (76)
with
Vi Ny (t) + Ny (t) = N, N, (S,t) + Ny (S, t) = M. (77)

Certainly, NV, (S,t) denotes the number of black circles which change color in the step
t — t+ At, and N, (S,t) the number of white circles which change color in this step.

Equation (76) constitutes the counterpart of the Liouwville equation for N particles
and describes reversible processes on the microlevel: after two full rotations of the wheel
the systems returns to its initial state. This means that the recurrence time of Poincare’s
cycle is equal for this model to tp = 2N At.

The change in the surplus of white circles at the instant of time ¢ + At is, according
to the equation of motion, given by the following equation

[Ny (t + At) — Ny (t + At)] = [Ny () — Ny (1)] — 2 [Ny (S, 1) — Ny (S, 8)] . (78)

Now, we make the reasonable assumption that, owing to the randomness of the set S,
after sufficiently many time steps the black and white circles will be regularly distributed,
ie.

N, (S,1) = %Nw (), Ny(S¢) = %N,, (t). (79)
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Substitution of this assumption in (78) yields the following difference equation

(N (£ + A8) — N, (£ + At)] = (1 - 2%) (N (8) — N, (£)]. (80)

This equation can be solved immediately and we obtain

[N, (t) — Ny ()] = N (1 - 2%) . (81)

Let us assume that the initial state of the system was N, (t =0) = N, N, (t =0) = 0.
Then it follows

N, 1 1 M\'
=—4+—-(1-2— 2
v oaa (1725 )
Consequently
Ny (t=0) . Ny(t) 1
Ny b meee =g (83)

The most important property of the solution (82) is its irreversibility. It can be easily
checked that, independently of the initial state, we obtain always the same asymptotic end
state with equal number of white and black circles. There is no trace left of the microscop-
ical periodicity of processes. The reason for this behavior is hidden in the only assumption
which we made (79) which corresponds to the Stofizahlansatz of Boltzmann’s theory. We
see that conditions under which the solution (82) makes sense are the randomness of the
set S and long, but not too long times of observations: 1< t < tp.

The above examples motivate the following formulation of macroscopic models. Con-
stitutive equations which define a particular class of materials should have such a form
that solutions of field equations will be not invariant with respect to the time reversal
(irreversibility) and, secondly, that disturbances of finite time duration should produce
solutions which relax (i.e. possess a time limit in infinity) to an equilibrium state
characteristic for a given class of materials and for given boundary conditions.

This program is usually realized by means of an additional scalar inequality which
constraints the class of solutions. Its form has been varying since XIXth century. Clausius
and Duhem proposed the first continuous version of such an inequality and this inequality
has been very intensively investigated in the 1960th. It has been found that results of
classical thermostatics obtained by Gibbs, Caratheodory and many others follow as a
particular case (equilibrium properties) from this inequality. It has been also proved that
the linear nonequilibrium thermodynamics proposed by Onsager is a particular case of
this inequality for single component systems. Simultaneously, it has been shown that the
Clausius-Duhem inequality is inadequate in description of multicomponent systems as well
as for some nonmechanical (e.g. electromagnetic) fields. The extension of this inequality
has been proposed in 1968 by I. Miiller. It is usually called the entropy inequality and this
seems to be the most general formulation of the continuous second law of thermodynamics
which has been proposed up to now.

There is an alternative approach to the formulation of the second law of thermody-
namics which stems from the classical XIXth century works of S. Carnot and F. Reech
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on cyclic processes. This notion has been extended and applied to nonequilibrium ther-
modynamics by J. Serrin and M. Silhavy and then summarized by C. Truesdell and S.
Bharatha.

We discuss further in this course various applications of the entropy inequality. We
begin with a formulation appropriate for all models which we discuss further and, for the
purpose of this lecture we assume that the notion of temperature is known. However,
we return in the next lecture to the discussion of notions of empirical and absolute tem-
peratures and various problems which they may create, particularly for multicomponent
systems.

The strategy of continuum thermodynamics in construction of macroscopic models
relies on the assumption that solutions of the field equations identically satisfy the second
law of thermodynamics called also the entropy principle. This law consists of four
parts. We formulate them in Lagrangian description and then, when needed, change
variables to Eulerian description.

Entropy principle:

i/ There exist a nontrivial entropy density function 1 and the entropy flux H which
are both dependent on the same constitutive variables as other constitutive functions of
the model.

ii/ The entropy density satisfies the balance equation whose form in regular points is
as follows

0
po=L + DivH = i, (84)
ot
where 7 denotes the entropy source.
iii/ The entropy source is nonnegative for all solutions of field equations, i.e. for all
thermodynamic processes. Consequently, the following inequality holds

0 :
Vadl thermodynamic processespoa_;7 + DivH Z 0. (85)

iv/ There exist ideal walls on which there is no entropy production, i.e.
[[(H - N + [[n]] poU =0, (86)

these walls are assumed to be material, i.e. U = 0.

The last condition is modified for multicomponent systems and concerns the existence
of semipermeable membranes. We discuss this notion further in this course.

I-Shih Liu has proposed in 1973 a method of exploitation of the inequality (84) which
reminds the classical method of Lagrange multipliers in mechanics®. Namely, instead
of this inequality restricting the solutions of field equations we consider solutions of an
extended inequality which should hold for all fields. This can be done if we consider field
equations as constraints on solutions of the entropy inequality.

Before we formulate Liu’s Theorem we again consider a simple example of the ther-
moelastic material which has been introduced in the previous lecture. The set of governing

equations is as follows (compare (74), (75))

5Tt has been pointed out by R. A. Hauser and N. P. Kirchner (A historical note on the entropy principle
of Miller and Liu, Cont. Mech. Thermodyn., 14, 2, 2002) that the result of I-Shih Liu is a particular
case of Farkas-Minkowski Theorem known in the duality theory of linear programming.
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i/ fields {v,F T}

ii/ conservation laws

ov OF

Pogy DivP = 0, Frie Gradv =0, (87)
Oe )
poa +DivQ = P-Gradv,

ili/ constitutive relations
P-P(FT.G), c=:(FT,G), Q=Q(FTG). (88)

We have left out the constitutive dependence on the velocity v. Also body forces b and
radiation r have been assumed to be zero. This assumption follows from the fact that the
entropy inequality should hold for arbitrary external sources. It means that constitutive
restrictions which follow from the second law should be independent of such sources.
Consequently, restrictions which we obtain without sources must be identical as these
when those sources are present. This argument is different from the argument used, for
example, in a series of papers of B. D. Coleman and his followers.
The above problem should satisfy the entropy inequality of the following form

0
vadl thermodynamic processespoa_z"i_DiVH Z 07 n=n (F7T7 G) ) H=H (FaTa G) (89)

Using the chain rule of differentiation, we can write this inequality in the explicit
form
877 aFkK_i_@a_T i 877 OGK
OFyx Ot 0T Ot 0Gg Ot

Vall fieldsP0

OHyk OF;;, OHg 0Hk 0Gy,

G >0 90
OFy, 0Xg 0T K 0Gr 0Xk — (90)
where
8FkK (9Uk
o OXg'

oT  (9e\'[ 0e OFix  0e 0Gk
ot \orT OFyx 0t 9Gk Ot

1 (0QKk OF 0Qk 0Qk 0G|, Ovy,
S K+ o= — Pk || (91)
£o aF’lL aXK 6T aGL OXK aXK
and these derivatives are eliminated from (90).
Clearly, this inequality is linear with respect to the following derivatives
8Fk;< OGK aFlL aGL (%k (92)
ot = ot TO0Xg 00Xk 0Xk )

As the inequality must hold for ALL fields — we have eliminated constraints imposed
by field equations (note that linearity of the momentum equation with respect to the

acceleration % does not impose any restrictions because the acceleration does not appear
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in the entropy inequality) coefficients of the above derivatives have to vanish identically.
Otherwise we could choose the fields in such a way that one negative term would dominate
all others and the inequality would be violated. Hence, we obtain

-1
N pe % lp. = Af:—@@{f)

6FkK B 8FkK £o N oT a_T

on . 0

8GK_A G 0, (93)
OHk _AEOQ(K _ o,
OFL) OFL)

H
OH (k _AEaQ(K _ o,
oG oG

where the parenthesis denotes the symmetric part, e.g. gg—(g = % (gQTIL( + %). We have

made the assumption g—; # 0 which is physically justified as this derivative defines the
specific heat in thermodynamical equilibrium.

There remains the residual inequality which does not contain linear contributions
anymore

_ (0Hk L0Qk
o (2 4 09) 6,50 o8

The exploitation of identities (93) requires certain additional techniques which we
present in the next lecture. They are either based on a simplifying assumption that the
material is isotropic or, in more general cases, one has to use a Theorem proved by I-Shih
Liu in 1996 on the relation between the entropy flux and heat flux®. Under rather general
conditions this Theorem states that in our case identities (93)s 4 yield

Hyx = A°Qx. (95)
Then the substitution of the above relation in (93)s 4 yields
A=A (T). (96)

Let us consider a contact surface between a poroelastic material and an ideal gas. For
the latter we have the relation H = (1/7") Q which we motivate in a further lecture by
microscopic (kinetic) considerations. Bearing the continuity of fluxes on the surface of
contact in mind (jump conditions and the last part of the second law of thermodynamics)
we obtain

H] N=0, [Q] N=0 = A°=_ (o7)

Consequently, we obtain the classical Fourier result for fluxes

1
H=_Q. (98)

61-Shih Liu; On entropy flux — heat flux relation in thermodynamics with Lagrange multipliers, Cont.
Mech. Thermodyn., 7, 247-256, 1996.
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Substitution in the definition of A® (93); leads to the classical thermodynamical
identity
Oe on
= 72 _
or or

It is useful to define the following function

0. (99)

v =¢e—"Tn. (100)
Then differentiation with respect to the temperature T yields immediately

oY oY

= —— =1 —T—— =y (T,F 101
where the identity (93)2 has been exploited. The function 1 is called the Helmholtz free
energy. If we use it in (93); we obtain

oY

P=py—.

Po F

Hence, if the constitutive relation for the Helmholtz free energy ¢ = ¢ (T, F) is

known it determines constitutive relations for ¢,n, P. This is one of the main results of

the second law of thermodynamics: it yields the existence of thermodynamical potentials
which reduce the number of required constitutive relations.

By means of the above results we can immediately show that the following differential
relation holds

(102)

1 1
dn T (dz—: PoP dF) . (103)
In classical thermodynamics this relation is called the Gibbs equation and it is often
mistakenly called the second law of thermodynamics. Obviously, it yields relations (99)
and (102). However, it does not contain the residual inequality (94) which also follows
from the second law. In other words, Gibbs equation cannot determine the dissipation
D in the system. Bearing the above results in mind we can write the dissipation in the
following form

1
D=-5Q G20 (104)

This is, of course, the requirement that heat cannot flow from colder to hotter regions.
If we assume the linear Fourier law for heat conduction we obtain the classical result for
the heat conductivity

Q=-KG = K2>0. (105)

This is related to the so-called stability of the thermodynamical equilibrium. Namely,
we define the thermodynamical equilibrium as a state in which the dissipation D vanishes.
In our case it means that the temperature gradient in equilibrium must be zero. Hence, all
isothermal processes T' = const of arbitrary large deformations contain only equilibrium
states, i.e. these are equilibrium processes. Simultaneously, the inequality (104) shows
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that equilibrium states are states of minimum of the dissipation function. Consequently
the following condition must hold

0°D
0GoG

i.e. the Hessian matrix of D is positive definite. This is the so-called stability condition
of equilibrium.

The above results show how powerful is the entropy inequality. However, we can es-
sentially improve the method of derivation of these results. Instead of directly eliminating
some derivatives by means of field equations we can use the I-Shih Liu Theorem on the
existence of Lagrange multipliers which help to eliminate the constraints imposed by field
equations on the entropy inequality.

Inspection of the above derivation shows that we are solving an algebraic problem.
Constitutive relations and the chain rule of differentiation yield the entropy inequality
whose part is a linear function of some derivatives, in our example listed in (92) and
a nonlinear part which leads to the residual inequality. If we eliminate restrictions im-
posed by field equations we have to solve an inequality for arbitrary independent linear
contributions.

We formulate the general problem in the following abstract way.

We construct a continuous model for fields which form an n-dimensional vector
w = {wv}:z1 € V". The set of field equations for w is of the following form

Vg 7 >0, (106)

0Fy, OFfk A n . n . 5 o
8t7+ 8X1: = f’y> {FO’y},y:l € V 9 {FK’Y}7:1 € V 7K = 172737 f’yev 7(107)
where the following differentiable constitutive relations are fulfilled
Foy = Foy (W), Fiey = Fiey (0),  f, = f,(w), w eV (108)

The choice of constitutive variables tv defines the class of materials to be described. The
constitutive relations (108) must be such that solutions of field equations identically satisfy
the entropy inequality

67’] 6H K

— 4+ — >0, =n(w), Hyg= Hg (o). 109
p06t+6XK_ n =1 () K K () (109)

Obviously the constitutive variables tv may contain both fields w as well as their

various temporal and spatial derivatives.
Let us introduce the following notation

oo on om0
- p06m17"'ﬂp08mNa am17"'a amN

} c R (110)

T
%:{8101 GmN 8m1 8mN} €%4N, (111)

ot ot ToX, T 0X;

where tv,,a = 1,..., N are components of the vector tv. Then the field equations can be
written in the form

AX —F=0, fz{]@}n (112)

=1
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where

0Fo; OFo1 ... OF3n

O O O
aF()lQ 8F022 . 8F3]\£
O O O
A= o7 om N e R x RV, (113)
aFOn aFOn e aF‘3'n
oy Og o

Then we can formulate the following Theorem:
Theorem (I-Shih Liu: on the existence of Lagrange multipliers). Let A be given by
(113) and X by (111), and

S:{%€§R4N|A3€—f:0}7é(i). (114)
Then, the following conditions are equivalent:
i/ VXeS: a-X2>0, (115)

where a is given by (110),

i/ JAERTAAO VXe RN a-%—A.(Ax—f)zo, (116)

iii/ JAeR"A£0: a—ATA=0, A-f>0. (117)
We prove the following implications
i/ <=ii/ < iii/ <—1i/. (118)

1. The implication ii/==-i/ is immediate.
2. We shall prove the equivalence of ii/ and iii/. The relation (116) can be written
in the form

VXeR™: (a—AT-A)X+A-f>0. (119)
Since this inequality holds for arbitrary X, it follows necessarily that
(a—AT-A)=0 = A-f>o0. (120)

3. It remains to prove the implication i/==-iii/. With this aim, we define the following
sets:

H = {xeR"|a x>0},

Ho = {XeR™a-Xx=0}, So={XxeR"™|Ax=0},

Hy = {DeR™|vXeH,:Y X=0}, (121)
So = {DerRM|vxeS:Y-Xx=0}.

To prove the assertion we show first that

Hy C Sy (122)
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Let us first motivate the purpose of this relation. It is easy to see from definitions (121)
that the set of derivatives of the entropy and entropy flux with respect to the constitutive
variables 1, i.e. the vector a belongs to the subspace Hy because it is orthogonal to
all vectors belonging to Hy. Consequently, if we prove (122) we can claim that this
vector belong to Sg. Simultaneously, we can introduce a special representation of such
vectors based on the matrix A which has a physical bearing. Components of a in this
representation form the vector of Lagrange multipliers A.

It is easy to notice that Hy, Hy, Sg- are subspaces of R*Y. Simultaneously, i/ implies
that S C H; we obtain Sy C Hy.

Suppose that the above relation does not hold. Then

IPeSe: a-YF0.
However, Sy is the linear subspace of R*". Therefore
VaeR: a €Sy, = V3IES: 3+aQ €S
On the other hand
a(3+ad)=aa-YP+a-3.
Hence
JaeR: a-YP<—-a-3 = 3+aP ¢H,

which is a contradiction. Hence, Sy C Hy.

We proceed to prove the implication i/==-iii/. By definition, we have a €Hy and con-
sequently, a €Sg. Let us construct, from the matrix A, the sequence of vectors {Ay, ..., A, }
whose coordinates coincide with the rows of A. Then

Vi<y<n: A, €Sp. (123)
On the other hand, we have
dim Sy = rank A, (124)

and, consequently, the vectors {AAY}:’:1 span the space Sg-. It follows that

JAER,AF0: a=) AN =A"A (125)
v=1
Finally,
VX €S: a-X=(ATA)-X=A(AX)=A-f; (126)

since S C H, i.e. a-X > 0, we obtain
A -f >0, (127)

which completes the proof.
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For the example of thermoelastic materials the objects appearing in the above theo-
rem have the following form

w={v,F T} V¥ n=13,
o :={v,F,T,G} c V% N =16,
13 13
{Foy}t,—, = {povk, Fix, poe} € V', (128)

{FKV}»ly:il = {Pik, bk, @k}, K =123,

0~ oo}

The Lagrange multipliers have been shown to be

{A o = {OaAkm %} : (129)

where Agx has not been derived in the explicit form because the constraint due to the con-
dition (87)2 has been eliminated by substitution. The multiplies of momentum equations
are zero because these equations contain a linear contribution of the acceleration. Further
we show various generalizations of this model and demonstrate the full exploitation of the
Liu Theorem.
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Lecture 4: Second law of thermodynamics, isotropy,
material objectivity; example - rigid heat conductor

Before we present technical tools for the exploitation of thermodynamical identities we
discuss briefly a very simple classical problem of the heat conduction in a rigid heat
conductor. This example demonstrates all basic features of the exploitation of the second
law of thermodynamics without many technical details.

We consider the problem defined by a single scalar field of the absolute temperature 7'
on the domain By of the rigid heat conductor (undeformable body). The function 7' (X, ¢)
is assumed to follow from the energy conservation law

Oe
Po ot
where pg is the constant mass density, and we have left out the energy radiation r. The

latter contribution is immaterial for the exploitation of the second law. We assume that
the internal energy density € and the heat flux Q satisfy the constitutive relations

e=¢(T,G), Q=Q(1,G), G =GradT, (131)

+DivQ =0, (130)

which are sufficiently smooth functions of both variables.
The second law of thermodynamics is given in the form of entropy inequality

0

poa—Z+DiVHZO, n=n(T,G), H=H(T,G), (132)
which must hold for all thermodynamical processes, i.e. for all solutions of the field
equation which follows from (130).

According to Liu’s Theorem there exists a Lagrange multiplier A® (T, G) which allows
to write the above inequality in the following modified form

0 0
poa_:Z +DivH — A° (poa—ij + Div Q) >0, (133)

and this inequality must hold for all fields 7" and not only for the solutions of field
equations. Chain rule of differentiation yields the explicit form of this inequality

on . 0e\ OT on . Oe oG
Po <8—T_A aT) ot (aG A aG) ar

oH _0Q OHx . .0Qx\ 0T
AN} . € > 0.
N <8T A aT) G+ (8GL A 8GL> X, =" (134)

The last contribution has been written in coordinates in order to reveal the symmetry.
The above inequality is linear with respect to the following derivatives

oT 0G O°T
=4 2= . 1
* {at’ ot ’aXKXL} (135)

Obviously, the fourth contribution proportional to G is nonlinear. Hence, Liu’s Theorem
implies

NP TRV

or  or oG oG
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OHy . .0Q

AZE o, 136
aG., " aGy, (136)
There remains the residual inequality
OH 0Q
= [ == — A° LG >
D (8T A 8T) G >0, (137)

which defines the dissipation D (T, G) in the rigid heat conductor.
We begin the exploitation of the above identities from (136)s. In the case of isotropic
heat conductors the vector functions Q, H must have the following form

Q=Q(I'G>)G, H=H(T,G)G, (138)

where ), H are arbitrary scalar functions of T" and of the invariant of G, i.e. its length
= VG - G. For convenience we use the square of this variable. Then the identity (136)
has the form

o0H ,.0Q .

Taking the deviatoric part of this identity
0OH oQ
2(@—/\ 8G2) (GKGL—_G 6KL) :O,

we obtain that the first contribution should be zero, and, consequently, the second con-
tribution must vanish as well

0H oQ
97 A% g moAQ-—o. 14
0G? 0G? 0 @=0 (140)
Hence the substitution of the second identity in the first one gives the following result
=AQ, A =A(T). (141)

There are only few results of this type for anisotropic materials. In the case of the
rigid heat conductor which is linear with respect to the temperature gradient we can prove
it easily. Namely, if we assume

orT orT

Hyg = HKLa—XL, Qkx = QKLa—XL, Hixr =Hgr (T), Qxr = Qe (T),(142)

where Hg, Qk are conductivity matrices, then the identity (136)s has the form
Hkr) — AQxr) = 0. (143)

The skew symmetric parts of matrices Hgr, Qx, are not restricted. If we assume that they
are indentically zero then we obtain again the result (141). For these matrices dependent
on the temperature gradient there are no general results.

The question is if the result (141) is characteristic only for materials of a single
vectorial constitutive variable. We shall see that differential identities of the form (136)3
give rise to the similar result also for much more general cases of materials. This is the
subject of the next Liu Theorem.
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We use now the assumption on the existence of ideal walls. According to jump
conditions on such walls we have

[H]]-N=0, [[Q]-N=0 = [A(D)]]=0. (144)

There exists one system for which we can calculate the relation between the heat flux Q
and the entropy flux H from a microscopic model (kinetic theory). This is the ideal gas.
For this material the relation has the form H = %Q, where T is the absolute temperature’.
We return frequently to this relation further in this course. Consequently, if we bring the
rigid heat conductor to the contact with the ideal gas through the ideal wall we obtain

AS(T) = —. (145)

This relation holds true in all points of By and not only on the contact surface because the
multiplier A® does not depend on X in the explicit manner. Hence, the relation between
fluxes has for isotropic rigid heat conductors the classical form

1
H=-Q (146)

It is appropriate to make a comment on this relation. In many works on continuum
thermodynamics this relation is assumed from the beginning and then the bulk entropy
inequality has the following form

d -N
— [ pndV —l—f Q—dS — / psdV > 0. (147)
dt Jp op T P

This is the so-called Clausius-Duhem inequality. It has been very extensively used in works
of Coleman, Eringen, Noll, Serrin, Silhavy, Williams, Truesdell and many others. This
form of the entropy inequality follows indeed in many cases of single component materials
from the more general inequality used in these notes. However, multicomponent systems
which we consider further are an example that the Calusius-Duhem inequality is too
restrictive.

We return to the remaining identities (136); 2. They can be written in the form

1 9 A

= T1or =V Tar

where 9 is the trivial example of the Helmholtz free energy. Consequently, neither the
free energy 1 nor the internal energy ¢, nor the entropy n can depend on the temperature
gradient.

Finally, bearing the relation (146) in mind we obtain the residual inequality

¢ == Tna ¢ = ¢ (T) ) (148)

Q-G<o. (149)

This is the classical statement of the second law of thermodynamics which says that the
heat flux has the orientation opposite to the temperature gradient, i.e. the energy flows

"This relation follows also from the macroscopic thermodynamics of homogeneous systems based on
the so-called Caratheodory principle. We show some results of this approach in the next lecture.
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from hot to cold regions. This inequality can be written for isotropic heat conductors as
follows

K>0, K=-Q. (150)

Substitution of all above results in the energy conservation equation (130) yields the

classical heat conduction equation

pocvaa—f =Div (K GradT), ¢, := g—;, (151)
where ¢, is the specific heat under the constant volume. This quantity is positive and
this follows from the stability condition of thermodynamical equilibrium. We discuss this
problem in the next lecture. The thermodynamical equilibrium is defined as a state
in which the dissipation vanishes. For the rigid heat conductors it is the case when the
distribution of temperature is homogeneous in space: GradT = 0.

We return now to certain general properties of constitutive relations which are helpful
in the evaluation of identities following from the second law of thermodynamics.

As indicated above in the majority of cases we have to assume the isotropy of ma-
tertals. For anisotropic materials results are scarce and usually extensions from isotropic
to anisotropic properties are made ad hoc.

Isotropy of materials is one of the properties related to the behavior of models under
the transformation of frames. However, we can perform such a transformation either on
the reference configuration or in the current configuration. In the first case invariance
properties specify the symmetry of the material and the corresponding group of trans-
formations is the so-called symmetry group of the material. In the particular case when
the group is the full orthogonal group the material is called isotropic. In the second case
the transformation is specified by the isometry of the space of motions which we have dis-
cussed before. This yields the principle of frame of indifference or the principle of material
objectivity. It plays an important role in the continuum mechanics and thermodynamics
by delivering general restrictions of the formulation of constitutive functions of material
bodies. It reflects the idea that material properties should be independent of observations
made by different observers. Obviously, different observers, as we pointed out in Lecture
1, are related by time-dependent Euclidean transformation of frames. For this reason ma-
terial frame-indifference is sometimes interpreted as invariance under superimposed rigid
body motions.

We present further many examples of invariance properties related to both trans-
formations. In order to investigate such invariance properties we have to introduce the
mathematical description of isotropic functions. We proceed to do so.

BTechnical part concerning isotropic functions

We limit our attention to the full orthogonal group which consists of orthogonal
tensors O, det O = 1. We consider a scalar ¢, a vector h, and a symmetric tensor T
which transform in the following (objective) way

©*=¢p, h*=0h, T*=O0TO". (152)

In the particular case of the single vector variable which transforms according to the
rule w* = Ow, where O is orthogonal, w is an arbitrary vector and w* is its transfor-
mation, arbitrary scalar function ¢ (w), vector function h (w), second order symmetric
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tensor function T (w) of a single vector variable w are said to be isotropic if for an
arbitrary orthogonal tensor O the following conditions are satisfied

e(w)=p(w), h(w*)=Oh(w), T(w")=0T(w)O. (153)

It is essential in these relations that functions ¢ (...),h(...), T (...) remain the same and
only their coordinates change in the new reference.

For the scalar function the representation result is immediate. As the orthogonal
transformation changes only the direction but not the length of an arbitrary vector, a
scalar function may satisfy the condition (153); only if it depends only on the length of
the vector, i.e.

pw)=pWw), w=lwl=vw-w, w =w. (154)
The representation for the vector function has the following form
h(w) =h(w)w. (155)

This relation has been used in the previous considerations. We proceed to prove it.
For w = 0 we have

¥O: h(0)=Oh(0) = h(0)=0, (156)
and (155) is satisfied. Let us assume that w # 0. Then

h) = | b)) = (o)) w). (157)

w2 w?

Obviously, the second vector on the right-hand side is orthogonal to w. After the trans-
formation this relation has the following form

h(w') = %Ow. (h(Ow))} Ow+ {h(Ow) — (%Ow. (h(Ow))) Ow} —

= %ow .Oh (w)} Ow+ [Oh (W) — (%ow . Oh (w)) ow] —

~ | w n | ow s o niw) - (wenw ) W],

_w2

Let us consider a particular case of the transformation which is the rotation by 180°
about the vector w, i.e. w = Ow. In this case the second contribution perpendicular to
w changes the sign

h) = | w )] w— [mw) = (S b)) ) (158)

w2 w2

Comparison of (157) and (158) shows that the second term must vanish, i.e.

hw) = | 5w h(w)| w (159)

w?

The coefficient is obviously an objective scalar. This completes the proof.
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For the symmetric tensor we find the representation by investigation of the following
auxiliary function

h(w) =T (w) w. (160)
This function is isotropic. Namely

h (Ow) = T (Ow) Ow = OT (w) O7’Ow = Oh (w).
Therefore, there exists a scalar function h (w) such that

h(w)=h(w)w = [T (w)—h(w)l]w=0. (161)

Hence, w is the eigenvector of T. Since the tensor T is symmetric we have the following
spectral representation

T (w) = oV (w)w @ w+a? (w) uPeu? + o® (w)uPeu®, (162)
where u, u® are the remaining unit eigenvectors of T. Now let us choose a rotation
about the vector w which satisfies the conditions®

Ow=w, Ou”=u® O0u® =ul. (163)
Then it follows from the spectral decomposition
T (w) = oY (w) w @ w+a® (w) uPou® + o® (w) u®Peu?,

which yields

Therefore the spectral representation of T reduces to the following form

T(w)=nw)l+nwwew, nw)=a?(w)-— %a@) (w). (164)

This relation specifies the representation of the isotropic symmetric tensor function of one
vector variable.

Due to its practical importance we present in some details another special case of
isotropic functions of a single symmetric second rank tensors. Then we have

Representation Theorem (Rivlin, Ericksen).

Let ¢, h, T be isotropic scalar-, vector-, and symmetric tensor-valued functions of
a symmetric tensor variable A. Then it is necessary and sufficient that they have the
following representations

L ooA) = ¢(a®,a®,d?), (165)
2. h(A) = 0,
3. T(A) = 701+TlA+72A2,

where @, 79, 71, T» are scalar functions of the three eigenvalues aV, a®,a® of A.

) |

= o O

8i.e. in the basis {u(l),u@),w} O (det O = —1) is given by the matrix (

o = O
O O =
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Proof. The sufficiency is trivial. We prove the necessity. For the vector function we
have

h (OAOT) = Oh (A),

and, choosing O = —1, we obtain h (A) = —h (A), which proves the Theorem.

For the scalar function, we have to show that whenever two tensors A and B have
the same eigenvalues, say {a(i) }le then ¢ (A) = ¢ (B). Using the spectral representation
we obtain

3
Teu?, B=Y) dvigvl), (166)
=1

IIMw

where u(i),v(i) are unit eigenvectors of A and B, respectively. Let us choose the trans-
formation O in such a way that

u® = ov®, (167)
then the spectral representations (166) yield

A = OBO”. (168)
Hence

¢ (A) =¢ (0OBO"), (169)

and the definition of isotropy: ¢ (OBOT) = ¢ (B) yields the Theorem.

It remains to prove the representation for the tensor function T. We prove it in two
steps. First of all, let us show that any eigenvector of A is also an eigenvector of T (A).
Let us choose O to be the rotation by 180° about the eigenvector u™ of A. Then

OuV=u""  0ou?=-u® ou®¥=-u® — 0A0"=A. (170)

Since T (A) is isotropic, we have for this O

OT (A)O" =T (OAO") = OT(A)=T(A)O. (171)
Hence
OT (A)u =T (A)OuY =T (A)u®, (172)

and, for our choice of O it means that T (A) u® must be parallel to u"). Therefore u is
the eigenvector of T. For the remaining eigenvectors the proof is identical. Consequently;,
we can write the tensor T in the following form

3
T (A)=) tPuPgu®, (173)

=1

where b are functions of A.
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In the second step we show that this result implies the representation for tensors.
Let us first consider the case of distinct eigenvalues a® of the tensor A. We consider the
set of the following three equations for 7y, 7, 7

70+ a7 + (aP) =0, i=1,2,3. (174)

Since the determinant
1 a® (a(2))2 = (@ —a®) (a® — a®) (a® — o) (175)

does not vanish we can solve (174) with respect to 79, 71, 72. Substitution of (174) in (173)
yields
j ' N ; ’ N2 .
L) = B e 3 53 (@) w0 = (170
i=1 i=1 i=1

= 170 A) 1+ 1 (A) A+’7’2 (A) AQ.

According to the Cayley-Hamilton Theorem for tensors generated by a three-dimensional
vector space we have

A? —TA? + TIA — 1111 =0, (177)

3
~ 1
I = trZa(l), Il = 3 tr (I — tr A?) = aMa® +a®a® 4 aMa®, (178)
i=1

IIT = det A =aMa@a®,

where I,11, 111 are the principal invariants of A. It means that the set {1,A,A2} is
the basis of three linearly independent second order tensors for the space of all symmet-
ric second order tensors. It means that (176) is the representation of T in this basis.
Consequently, isotropy of T implies the isotropy of coefficients 7y, 71, 72. This proves the
Theorem for three distinct eigenvalues.

For two distinct eigenvalues the proof is similar and it yields 7, = 0. Finally, for
three identical eigenvalues every vector is the eigenvector of A and, according to (173),
this yields 71 = 75 = 0. This completes the proof.ll

The above considerations demonstrate problems which arise in proofs of theorems
on the representation of isotropic functions. We shall not go into any details of this
painstaking tedious analysis (see original works of G. F. Smith, J. M. Spencer, C.-C.
Wang) and present Tables 5 to 7 with final results. We skip here the problem of a
maximum set of invariants needed for the representation of a given scalar-, vector- or
tensor-valued function. This is related to the question of functional independence of
invariants which we do not discuss in this course. We refer to the original literature and
to the book of I-Shih Liu where some of these questions, also for anisotropic materials,
are presented in details.
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Let us demonstrate on a simple example how to use the Tables. Let us say that
the symmetric tensor T is an isotropic function of two symmetric tensors A, B. Then,
according to Table 6, it must have the form

T = 0501 + OélA + Oé2A2 + ﬂlB + /BQBQ + Y1 (AB + BA) + ’YQABA+’73BAB,(179)
where scalar coefficients «q, oy, s, 81, B2, 71, V2, v3 are functions of the scalar invariants

trA, trA? trA® B, trB? trB? (180)
trAB, trAB? trA’B, trA’B?

which follow from the Table 5 (left).

Table 5: Isotropic scalar invariants (left) and Isotropic vector invariants (right)

Invariant elements
One variable:
v V-V
A=A": tr A, tr A? tr A3
W=-W"T. tr W2
two variables:
Vi,Va: Vi Va
3 - —AZ
v, A v AV’2V Av Generator elements
v, W v- W one variable:
Al,AQ . tr AlAQ,tI‘ AlA%,tI‘ A%Ag,tl‘ A%A%, - v -
Wl,Wg I. tI‘W1W2 AorW: 0
three variables: -
5 two variables:
Vl,VQ,AI Vi 'AVQ,Vl A Vo ]
5 v,A: Av,A°v
Vl,VQ,W . V1 'WVQ,Vl W Vo 2
v, W: Wv WV
Vv, Al, A.2 . V- A1A2V2 .
5 three variables:
v W W, - v - Wi Wov, v W Wiv, A Ay
T v W,Wiv VAL Ay
v,A,W: v- WAV, v WA?v, v- WAW?v \27\71\7\7 v
A Ay A tr A;AsA v, W, W, : 2%
W, W, W - W, W, W Wy Wiy
1, Wa, Wa: Wi Wa W3 VA W: AWv, WAv
A AW - tr AlAQW, tr AlA%W,
bt T tr AgAZW , tr A, WA, W?
. tr AW1W2, tr AWlVV%,
A, W1, Wy tr AW, W?
four variables:
Vi, Vo, Aj, Ay Vi A1Agvo, vi - AsAvy
vi, vy, Wi, Wy : vi - WiWyvy, vi - WoWivy
Vi, Vo, A, W V- AWVQ, Vi WAV2
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Table 6: Isotropic symmetric tensor invariants

Generator elements

no variable:

0: 1

one variable:
Vo VRV
A A, A?
W W2

two variables:

Vi, Va ! ViI®V+Vy®vy
v,A: VRAV+AVRV,Av® Av
v W vRIWv+Wyvev, Wv® Wy,
’ ' Wv @ W2v + W2v @ Wy
Al, A2 . A1A2 + AgAl, A1A2A17 A2A1A2
W, W, - W, W, + WoW,, W, W2 - W2W,,
b e W3W, — W, W?
AW - AW — WA, WAW , A*W — WA?

WAW? — W2AW

Table 7: Isotropic skew symmetric tensor invariants

Generator elements

one variable:

vor A:

0

W .

A\

two variables:

Vi, Vo ! V] Q Ve — Va QVy

v A VRAV-—AVRV, VR A’v—A*’vQ@V,
o Ave A’v — A’v®@ Av

v,W: VAWV -—WveVv,vd Wv—-Wvev

A A ALA, — AyA L ATAS — AZA | AZA, — ALAZ
btz AAZA; — A2A A ALALAZ — AZALA,

Wi, W, W, W, - W,W,;

AW : AW + WA, AW? — W2A

three variables:

vi, vy, A Vi ® AV —Avi @ Vo, Vi ® Avy — Av; @ vy
Vl,VQ,W . V1®WV2—WV1®V2,V2®WV1 —WV1®V2

A A, - A1V X A.2V — AQV & _A1V7 A1A2V RXV—-VE A1A2V7
Vo A1, Az A2A1V RXV—-—VE A2A1V
Al, 1A27 A3 . A1A2A3 - A3A2A1, A2A3A1 - A1A3A2a

AsA 1 A—AZA A4
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We can now investigate the invariance properties of the example of thermoelastic
model which we have discussed in Lecture 2. The constitutive relations (73) were assumed
to have the following form

P = P(v,FTG), e=¢(v,F,T,G), (181)
Q = QWV,F,T,G), G:=GradT,

Quantities appearing in these relations transform under the Euclidean time dependent
transformation of frames in the configuration space in the following way

P* = OP, ¢f=¢, Q*=Q, v =0v+O0x+¢, (182)
F* — OF, T"=T, G'=G.

The principle of material objectivity (frame-indifference) requires that constitutive func-
tions in (181) remain unaffected by this transformation, i.e. in the new frame

P* = P, F5T5GY), & =c( F TG, (183)
Q* = Q(V*7F*7T*7G*)7
where functions P (...),e(...),Q(...) are the same in both frames. Consequently, the
combination of these relations yields
OP (v,F,T,G) = P (Ov+0x+é,OF,T,G) ,
c(v,F,T,G) = ¢ (ov +Ox+¢& OF, T, G) , (184)
Q(v,F,T,G) = Q (Ov+0x+c’:,OF,T,G) ,

for all orthogonal O (¢) and for all vectors c ().

Clearly, for O = 1 the above relations indicate that constitutive functions cannot be
dependent on the velocity v as we have indicated in Lecture 2.

It remains to investigate the relations

OP (F,T7,G) = P(OF,T,G), ¢(F,T,G)=¢c(OF,T,G), (185)
Q(F,7,G) = Q(OF,T,G).

The polar decomposition yields the relation F = RU, where R is orthogonal. Conse-
quently, if we choose O = R” | we obtain for the scalar function

e(F,T,G)=¢(U,T,G), (186)

which shows that constitutive functions cannot contain a dependence on R and they may
be dependent only on U or, equivalently, on C = U? Hence, bearing relations (101),
(102) in mind, the result of the material objectivity is as follows

e = ¢(CT,G), v=¢(CT,G), n=n(C/T,G), (187)
P = 2:00]:—‘12_?3 (C>T7 G) , Q=Q (CaTa G) :

Hence the dependence on R appears in the explicit manner in the relation for Piola-
Kirchhoff stress tensor and this is the result of the rule of transformation for this tensor
which behaves from the left as a vector in the current configuration (Eulerian).

In general, we can formulate the principle of material objectivity as follows
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The constitutive function of an objective quantity must be independent of the
frame in the space of configurations.

On the other hand, the orthogonal transformation of frames in the reference config-
uration requires

P(C,T,G)O0" = P(0CO",T,0G),
e(C,T,G) = £(0CO",T,0G), (188)
oQ(C,7,G) = Q(OCOT,T, OG),
the first transformation characteristic for three vectors Pyxex, k = 1,2,3, the second
one for the scalar, and the last one again for the vector Q)kxex. These isotropic functions
depend on one vector and one symmetric tensor. The dependence on the scalar T is

immaterial for transformation properties. Bearing the results presented in Table 7 (left)
in mind we obtain for the internal energy e

e=¢e(T,1,I1,111,|G|,IV,V), (189)
where the scalar invariants are defined as follows

I = &G, II—%(IQ+trC2), I17T = det C, (190)
IV = G-CG, V=G-CG.

This general result simplifies considerably when we account for the thermodynamical
admissibility which we investigated before. Then the dependence on |G|, IV,V cannot
appear. Simultaneously, relations between the Helmholtz free energy, internal energy and
the Piola-Kirchhoff stress tensor combined together yield

P=P(T,1,I1,11I). (191)
For the heat flux, we can use the result reported in Table 7 (right) and obtain
Q = Q:1G + Q,CG + Q;C*G, (192)

where Q1,Q2, Q3 are functions of T,I1,I11,111,|G|,IV,V. We rest at this result the
presentation of the example.

We are now in the position to formulate Theorem which enable the exploitation of
some identities following from the entropy inequality.

The main Theorem proved by I-Shih Liu® has the following form:

Proportionaliy Theorem: Let H and Q be isotropic vector functions, and A be an
isotropic scalar function, of an arbitrary number of vector and tensor variables. Assume
that

i/ for N vector variables v*,n =1, ..., N,

<aHK N aHL) A (8QK N GQL) _o (193)

ovp  Ovj o} Ovk

91-Shih Liu; On entropy flux - heat flux relation in thermodynamics with Lagrange multipliers, Con-
tinuum Mech. Thermodyn., 8, 247-256, 1996.

50



ii/ for every other vector variable u,

OHk _, 0Qk _
auL 6uL n

0, (194)

iii/ for every tensor variable A,

OHk 0Qk
—A = 0. 195
OALm OALm (195)
Then A is constant and
H=AQ (196)

holds, for N = 1 and N = 2 with the assumption that Q and v! x v? be functionally
independent (i.e. Q does not contain contributions proportional to v! x v?).

Corollary.

The above Theorem remains valid

i/ if for any symmetric tensor variable A, the condition (195) is replaced by

OHx  OHum 0Qx | 0Qum
—A =0; 197
<8ALM N aALK) <8ALM + 8ALK ! ( )
ii/ if for any skew symmetric tensor variable W, the condition (195) is replaced by
_ — A . —0. 1
<8WLM aVVLK) <8WLM 8WLK 0 ( 98)

These results can be generalized to cases in which the right-hand side of differential
identities is different from zero.

We skip very technical proofs and use these results further in the exploitation of the
entropy inequality for systems more complex than thermoelastic materials.
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Lecture 5: Equilibrium thermodynamics: Gibbs equa-
tion, Maxwell relations, Legendre transformations

Classical works on thermodynamics were done primarily in relation to engineering ap-
plications. One of the first who worked on the second law of thermodynamics was Sadi
Carnot [Nicolas Léonard Sadi (a name given after a medieval Persian poet and philoso-
pher Sadi of Shiraz) Carnot, 1796-1832; he died during the cholera epidemic in Paris].
The description of his work on heat engines (Pierre R. Roberge) indicates what kind of
thermodynamics was developed at this time: ”Carnot devised an ideal engine in which a
gas is allowed to expand to do work, absorbing heat in the process, and is expanded again
without transfer of heat but with a temperature drop. The gas is then compressed, heat
being given off, and finally it is returned to its original condition by another compression,
accompanied by a rise of temperature. This series of operations, known as Carnot’s cy-
cle, shows that even under ideal conditions a heat engine cannot convert into mechanical
energy all the heat energy supplied to it; some of the heat energy must be rejected.”

The above description indicates that thermodynamics of these times was concerned
with collections of homogeneous systems which were transferred between different equilib-
rium states. Neither temporal nor spatial variables were appearing in these considerations.
In this Lecture, we present some basic notions which arise in such a formulation. We limit
the attention to the simplest substance modelled by thermodynamics of equilibria (ther-
mostatics) — an ideal gas.

We assume that a one-component system undergoes homogeneous and quasistatic
processes which are described by changes of the volume V (units: [m3]), and of the energy
E (units: joul [J] = [kg - m?/s?]). The latter is identical with the potential energy because
the kinetic energy is negligible in quasistatic processes. Each combination of these two
variables (E, V) is called the state of the system and processes in this model are identified
by their initial and final states and, additionally, by some quantities not belonging to the
space of states.

The volume V' is frequently replaced by some other equivalent variables describing
the configuration of the system. One of them is the number of moles, n, of the substance
contained in the system. One mole is defined as the mass of the system consisting of
A = 6.0237 - 10* molecules of the gas. The number A is called the Avogadro number.
Below we quote masses corresponding to one mole of different substances. We use in these
relations the notion of the relative molecular mass M, = u/pug, where p is the molecular
mass of a gas, and g is either the atomic mass of the hydrogen uy = 1.67329 - 10~* g,
or, in more recent formulations, 1/12 of the atomic mass of carbon py = 1.66011-10"2* g.
In practical applications, the difference between these two definitions is usually ignored.

molecular hydrogen Hy | M, =2 | 1mol = A- M, - ug = 2.015879394 g
molecular oxygen Os M,=32|1mol=A-M, - pug = 32.25407030 g
molecular nitrogen Ny | M, =28 | 1 mol = A- M, - ug = 28.22231152 g
carbon C M,=12 | 1mol =A- M, - ug = 12.09527636 g
argon Ar M, =40 | 1mol =A- M, - ug = 40.31758788 g
chlor Cl M,=35|1mol =AM, puyg =40.31758788 g
natrium Na M,=23|1mol=A-M, - pug = 23.18261303 g

Then the following combinations of variables are frequently used
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m = npu = const [kg] — total mass of the system,

p=m/V [kg/m?| — mass density,
v=1/p [m?/kg] — specific volume,
e =FE/m [J/kg] — specific energy.

In contrast to densities which we were using before these are not fields. They are not
related to the space variable x. As systems are homogeneous they may be considered to
be fields constant in space.

The number of moles is a very useful variable when we consider mixtures of many
gases. Then the number of moles of a chosen component of the mixture gives a contri-
bution of this component to the whole mixture. We discuss such mixtures in the second
part of the Lecture.

Let us first consider balance equations which we have investigated in previous Lectures
in the particular case of homogeneous systems.

As the motion is not considered the momentum balance equation is trivially satisfied.
Only boundary conditions for the body B (mechanical equilibrium with the external world)
must be verified.

We consider first the conservation of energy for processes without exchange of heat.
Then the energy balance equation reduces to the form

dE
dt o8 B

The time does not appear in classical thermostatics and, consequently, the above relations
must be written in the form of increments

dE = d'W, (200)

dW = (/B pb v — ngpv : nds) dt. (201)

This relation indicates that both approaches to thermodynamics — the field model and
the model of homogeneous systems may coincide only if relaxation processes to thermo-
dynamical equilibrium are sufficiently fast (i.e. the characteristic relaxation times are
much shorter than characteristic times of macroscopic observations) and, simultaneously,
sufficiently slow in order to consider them to be quasistatic.

Bearing homogeneity assumption in mind (p = const), according to the mass balance
we obtain

where

j{ v-ndS:/divvdV%ﬂ, V = vol B. (202)
oB B dt
Hence, when we neglect the influence of body forces,

dE +pdV =0, where p=p(E,V). (203)

The contribution d'W = —pdV is called the mechanical power. The notation d'W means
that, in contrast to dE the mechanical power is usually not a full differential of any
function.
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The relation for p is the constitutive law, characteristic for the ideal gas. We transform
it later to the form which is called the caloric state equation. The above form of the energy
conservation law is characteristic for system in adiabatic isolation.

It is easy to construct examples of systems in which the volume remains constant but
the energy of the system changes: dV = 0,dFE # 0. In such cases, relation (200) cannot
be satisfied and we have to add the contribution describing the exchange of energy with
the external world which undergoes in constant volume. We denote this contribution by
d'Q and call it the heat exchange. Such systems are said to be in diathermal isolation.
Comparison with the energy conservation which we were discussing for the field model

yields
dQ = </ prdV —7{ q-ndS) dt. (204)
B oB

If the system is neither in adiabatic nor in diathermal isolation both changes are
possible and the energy conservation law has the form

dE = dW + dQ. (205)

In the classical thermostatics this relation is called the first law of thermodynamics.

Now we consider two systems A and B in the adiabatic isolation. Their states are
given by (E4,V4) and (Ep, Vp), respectively. The corresponding pressures are py =
p(Ea,Va) and pg = p(Ep,Vg). We create the following process. Without violating
the adiabatic isolation from the external world, we bring the two systems to a contact
through an diathermal wall. There appears an exchange of energy between the systems
and, according to the first law of thermodynamics we have

dEs=dQa, dEg=dQp. (206)

As we did already in the field theory we assume that the energy is an additive function.
Then, for the system which consists of A and B

dE =dEs+dEs =0 = d'Qa+dQp=0, (207)

due to the adiabatic isolation of both systems from the external world.

The assumption on additivity implies, as before that there are no long-range inter-
actions between systems and that the energy does not concentrate on the wall of contact
between both systems. Such walls or interfaces are called ideal.

The process created in the above described manner yields new states of equilibrium
(E'4,V4),(E%,Vg) in which the exchange of energy between both systems ceases. As the
full energy of the system does not change only one of the quantities £y, E'; is independent.
Consequently, for these two systems one can introduce a function 645 which determines
the states of equilibrium

Oap (E'y,Va) = 045 (ER, Vp) . (208)

Properties of this function are determined by the so-called zeroth law of thermodynamics.
It says that the equilibrium states of systems are transitive, i.e. for three arbitrary systems
A, B, C, the equilibrium between two arbitrary pairs, say, (A,B) and (A,C) implies the
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equilibrium of the remaining pair (C,B). In terms of the function € this condition has the
form

Oap (Ea,Va) = 0ap(Ep,Vp) and 0ac (E4,Va) =04c (Ec,Ve) = (209)
= Opc(EB, V) =0pc(Ec, Vo).

It means that there exists a function 6 (F, V') which determines whether two systems in
contact through a diathermal wall are in equilibrium or not. This function is called the
empirical temperature.

We assume additionally that the empirical temperature is invertible with respect to
the first argument, i.e. we can write E (6,V) and the state of the system is described by
the pair (0, V).

We proceed to formulate the second law of thermodynamics for homogeneous systems
considered in this Lecture. It consists of two parts. First of all, let us consider a state
(0, V) and some vicinity of this state. Some of the states of this vicinity are attainable
from (6,V) by purely mechanical (adiabatic) processes, some other not. For latter, some
heat must be exchanged with the external world. This assumption has been already made
by Sadi Carnot in his work on efficiency of heat engines. As a mathematical statement it
has been introduced to thermodynamics by C. Carathéodory in 1909: in any neighborhood
of an arbitrary state there exist states which are not attainable on an adiabatic path (a
process in which d'Q) = 0).

In the simple case which we consider in this Lecture it means that, for such states
dE — d'W # 0. Carathéodory proved that his assumption yields the integrability of this
1-form, i.e. the existence of functions S and A such that

dS = A (dE — d'W). (210)

This statement is trivial in the case of two variables 6, V' — the 1-form of two variables
is always integrable. However the statement is not trivial in cases of systems described
by more variables. We consider some of them further in this Lecture.

The state function S is called the entropy of the system. We proceed to prove some
properties of this function. However, it should be stressed that, in contrast to claims in
some books on the classical thermostatics, the above relation is only a part of the second
law. We return later to this point.

Let us begin with the investigation of the multiplier A. We consider two systems A,
B in thermodynamical equilibrium and possessing states (6, V4), (0, V). Bearing (210)
in mind we have

dS, = AA (dEA +pAdVA), dSp ZAB (dEB +deVB), (211)

for an infinitesimal change of these states. Simultaneously, the state of the system which
consists of A and B in the diathermal contact is described by the parameters (6, Va4, Vi)
and its changes of energy E and entropy S are as follows

dE = dEjs+dEg=— (pAdVA +deVB) = (212)
= dS = A(dE4s + dEg + padVa + ppdVp) .

where the additivity of the energy was used.
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Let us transform the variables
((9, VA) - (07 SA) ) (07 VB) - (Qa SB) . (213)
Bearing (211) in mind we obtain

9s . oS a5 dS,  dSy
a5 =220+ 22 45, + 02 ds, — A (924 9B
5= 99 T 55,050t 55,158 (AA+AB)

Hence

05 05 A 95 _ A
00 7 0S4 A4 0Sp A’
These relations imply the following integrability conditions
9%S 928 g (A
_ (=) = 21
9005, ~ 95,00 08 (AA) 0 (215)
o*’s 08 0 ( A ) _0

(214)

fry :> J— N
0005 0Sp00 00 \ Ap
They can be written in the form

10A 1 0As 1 0Ag
N6 ha o0 Apae MO 210

where 1 () is an arbitrary function of the empirical temperature 6. Integration of these
relations yields the following multiplicative representation of multipliers

Aa(0,5) = v(Sa)exp ( [n® de) ,
Aa0.55) = viswen ( [n@w), (217)
A(0,S4,S5) = v(Sa,Sp)exp </u(9)d9).

Let us introduce the notation

o)~ [ces (fu )] o

where C' is an arbitrary positive constant. The quantity T is called the absolute temper-
ature. It is clear from the above construction that it is a universal function, i.e. it is the
same for all systems described by the above model.

Substitution of results (217), (218) in (211) yields

1 1 [dS
s’y = m (dEA+padVy), Sy= - V—AA + const. (219)

This new function S’ is also called the entropy. The above relation is quite general and
we use it in the form

ds = % (dE — dW). (220)
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It is called the Gibbs equation.

Gibbs equation describes only reversible changes of the entropy. We have seen that the
second law of thermodynamics in the field approach defines as well the so-called dissipation
function. In order to introduce a similar notion within the frame of thermostatics, we
have to make a rather artificial extension of the notion of changes of entropy. Namely,
we have to assume that the increment of entropy d'S consists of two contributions: a
reversible part which appears in the Gibbs equation and is related to the heat exchange
dSyey = d'Q/T and from the irreversible part d’S;.. which is nonnegative!®. For changes
of the total entropy we have then d'S = dS,e, + d'Sirr = d'Sipr + d/TQ and the following
inequality is assumed to hold

dQ 1
—=dS—=(dE+pdV)>0 221
T 7 (dE+pdV) 20, (221)
where we have used the first law of thermodynamics. Gibbs equation and the above
inequality form together the second law of thermodynamics in the form presented in this
Lecture.
The above inequality can be written in the form

d(E —TS) < —SdT — pdV, (222)

ds —

provided we assume the existence of the entropy function beyond reversible processes.
This inequality forms the basis for analysis of stability of equilibrium states. It says that
the Helmholtz free energy ¥ = E — T'S possesses a minimum in the state of equilibrium
reached on the isothermal (dT" = 0) and isochoric (dV = 0) ways. Further we show such
an analysis for systems in adiabatic isolation.

Now we present a few simple conclusions from Gibbs equation. Let us assume that
states are described by variables: absolute temperature 7" and volume V. Then we have

oS oS 1 (OF ok

Since dT" and dV are arbitrary it follows immediately

oF oS <8E 85)
p=— T .

These important relations couple constitutive relations for E, S and p. They can be written
in a simpler form by means of the Helmholtz free energy, ¥,

Vo= E-TS=W(T,V) = (225)
ov ov ov

Hence, it follows from the Gibbs equation that we have to know only one constitutive
function for the Helmholtz free energy, the remaining relations for internal energy, entropy
and pressure following by differentiation. We say that the Helmholtz free energy is a
thermodynamaical potential for this choice of state variables.

10Tn the general case, one cannot even assume that d’S;,,., and consequently d’S, are full differentials
of some functions. In this sense, the nonequilibrium entropy .S;,. and the total entropy S may not exist
within this approach.
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Let us transform the state variables in the following way
(T.V) = (T,p). (226)
Then the Gibbs equation can be written in the form
dG = -8SdT'+Vdp, G=E-TS+pV =G(T,p). (227)

Similarly as before we obtain by differentiation

oG oG oG oG
S=—, V=—, E=G-T— —p—. 228
T’ ap’ ar ~ Pop (228)
Therefore for this choice of state variables the function G is the thermodynamical poten-
tial. It is called the Gibbs free energy.
Finally for the transformation of variables

(T,V) = (Sp), (229)
we have
dH =TdS+Vdp, H=FE+pV =H(Sp), (230)
and
oH oH o0H
T=— =— FE=H—p—0! 231

The potential H is called the enthalpy.

state variables thermodynamical potential

(E,V) — entropy S

(T,V) — Helmholtz free energy ¥ = E —T'S

(T, p) — Gibbs free energy (free enthalpy) G = E — TS + pV
(S,p) — enthalpy H = E + pV

The above presented transformations of variables illustrate the so-called Legendre
transformation, in which the transformation of variables yields a corresponding transfor-
mation of the potential. A particular choice of variables depends only on a particular
application of the model especially related to possibilities of control of variables in ex-
periments. For instance, in a simple mechanical experiment of extension of the rod we
can control either the force applied to the rod (soft loading device), or its extension (hard
loading device). In thermodynamics it is sometimes easier to control the temperature and
sometimes (e.g. for shock waves) the entropy.

Apart from the above direct consequences of the Gibbs equation constitutive relations
lead to the so-called integrability conditions. We show here only one example.

Relation (223) contains on the left hand side the full differential. This yields the
symmetry of the second mixed derivative with respect to T, V. Hence, we have

0 10F o |1 /0F
v (?a—T) =97 [? (W“’)]’ (232)
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or, after simplifications,

OF _ n0p _

ov oT
This is an example of the Mazwell relation. The above relation is called Clausius-
Clapeyron equation. Such relations appear in thermodynamics of more complex systems
and form the basis of chemical thermodynamics. They play, for example, a very im-
portant role in experimental verification of thermodynamical potentials. Relation (233)
means that the derivative of internal energy does not have to be estimated from difficult
calorimetric experiments but it follows from the so-called thermal state equation

p. (233)

p=p(T,V). (234)

However, some calorimetric experiment are necessary for the estimation of internal energy.
Namely, from the first law of thermodynamics we have

ok 1 0F
d'Q = mc,dT — av, c,=——, 235
where ¢, is specific heat under constant volume. Bearing (233) in mind, we obtain
dc, *p 0 o2
Moy = TW =  mc, =mc, + TW /pdV. (236)
Vo

This relation shows that the specific heat follows from the thermal state equation (234) up
to a function of temperature c? (7). This function must be found in a single calorimetric
experiment for which V' = Vj.

Relations (233) and (236) determine both derivatives of the energy and their integra-
tion yields up to a constant the following caloric state equation

E=E(TV). (237)

In many cases it is more convenient to control pressure rather than volume. From
the first law of thermodynamics it follows for the state variables (7, p)

0(E+pV) 0(E+pV)

dQ=d(E+pV)~Vip=—— 57

T + { - V] dp. (238)

It should be stresses that E + pV is here not the enthalpy H which is the potential for
variables (S, p). The quantity

_10(E+pV) B B
CP_ m 6T ) E_E(Tap)v V_V(Tap)v

is called the specific heat under constant pressure.
The above transformation of variables leads also to the following relation

1 /OF oV
Cp—Cv—E (W +p) a—T, (239)
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T Co - [(av) T=const. +p} or (aT) ’ (240)
where the coefficient ~ is the so-called adiabatic exponent frequently appearing in gas
dynamics.

Apart from the above discussed laws (principles) of thermodynamics it is assumed
that the state of thermodynamical equilibrium is stable. Let us investigate this assump-
tion. The condition of stability for systems in adiabatic isolation (i.e. for d'Q = 0,dS = 0)
requires that entropy should have a maximum in this state. In some practical applications
this condition may not be satisfied. It concerns, in particular, the so-called metastable
equilibrium states which appear in the description of phase transformations. They are
sometimes called frozen equilibria because systems may appear in these states only for a
finite time duration. We shall not discuss such problems in this course.

Let us consider two identical thermodynamical systems each of them having the en-
ergy E and the volume V. We connect these systems and assume that the joined system is
in adiabatic isolation. Let us assume that the initial equilibrium state has been disturbed
in such a way that the initial state of the first system becomes (E + 6E,V + 6V) while
the initial state of the second system becomes (E — 6E,V — §V'). The system develops
to a new equilibrium state in which the entropy reaches its maximum. As the entropy is
an additive function we have

V=const

S(2E,2V) > S(E+8E,V +8V) + S(E—8E,V —§V). (241)
Let us expand this relation into the Taylor series. We obtain (22 = 0, 5 = 0)

928 2 928 028 2

— (OF 2 E — . 242

55 (6E)” + 6E8V§ 6V+8V2 (6V)" <0 (242)

It means that Hessian (the matrix of second derivatives) has to be negative definite. For
chosen variables Gibbs equation indicates as well

s 1 9SS p

= - Z_£ 24
OFE T’ oV T (243)
Changing the variables (E, V) — (T,V') we obtain immediately
MCy 2 1 817 2
0T)* — =—— (6V 0. 244
1 (ST — el (5 > (244

This inequality indicates the following stability conditions of the thermodynamical
equilibrium
>0, kKr>0, kp=-V— (245)

where the coefficient kr is called isothermal compressibility modulus.
We complete this review of classical thermostatics of single component systems with
the presentation of the simplest example of the thermodynamical model of ideal gases.
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Real gases of small densities behave in high temperatures almost like ideal gases, i.e.
substances whose thermal state equation p = p (p,T') has the form

R J I
= T wh R =8.3153-10° ——, M, = —. 246
Depending on applications the thermal state equation is written in different forms.

Most frequently used relations are collected below.

R
V = T
p mMr )
1 Vv . W
pv = T where v=—-=—, orapplying m=Nu, M,=—(247)
M, pm Ho
pV = NET where k= Ruo=1.38044- 10’23% — Boltzmann constant,
kT kT
Ui M

R is the universal gas constant. Thermal state equation implies for normal conditions:
p=1atm., T =273.15 K (0° C), N = A (Avogadro number)

NET
Vinot = —— = 22.4207 liter.
p

The air is the mixture of gases

78.08% nitrogen Np, 20.95% oxygen O, 0.94% argon Ar, 0.03% carbon
dioxide CO,.

Hence the molecular mass of the air is as follows

fair = 0.78081, + 0.2095710, + 0.009414, + 0.00030c0, =
= Mo =EL _ 98,96,
Ho

In contrast to the thermal state equation, specifying the constitutive relation for
pressure, caloric state equation specifies the constitutive relation for the specific internal
energy € (p, T). For ideal gases
R

T+ « 248
M, ! (248)
where z is a constant:

E=Z

% for monatomic gases,
z= ¢ 2 for two-atomic gases, (249)
3 dla poliatomic gases.

The constant « is different for different gases and it has a bearing in description of chemical
reactions. It is important to notice that the internal energy of ideal gases is independent
of pressure.

We proceed to present some elements of the thermostatic mixture theory. We con-
sider a thermodynamical system which is the homogeneous mixture of A distinguishable
components. In thermostatics we are not interested in a relative motion of these compo-
nents (diffusion processes). This will be the subject of further Lectures. Thermostatics
of homogeneous multicomponent systems (mixtures) was constructed by Gibbs.

The following notions are characteristic for a mixture of A components

61



Mg — mass of the component a, a =1,..., A

Pa = ma/V — partial mass density of the component a

vy = V/m, — partial specific volume (V' - volume under pressure p and temperature 7T')
A

Cq = Mg/m — concentration of the component a (m = Z m, - total mass)
b=1

N, — particle number of the component a

Va = N,/A — mol number (A — Avogadro number: 6.0221367 x 102> mol ")

ne = No/V  — particle density

A
Xo =v,/v —mol fraction (v = Z v, — total number of moles)
a=1
Vo)V — volume fraction (V, — volume of the pure substance a under p and T')

Da/D — pressure fracture

where p, is the so-called partial pressure, and the total (bulk) pressure p, the total mass
density p, the total (bulk) specific internal energy e and the total (bulk) specific entropy
n are given by the relations

A

A A A
P= Das P=Y Pa PE=D Pafas PI= ) Pala (250)
a=1 a=1 a=1

a=1

As the system is homogeneous the total energy, entropy, etc. follow by the multiplication
with the total mass m, e.g. £ =me, S = mn, etc.

The most important thermodynamical potential for an arbitrary component a of the
mixture is the so-called chemical potential ji,. Its importance follows from the fact that,
in contrast to the partial pressure, p,, it is continuous across semipermeable membranes.
Semipermeable membranes are walls (interfaces) between systems which are permeable
only for some components of these systems. We proceed to present some details.

Fig. 8: Semipermeable membrane B between two mixtures containing the component a.
Let us consider a system at a given constant temperature 7' schematically shown

in Fig. 8. On both sides of the membrane B permeable for the component a (i.e. the
membrane is material with respect to all components except of a which may flow through
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the membrane) there is a mixture in which the schematically indicated pistons sustain
constant total pressures p! and p’!. According to the stability condition (222) we have
for this system

d(E—TS)
d(E—TS+p'VH+p'vih)

Hence the quantity G = (EI — TSt +pIVI) + (EH — T8 —i—pHVH) reaches minimum
in the equilibrium state (in an arbitrary process approaching equilibrium it must decay).
This quantity is called the free enthalpy of the whole system and it is the sum of free
enthalpies of both subsystems. Due to the fact that mixtures on both sides of the mem-
brane may be different these free enthalpies may be functions of different variables. Of
course, they must be functions of temperature and total pressure but they may depend
on mass contributions of components as well. For the total free enthalpy G, we have then

G=0aG" (T,pl,m{, ...,mI, ...,mﬁ,l) + G (T,QDH,m{I7 ...,mH ...,mgn) . (252)

a a )

—SdT — plav! —pllavtl = (251)
= 0.

<
< —8dT + Vidp"' + vHdp!t

Due to the fact that the membrane B is permeable only for the component a, all variables
except of mZ ml! are in this relation constant and, additionally, the sum m, = ml +m!’

must be constant as well. Consequently, the minimum condition has the form
oG oGt oGH
— =0 — = (253)

= .
I I I
oml oml  om!

It means that the derivative of the free enthalpy with respect to the mass contribution of
the component a is continuous across the semipermeable membrane. For this reason, we
define the chemical potential in the following way

oG
0= ) 254
a omy, (254)
Then the equilibrium condition has the form
ph (Tp',mi, ymly) = plf (T, p",mi’, .. omlfr). (255)
Definition (254) yields immediately the following integrability condition
a:ua a/~Lb
= ) 256
6mb 6ma ( )
Additionally, additivity of the free enthalpy G leads to the relation
A
G = Z,uama. (257)
a=1

Namely, let us consider a z-tuple enlargement of the system. We have then
G(T,p,zmq,....z2ma) = 2G (T, p,mq, ..., M 4) .

Differentiating with respect to z we obtain

i@G(T,p,zml,...,zmA) i@G(T,p,ml,...,mA)

0 (zmy) Ma = omy

me =G (T, p,mq,....,ma) .

a=1
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Bearing (254) in mind we obtain (257).
This means as well that additivity of G yields the invariance of the chemical potential
with respect to the enlargement of the system, i.e.

ta (Typ,2ma, .y zma) = pg (T, p, M,y ..cymea) .

This is possible only if the chemical potential u, does not depend directly on the mass
of components but on their fractions such as concentrations ¢,, or mol fractions Xj,

A-1
b=1,..,A-1(Xsa=-) X,
a=1

Ha = Ha (Tapa Xla"'7XA—1)- (258)

This property of the chemical potential shows that for a one-component system the
chemical potential and the density of the free enthalpy ¢ = G/m are identical.
Differentiation of the relation (257) with respect to my, yields

A A
oG Ota Opta
a5 = a = a — 07
omy, Ho ; ambm ambm

a=1

and, accounting for the integrability condition (256),

A oy
b
a=0. 259
; om.™ (259)

This relation is called the Gibbs-Duhem relation.
It remains to formulate the Gibbs equation for mixtures. According to the definition
of the chemical potential (254) we obtain

A
dG = —SdT + Vdp+ > pradms. (260)

a=1

The following Mazwell relations (integrability conditions) result from this Gibbs equa-
tion
oS Oltg

om, T and

oV Oy,

= . 261
omy dp (261)

This completes the review of thermostatics.
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Lecture 6: Extended thermodynamics: introduction,
kinetic theory of rarified gases

Apart from the experience with macroscopic systems which yields the phenomenological
formulation of macroscopic continuum thermodynamical models it is advisable to justify
such models by their derivation from more fundamental microscopic models. It is rather
unfortunate that only one such derivation could be successfully constructed and it is based
on the kinetic theory of ideal monatomic gases. Attempts to proceed in a similar way in
cases of nonideal gases in which particles interact with each other or in cases of granular
and molecular substances (e.g. solutions of high polymers) have been not fully successful
and only partial results are available. In this lecture, we present the transition from
the kinetic theory of ideal rarified gases to the macroscopic description. This transition
motivates a macroscopic thermodynamical strategy of constructing models which is called
the extended thermodynamics.

The exact microscopic description of the system of N material points of equal mass
m is based on the set of Newton equations

mia - Fa (X,@akﬂ)7 aaﬁ = ]-7 "'aN7 (262)

with the corresponding initial conditions x,, (t = tg) = x2, %X, = X°. As usual, the dot

denotes the time derivative. As exact solutions for many interacting material points (parti-
cles) cannot be constructed and do not have any practical bearing anyway one replaces this
problem with the problem of construction of the distribution function
In(t, €&, ..., EN, ST, .., Sv) Which determines, when normalized, the probability that at the
instant of time ¢ the points shall occupy a given set of positions &, ..., &5 and possess
a set of velocities ¢y, ...,¢n. Such a function satisfies the exact Liouville equation which
follows from Newton’s equations

Ofn = [Ofn 1 dfn
. — F. | = 2
at Zal (aga ot i oe, o) =0 (263)

and expresses the measure conservation of the phase space constructed of points
{&,.-,&N,S1, -, SN} Its formal solution is of the form

fi =3 D28 05 0) = €8 (a0)— 50 (264)

where ¢ is the Dirac delta. This is still not a simplification of the original problem.
However, the n-tuple integrations of the Liouville equation with respect to variables &,
and ¢, yield a hierarchy of equations for functions fi (¢t,€,), fo(t,€1,61,€52,S9), --., €tC.,
which specify the reduced probabilities for one, two,..., etc. material points. This is the
so-called BBGKY-hierarchy which gives rise to various simplified microscopic models.
Simplifications following from this hierarchy are justified by the existence of a natural
small parameter in the model — the so-called synchronization time. The most elemen-
tary simplification of this art appears in the case of description by a single function
f1(t, €, ¢) which, when not normalized, is called the phase density. The equation for this
function which is the first equation in the BBGKY-hierarchy still contains the function
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fo(t,€1,61,€5,65). However, under the additional assumption that this function factor-
izes fo (t,€1,61,&5,S) = f1(t,&1,61) f1(t,€5,65) (i-e. the probabilities for various points
become independent from each other) we obtain the closure of the equation. This is the
so-called molecular chaos assumption and it has been introduced by L. Boltzmann in
1868. If, in addition, interactions of points are included only through their direct elastic
encounters (elastic collisions in which mass, momentum and energy are conserved), one
obtains the following Boltzmann equation
of _of of _

E+€'a—£+(b+i)’a—€*0[ﬁf]> (265)

where b is the external body force independent of & and ¢ and
i=20(c—¢) - (E—c)+Q(€—c)+&, (266)

is the inertial acceleration following from the relative motion of the frame with respect
to the inertial frame (comp. relation (26) in Lecture 1). The noninertial reference frame
was chosen because it demonstrates in the explicit manner the influence of Euclidean
transformation on the distribution function. This has the paramount importance for the
material objectivity of macroscopic quantities derived from the kinetic theory. We discuss
this problem further in this Lecture. In equation (265), we have skipped for simplicity
the index by the phase density f. This function specifies the number density of atoms.
Namely, f(t,&,s)ds is the number of particles per unit volume at the point & and at
time ¢ such that their velocities lie between ¢ and ¢+dg, i.e. velocities whose endpoints
lie in the sphere with the centre ¢ and the radius |ds|. C[f, f] is the so-called collision
operator. Its structure follows from the assumption on interactions of particles and from
the factorization of two-point distribution functions. Boltzmann’s assumptions can be
satisfied only for rarified gases. This yields a structure of the collision operator which
contains the so-called Knutsen number

mean time of free flight mean free path

observation time scale observation length scale’

This number forms the foundation for approximate solutions of Boltzmann’s equation.

The Boltzmann equation follows from the BBGKY-hierarchy cut at the first equation
containing only two-point distribution functions. Consequently, only binary collisions are
accounted for in this model. Two colliding particles have the velocities g, ¢! before the
collision and ¢’, ¢! after the collision. If they have the equal radius r then in the explicit
form the collision operator is as follows

Clf,fl= / (f'fl’ — ff’) rgsin Odfdeds’ (268)
where 0, € are angles characterizing the encounter, rgsin #dfde is the volume element in

the three-dimensional space of positions &, (see: Fig: 9). We need further only some
invariance properties of this operator.
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Fig. 9: Geometry and kinematics of the encounter
— constuction of the collision operator

On the basis of the kinetic theory described by the Boltzmann equation we construct
a series of macroscopic models which are supposed to yield approximate solutions for
the phase density f. To this aim, we construct macroscopic fields and macroscopic field
equations and this construction is based on expansions using the Knudsen number as a
small parameter.

Most macroscopic thermodynamic fields are formed by taking moments of the phase
density. The generic moment has the form

Firig.iny = /mglc@-l...cmfdc, (269)

where ¢;_,i, = 1,2, 3 are Cartesian coordinates of the velocity vector ¢. Thus we have in
particular

mass density F = /mfdc = p, (270)
momentum density F; = / mg; fds = pv;.

It is convenient to use in definitions of moments the so-called peculiar velocity C =
¢ — v for which

/ mC; fds = 0.

We use as well the following internal moments

Pivia..iy = /mcilcig-nciNde- (271)

The first few moments and internal moments have their canonical notation and names
that suggest their interpretation:
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%Fu’ =p (z—: + %UQ) - energy density % pii = p¢ - internal energy density
F;; - momentum flux —p;; =1¢;; - Cauchy stress tensor
Lp. fl Lo . — heat i

S5 - energy flux SPijj = ¢i - heat flux.

The definition of the peculiar velocity yields simple relations between the moments
and the internal moments

F = p,
F; = PUs,
Fyj = pi + puivy, (272)
Fije = pijk + 3p(i;Vk) + pv;v; Uk,
Fijri = pijr + 4pajevn + 6pg;vrvn + pUiv; VLY,

Round brackets indicate symmetrization, i.e. the sum of the permutations of all NV indices
divided by N!. It is clearly seen that fluxes in the above relations have the same structure
as fluxes in phenomenological local balance equations

F; = pvvj —ty, (273)
TR P
In a monatomic ideal gas t;; = —3p and, consequently,
2
p = gpe. (274)

This is the relation between the thermal and caloric equations of state in a monatomic
gas which we were discussing in the previous Lecture. In monatomic ideal gases we have
as well the following thermal state equation € = %%T, and this yields

3 M / D2 fde. (275)

This relation may be used as the definition of the temperature in the kinetic theory of
ideal monatomic gases.

Multiplication of the Boltzmann equation by a generic function v (¢,x, ) and inte-
gration over all microscopic velocities ¢ yields the balance equation for the mean value
1 (t,x) defined by the relation

o (t,%) = / b (%) £ (t,%,5) ds. (276)

The balance equation for ¢ is derived under the assumption that the phase density
f(t,x,s) falls rapidly for large values of |¢| which means that the probability of ap-
pearance of particles with large velocities decays sufficiently rapidly as |¢| — oco. Then
we obtain

Opp | Op(ths;) N
o T or, PTG =
p) p)
B <a—f + zf.) 3] vt =) (7 1) rgsindpis’ds. 277
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Of course, the third term represents the supply due to external and inertial forces, while
the right-hand side is the production (source).

In derivation of macroscopic equations for ideal gases we need balance equations of
moments of microscopic velocities. We set

Y = MG, Siy - Siy - (278)
It follows
bt T N By (fimy + 850 ) =N i 2ink = s (279)
ot Ox;

where i‘; is the part of the inertial acceleration ¢; that is independent of the velocity ¢. The
right-hand side follows from the production by collisions. The symmetry of the collision
operator clearly seen in (277) yields

$=0, =0, S;=0. (280)

These are, of course, consequences of the mass, momentum and energy conservations
during the collision.

We write the equations (279) in the explicit form for the first thirteen moments:
F = p, Iy = pv;, Fy; and F;j;. We have

dp  O(pvi)
at + (%Z N O’
9 (pvi)  OF; 0
—— + 5 —pbi+i;) = 200 =0,
ot * Oz, p (bii5) = 2puey =0
oF;;  OF :
(%J —ax; — 2pv(; (bj) + 1)) — 4Fui e = S, (281)

OFy;  OFy |
5+ a;}j = 3Fi; (bj) + 1)) — 6Fhii Qe = Sy,
where the traceless (deviatoric) part of the symmetric tensor S;; is defined as follows

1
Stijy = Sij — gSkk(Sij- (282)

In this explicit form, it becomes clear that the first two equations and the trace
of the third equation represent the macroscopic conservation laws of mass, momentum
and energy. Contributions of inertial forces have the familiar form known in continuum
thermodynamics.

The remaining equations are balance laws for the traceless (deviatoric) part of the
momentum flux F;; and the energy flux Fj;;. These equations are not conservation laws
because they contain productions due to collisions. Simultaneously, they contain explicit
contributions of inertial forces. This is a very important property because it yields the
answer to the question if the requirement of material objectivity follows from the above
construction of the macroscopic thermodynamical model.
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The set (281) forms the foundation of the model based on the fields p, v;, Fy;, Fijj-
However, it is not yet the set of field equations as the fluxes F;r) and Fjj; as well as
productions Sy, Si;; are not specified. Even in the simplest case of a linear isotropic

representation for productions

1 1

Swy = ——tw) == (Flajy — pvavyy) (283)
4 2 )

Siji = 5% T T (Fijj — 3F(45v5) — pov ) ,

which appears for the simplest case of the so-called Maxwellian molecules, we have to
define constitutive relations for the above mentioned fluxes. 7 in the above relations
denotes the mean time of the free flight and it is the same characteristic time which
appears in the definition of Knudsen number. This constitutes the closure problem of the
kinetic theory which we proceed to discuss.

Let us begin with a definition proposed by L. Boltzmann for the entropy and the
entropy flux. If we insert!!

= —k <ln§ - 1) : (284)

into the general balance equation (277), we obtain

O (—k [ finfds) 0 (—k [fInfds)

m ffl/
L

It is easy to observe that the right-hand side in the above equation is always nonneg-
ative. This property of the collision operator is called the H-Theorem of L. Boltzmann
and it motivates the second law of thermodynamics. We have already mentioned that
this Theorem was vehemently criticized by many physicists contemporary to Boltzmann
as contradicting Poincare’s recurrence Theorem (see: Lecture 3). It is now clear that this
property is the consequence of the probabilistic element of Boltzmann’s derivation which
appears in the assumption on the molecular chaos.

Bearing the above property in mind, we can introduce the following definitions

= (285)

(f'fY = ff') rgsin0dodeds*ds.

n= _% [f (lng — 1) ds — as the specific entropy,
o; = —k fgif <ln L_ 1) ds — as the entropy flux,
=% In %% (f'fY = ffYrgsinfdfdeds'ds - as the entropy production.

(286)

"The constant 1/y is introduced to eliminate the so-called Gibbs paradox of classical statistical me-
chanics. It has the interpretation of the smallest element in (x,¢) - space that can accomodate a position
x and a velocity ¢. It is equal to h3/m3/(2s + 1), where h is Planck’s constant and sh/2 is the spin
of an atom. The occurence of y and of the other constant in the definition (284) is unimportant for our
considerations and it plays a role only in problems where the entropy constant is material (e.g. chemical
reactions). For relations discussed in this Lecture one could use as well the definition ¢ = —k1In f.
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The flux contains in this formulation both a convective part with an explicit depen-
dence on the velocity as well as the intrinsic velocity-independent part. This is char-
acteristic for the Eulerian description which follows from the derivation of macroscopic
equations by means of the kinetic theory of gases. The entropy inequality follows from
(285) in the form: for all processes

Opn | 9pi

ot + ox; —

> 0. (287)

The separation of convective and nonconvective parts follows from the transformation to
peculiar velocities which we present further.

The above inequality suggests the definition of the thermodynamical equilibrium in
the kinetic approach (compare (286)3)

Infg +Infh =1Inf, +n fp. (288)

for which the entropy production vanishes identically. Hence it is the summation invari-
ant of the collision operator. However, we know already that there are only five such
independent invariants: the atomic mass, momenta and energy. Therefore In fz must be
their linear combination

In fg = a+ Bis; + 7%, (289)

where the coefficients «, (3;, v must be determined from the conditions

3kT m
p= [mipds. pui= [mafeds. o35~ [T fpdc (200)
After simple calculations we obtain
Pl m _m(;—v)2
fe = A\ 3T RT (291)

This is the so-called Mazwell distribution.

The Maxwell distribution yields the vanishing entropy production for a large variety
of fields p (¢,x),v; (t,x),T (t,x). However, in order to satisfy the Boltzmann equation
they must additionally satisfy the following field equations

@ opv; _ 0
ot 0Ox; ’
%—f@ﬁﬂ?ﬁi = 0, (292)
oT
ox; = 0

Hence, in a monatomic gas equilibrium processes contain rigid rotations, isotropic expan-
sions, a variety of density gradients, and a time dependent temperature whose gradient
vanishes.
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The extension of this equilibrium distribution to nonequilibrium situation of the
thirteen moments: F' = p, F; = pv;, F;; and Fj;; has been proposed by H. Grad in 1949.
He proposed to use the following expansion for the phase density f

. <a+ai§ B 373+,”) fa. (293)

+a k
s 70g0s; 7" 05060,

Bearing relation (291) in mind, we obtain immediately

m m\ 2 kT
f = fE <(L — alk—TCZ + Qi (k_T) (CZC] — E(SZ]) -
kT
~ ai (77 ) (C CiCh = (8;Ci + 4, + 84C )) ) . (204)

kT

This is the expansion of f in terms of Hermite polynomials. Its coefficients a, a; a;;, aiji, ...
follow by insertion in (269). For thirteen moments, this yields the so-called Grad distri-
bution function

1 1m 9
fa=T1E (1 (/{:TCC 0; ) — ]—?ﬁqici <1 — gﬁc )) (295)

Substitution of this function in relations (286) yields
ko T2 tte)  aa

A _ _ 296
g m o p dppT  5p2T"’ (296)
g , 2
i = i +hi,  hi =
AR A AT T

Hence both the entropy and the entropy flux contain a dependence on ,; and g;
which measure the deviation from the thermodynamical equilibrium. In addition, the
nonconvective entropy flux h; is not proportional to ¢;/T but it contains a term propor-
tional to t.;q; as well. This is the challenge to the phenomenological thermodynamics
and it is resolved, as we see in the next Lecture, by the extended thermodynamics which
we present in the next Lecture.

We complete the presentation of the construction of the macroscopic thirteen fields
model based on the kinetic theory by the derivation of constitutive relations. As already
mentioned, we need them in order to transform equation (281) into field equations for the
following thirteen fields p = F, v; = %Fi, T =% (Fu— pv?), tuy = — (Fuj) — poavyy)
¢ = 3 (Fij; — 3F;v; + 2v,0?). We accept relations (283) as constitutive relations for
productions, i.e.

1 4
Sun = ——tun, Siii = ——4q;. 297
(ig) - i) 73 37_‘1 (297)
Consequently, we have to add relations for puink = Fluje — 3pijve) — pouvj v and

Pijik = Fijjr — 4355V — 603505 0r) — pvurv?. In terms of peculiar velocities they have the
following form

Pljk = / mC; CHCrfds,  pijjr = / mC;C*Cy. fds. (298)
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We substitute now the Grad distribution (295) in these relations. It follows

2 2
Pij)k = % (Qiéjk + qjbik — g%%‘) : (299)

kT 7 kT
pigik = OP——0ij = Stpe) T~ (6ipOjq + 0igbjp) -

Substitution of these relations in (281)3 4 yields for the deviatoric part of stresses

(i) = “PT Orj  5p 0wy

[ 81) ) v,
=7 | tj) +2t<n<z‘>—a; — Aty | — [T T2 (300)

and for the heat flux
. 15 k‘pT (OT + 2T6t<m>)

qi

4 m \Oxr; 5Hp O,
3 ov;

—=T .1' + qn - — 2 an - 301
2 ? q ox,, 4 ) ( )
3 7 v, | 4. Ovi 7k oT 1 Ot (kn) 1 0,

|27 (5%‘E + 590 m,; ~ 3mtlin) ey — pLR) Doy T ;t<m>—af;> :

First of all, the terms in boxes are nonlinear. As we neglected already nonlinear
contributions to productions their contribution to field equations is not reliable. Therefore,
we neglect them as well.

Secondly, the braced terms contain the combinations of terms which are altogether
objective provided we tolerate some nonlinear contributions. However, they are different
from those which would follow if we were using Lie derivatives discussed in Lecture 1:

(%i

. ov ; )
Loty = Lij) = 2t iy axj> LG = G~ g — (302)

Oxn o\ Oxp
but the form of constitutive relations following from the kinetic theory is different from this
which we would obtain extending phenomenological equations by addition of evolutionary
contributions. This makes the extensions proposed, for example, by Cattaneo for the heat
flux equation not compatible with the kinetic theory. We return to this problem in the
next Lecture.
If we introduce the notation

Combinations 4ty ; (E - Qj>n) . 2g, (2 — Qm> are objective (compare (25)),

p=pr=p—1, K=
m

<pg7') , (303)
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then (300) and (301) lead to the following constitutive relations

8U<¢ 2 8q<,- ov /)
tiy = 2 — — 7 Loty + 4ty L Qi | ), 304
(i) 7 (8% T 5pam, | T\ St Tt | 5 (304)

OT 2T Otun 3 ov;
% = K(%—i‘ 5p o, ) —57 <£VQi+2Qn (a—a:n _Qin)) :

Clearly, if we make the assumption that both p and K remain finite in the limit 7 — 0,
the above constitutive relations are identical with the classical Navier-Stokes and Fourier
laws if we leave out couplings not underlined in the first terms on the right-hand sides.
Otherwise, we have to deal with evolution equations for deviatoric stresses ¢; and for
heat flux ¢;. In the first case the speeds of shear and thermal pulses propagate with an
infinite speed, while in the evolutionary case both speeds are finite. This will be also the
subject of discussion of the next Lecture.

Summing up, let us note that the kinetic theory of rarified gases yields, by means of
the Grad distribution function and in the simplest linear approximation, the first order
field equations for thirteen fields p, v;, €, (), ¢- In addition, it produces the entropy
inequality with the entropy density 1 and the entropy flux h; dependent on these fields.
Macroscopic equations obtained in this way coincide with phenomenological equations of
the Navier-Stokes-Fourier viscous fluid and, simultaneously, provide an additional phys-
ical insight by revealing the structure of the nonequilibrium entropy. The structure of
this kinetic model motivates a phenomenological construction of the so-called extended
thermodynamics of ideal gases which is the subject of the next Lecture.

For the further use we collect the results of the kinetic theory of thirteen moments:

1. Balance equations

9p 9 (pvi)
gp ~0
ot om
) B Y
5 (pvs) + o (pviv; + pij) — p (b + i) — 2pvQx, = 0,
J
0 19)
5 (pvivs + pij) + 92, (3p(ijony + poivive + pijr) — (305)

—ZpU(i (bj) + 29)) - 4Fk(in)k = S<ij>7

0 0
En (pviv® + 3pijv; + pijj) + o (poivkv® + 6pgjvu, + 4pijjve + pijsr,)

—3Fi; (bj) +1i5) — 6Fu; Qe = S
where P, Vi, %p” =D, Plij) = _t<13>7 %p]]z = @q; are thirteen ﬁelds, and Pij)ks

Pijjks Sjys Sij; are constitutive functions.
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2. Grad distribution function

1 1m 9
Je=fE (1 (kTCC b; ) — ;k—quCi <1 — gk_TC )) ,(306)

where the Maxwell distribution fg is given by the relation

i p 3 m 7m<—v2
= — [ 2T

307
2kT (307)
2. Constitutive relations for fluxes pjk, pijjk
2 2
Pk = % qibjk + qj0ir — §Qk6ij ; (308)
kT 7 kT
pigii = 5~ —bij = Stipg)—— (bipdiq + bigbsp)
3. Constitutive relations for sources (productions)
1 1 2 4
Sty = —pas) = —taiy,  Sui = —5_piii = 50 (309)

4. Entropy inequality and its constitutive relations for the entropy and the
entropy flux

Opn | Op ko T2 taptey a4
il S| = —1 — — 310
ot * or; — T=mt p dppT  5p*T’ (310)
¢, 2
i ) hi> hz = ?
pi = pnui + T 5T %

It should be mentioned as well that neither the model of thirteen moments nor Grad’s
method of construction of the nonequilibrium phase density fs exhaust the results based
on the Boltzmann equation. There exist numerous attempts to extend the hierarchy of
equations to higher moments on the basis of the assumption that such an extension im-
proves the approximation of a true solution f of the Boltzmann equation. Some of these
extensions seem to be physically meaningful and confirmed by, for instance, light scatter-
ing experiments. However, there exists no proof of convergence of such a hierarchy. Even
worse, some of such models, for instance the so-called Burnett model, corresponding to
the Chapman-Enskog expansion of the Boltzmann equation with respect to the Knudsen
number, Kn, as a small parameter (to the order (Kn)?), possess instabilities which do
not correspond to any real phenomena.
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Lecture 7: Extended thermodynamics: general struc-
ture, thermodynamics of ideal gases

As indicated in the previous Lecture, we intend to construct a continuum thermody-
namical model of a system whose set of fields goes beyond this of ordinary continuum
thermodynamics i.e. beyond the set of densities of mass, momentum and energy. The
purpose of these additional fields is to describe deviations from the local thermodynamical
equilibrium. We have demonstrated an example of such a model arising from the kinetic
theory of ideal gases and this example shows that typical extensions would be fluxes of
momentum and energy.

Thermodynamical modeling for an extended set of fields should possess the following
essential ingredients

— fundamental equations are of balance type; this yields mathematically a
possibility of weak solutions and shock waves,

— constitutive relations (closure problem for balance equations) are local in
space and time which yields sets of quasilinear field equations of the first
order,

— second law of thermodynamics consists of the entropy inequality and condi-
tions on ideal walls in which the entropy density is concave and this, in turn,
yields symmetric hyperbolic field equations (well-posed Cauchy initial value
problems).

In this Lecture we first demonstrate a general structure of such a modeling procedure
and then we illustrate this procedure with an example of ideal gas model. This model
motivates the general procedure and it can be easily compared with results of the kinetic
theory.

Let us begin with an analysis of a thermodynamical model which describes n-dimensio-
nal vector field w € V" as a function of spatial and temporal variables (x,t). This field
is assumed to satisfy balance equations

%‘i‘g—i‘: :f, FO,FI,FQ,Fg,fGV", (311)
where densities Fq, flures ¥y, k = 1,2, 3, and productions f are assumed to be only func-
tions of fields w. This is a particular case of the structure investigated in Lecture 3, where
constitutive variables tv € V¥ were assumed to contain not only fields w but also some
derivatives of fields. The constitutive dependence on fields alone is the first characteristic
feature of the extended thermodynamics and this feature was already discovered in kinetic
models which we discussed in the previous Lecture. Hence, field equations of extended
thermodynamics are provided by constitutive relations of the form

Fo=Fo(w), F,=Fi(w), k=123 f=Ff(w). (312)

For this reason, we say that constitutive relations of extended thermodynamics are local
in space and time: they depend on fields in the same space-time point as the constitutive
quantities without any constitutive influence of gradients or time derivatives of fields.
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All solutions of field equations which follow by the above closure are called thermo-
dynamical processes.

According to procedures which we were already discussing in this course there are
some principles which restrict the class of thermodynamical processes. The main of them
are as follows

— the entropy inequality,
— the convexity,
— the principle of relativity.
The combination of the first two principle is called the entropy principle and it is the
most essential part of the second law of thermodynamics.

As we know already thermodynamical processes are admissible if the following in-
equality is fulfilled

Opn  Opx

“F >0 = = ) 313
o T om 20 =W, o= or (W) (313)
The principle of convexity has then the form
pn
\4 "z < 0. 314
zeV"z p—— (314)

Finally, the principle of relativity within the frame of nonrelativistic models means
that field equations and the entropy inequality have the same form in all Galilean frames.
Let us investigate the condition of thermodynamical admissibility. According to Liu’s
Theorem we can introduce the Lagrange multipliers A (w) € V™ such that the inequality

opn Oy, oF, OF, .
g 90k N (Lo Ok p) s 1
ot B, ( 5t | O ) 20, (315)

holds for all fields and not only for solutions of field equations. The solution of this
inequality is as follows

oo [OF,\" oo (OF\ " R
ow < ow ) T Ow ow ’ =0 (316)

The first two conditions can be also written in the form
d(pn) = A-dFy, dpp = A-dFy. (317)

Hence the multipliers are independent of the choice of the fields w. In particular, assuming
that Fy is not degenerate we can choose

0 OA o?
ow ow  Oowow
Consequently, the derivatives % form the symmetric and negative definite (principle of

convexity!) matrix. This means that the map w — A is globally invertible. By doing
such a change of variables we obtain the following transformed constitutive relations

Fo = Fo(A), F,=F,(A), k=123 f=Ff(A). (319)
pn = pn(A), or=pr(A).

w=F

(318)
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Then relations (317) can be written in the following form
d(pn—A-Fo) = -Fy-dA, d(opx—A-Fy) =—-F-dA. (320)
Hence, one can introduce the four-potential
h' (A) = {hg, hi} == {pn — A - Fo, o, — A - Fi}, (321)

which specifies the constitutive relations of contributions to the left-hand side of field
equations

T

Fy = F, = . 22
T 9N T 9A (322)
Simultaneously
Ohy oh;,
_ B '_O —p . k
The residual inequality has the form
A-f(A)>0. (324)

The existence of the four-potential (321), (322) whose components are also known
as generators and the residual inequality (324) exhaust the consequences of the entropy
inequality.

Integrability conditions for h’ (A) yield the symmetry of the matrices

aFQ aFk

AN’ OA”
These conditions, extensions of Maxwell relations of ordinary thermodynamics, provide
severe restrictions on the functions Fy, Fy.

Substitution of (322) in field equations (311) yields

271,/ 21/
—ahO%—ahka—A:ﬁ (326)
OAOA Ot  OAOA Oxy,
which means that the system is symmetric as the coefficients are Hessian matrices. This
symmetry is visible if we choose Lagrange multipliers A as fields. For this reason these
fields are called main fields. Together with the convexity assumption this yields the
conclusion that the system is symmetric hyperbolic.

Hyperbolicity of the set of field equations guarantees finite speeds of propagation of
disturbances. Moreover, it yields a desirable mathematical property of the well-posedness
of Cauchy problems which means local existence, uniqueness, and continuous dependence
of the solutions on the data (stability).

In order to see that disturbances propagate with finite speeds we investigate a wave
front of an acceleration wave. This is the surface on which fields, say A, are continuous
and which moves with the speed ¢ in the normal direction and carries a discontinuity of the
first derivatives of fields. Hadamard compatibility conditions which we have mentioned
in Lecture 1 (see: (51)) yield then

[2]] - [[2] -0

(325)

78



where nj, are components of the unit normal vector to the wave front, A is the so-called
amplitude of the discontinuity. Calculating the limits of the equation (326) on both sides
of the front and subtracting we obtain

27,/ 21,/
<a it il )51\:0. (328)

OAOAC~ OAOA "

Eigenvalues of this eigenvalue problem which follow from the dispersion relation

0*hy, 02},
det <8A8AC_6A8Ank)_O7 (329)

are real and finite due to the symmetry of the real Hessian matrices and nonsingularity

of the matrix ;i—géx' They determine speeds of propagation of weak disturbances, i.e.
discontinuities of field derivatives with a simultaneous continuity of fields. Due to the
hyperbolicity the corresponding eigenvectors which specify the amplitudes are linearly
independent.

In order to explain the principle of relativity we have to recall some transformations
we have discussed in Lecture 1 (compare formulae (24), (25), (26)). The most restrictive
transformation is the Euclidean transformation (24) which follows from the isometry of
the space of motions of classical Newtonian mechanics. In Table 8 we present three
transformations in the representation in Cartesian coordinates which are of interest in
this Lecture.

Table 8: Transformations of Newtonian continuum mechanics

transformation: rotation of coordinates | Galilean transformation | Euclidean transformation
xf = 04z xf = Oy + dit
7] (¥ hadV) ? *
P R zi = Oy (t) 25 +ci (1)
? *
=1
Oij — const Oij, di — const
name of the . ..
i i ) tensor Galilean tensor objective tensor
invariant object
velocity U;-k = Oijvj U;-k = Oij?)j + dj U;-k = Oij?)j + Oijl’j + éj
a; = 0;a;+
acceleration a; = Ojja; a; = Oj;a; v A ..
+Oij7}j + Oijl'j + Cj

An invariant object with respect to any of these transformations has the following
transformation rule

T*

i1...04

= Oi1j1 "'OiAjATj1~--jA' (330)

Inspection of the classical momentum balance equation which yields in continuum
mechanics the equation of motion shows that this equation is invariant with respect to
the Galilean transformation but not with respect to the Euclidean transformation. The in-
variance follows from the property of acceleration which is the Galilean vector. Euclidean
transformation which yields the noninertial frames of reference produces noninertial forces
with which we were already dealing a few times in this course.
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As extended thermodynamics contains additional balance equations replacing some
classical constitutive relations (for instance, for the heat flux) we expect that these equa-
tions will be also Galilean invariant. This is the essence of the principle of relativity for
such models.

The Eulerian description yields the natural velocity-dependent contribution to bal-
ance equations. Namely, the fluxes have the following form

Fi =Four + Gi, @i = pnui + hy, (331)

where Gy, hi, are nonconvective fluxes.
However, this does not mean that Fy, G, hy are independent of the velocity. Let us
write constitutive relations in the form

Fo = Fo(v,u), Gy=Gy(v,u), f=Ff(v,u), (332)
pm = pn(vvu)a hk:hk(V,U), ﬁ:ﬁ(

where the vector of field w has been split into (v, u). Galilean transformation to (v*, u*)
yields the following form of these constitutive relations

F, = Fo(vi,u"), Gi=G,(v",u"), f*=f(v*u), (333)
/”7* = pn (V*’ 11*) ) hz = hy, (V*v u*) ) ﬁ* = ﬁ (V*vu*) )

which is similar to material objectivity except that Galilean transformation instead of
Euclidean transformation is used. The principle of relativity requires in addition that the
field equations and the entropy balance equation in the two frames are equivalent, i.e.

aFog:,u)+a[F0 (v,u)gz;: Gi (v,u)] £(v,u), (334)
8/)77(;;’,11) +5[pn(v,U)g;k+hk VWl pw),

and
OF, (gt*,u*) +8[F0 (v*,u*)gi: Gy, (v,u”)] B (v u"), (335)
apn(g:,u*)+3[/)77(V*,u*)g§k+hk(V*,U*)] — ).

The exploitation of this condition yields the existence of an n X n nonsingular matrix
X (v) such that we have the representations
Fo(viu) = X(v)py(u), Gi(v,u)=2X(v)p(a), (336)
fviu) = X(v)S(u),
where p, (u), p, (u),S (u) are functions in the rest frame (i.e. for v =0). These rep-

resentations as well as the form of the matrix X (v) have been found by T. Ruggeri in
1989'2. The latter is as follows

r 1
X(v)=er"" =14 ATv, + §ATASUTUS + .. (337)

12T Ruggeri; Galilean invariance and entropy principle for systems of balance laws. The structure of
extended thermodynamics, Cont. Mech. Thermodyn., 1, 1989.
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where A" are constant matrices dependent on the tensorial character of the corresponding
quantity and otherwise independent of the system.

The above decomposition for a symmetric tensor density of arbitrary rank A into
velocity-dependent and internal parts has the following form in Cartesian coordinates

A A
Fi1~--iA = Piy.ig + 1 Plir...ia—1Via) + 9 Plir..ia—2Vis_1Viy) + ..t (338)
A
+ A_1 Pliy Vig+-Vig_Vig) T PV Vig_1 Vig,

and similarly for p, and S.

This completes the presentation of general properties of extended thermodynamics
which we need in this course.

We proceed to discuss the most important example motivating the strategy of con-
structing models by extended thermodynamics. We show the model of ideal nonrelativistic
gases.

In order to be able to place the model among models of extended thermodynamics,
we formulate the fundamental equations for ideal gases in the notation which we presented
in the first part of this Lecture. Consequently, we choose the following fields describing
the system

F — the mass density,

F; — the momentum density,

F;; — the momentum flux density, Fj; = FJ;,
%Fijj — the energy flux density.

We assume that these fields satisfy in an arbitrary noninertial frame the following
balance equations

OF  0OF

o on ~ "
88}1? + (ZI;Z: = F (b,- + 2?) + 2F i,
% + aaL;ik = fup) +2Fq (by) + &) + 4Fa Q. (339)
85;“ + ag;:’“ Jidi + 3F(ij (by) + %)) + 6 Fiyy Q.

The vector i’ of the inertial acceleration is given by the relation
i = (Qik - Qiijk) (T — k) — 2y + Gy (340)

The above set of balance equations has very peculiar symmetry properties. Namely,
the flux in the n'" tensorial equation acts as the density in the (n+1)th tensorial equation.
We shall see that this symmetry limits the applicability to monatomic ideal gases.

81



The mass balance equation (339);, the momentum balance equation (339), and the
trace of (339)3 which is the energy balance equation are conservation laws. It means
the productions in these equations are zero. Simultaneously, productions fi; and fi;;
indicate that remaining balance equations describe quantities which are not conserved.

In order to construct field equations we have to solve the closure problem. To this
aim we postulate the following constitutive equations

Faje = Fug (F, i, Fij, Figj)
e = Fy (F, F, Fy, Figg)
fagy = Jfup (F, By Fyg, Fijj) (341)
fizi = fiji (F, Fi, Fyj, Fig) -

The set (339) and (341) forms the full model for the above chosen fields. They must
be still restricted by the following principles

— the Galilean invariance of the field equations,

— the Galilean invariance of the constitutive relations for velocity-independent
quantities,

— the thermodynamical admissibility.
The first condition is satisfied if the quantities appearing in the above equations have

the form presented in the relation (338). Hence, we have (compare the identical relations
(272) in the kinetic approach)

F = p,
E = pu;,
Fij = pij + puivy, (342)
Fijk = pijk + 3pG;0) + pUiV; Uk,
Fijri = pijr + 4pgevny + 6p; vty + puivvgvg.
and
fas) = Stgys Jis = Sigg + 255 v;- (343)

The p-quantities as well as S-quantities must satisfy constitutive relations following from
(341) and satisfying the principle of material frame indifference.

In the Table 9, we present these quantities in juxtaposition with the standard nota-
tion.

Table 9: Juztaposition of notation: extended thermodynamics vs. classical
thermodynamics

extended thermodynamics | p | p;; %pii %pijj

classical thermodynamics | p | —t;; | pe = %p q;
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The relation between pressure p and specific energy ¢ is, as we have shown in the
previous Lecture, the characteristic feature of the monatomic gases.

Now, we can reformulate constitutive relations and write them in the following equiv-
alent form

Plijky = Plijk) (pvpijapijj)y
Pijik =  Pijjk (p, Pz’j;ﬂz’jj%
Sajy = Sty (0 pigs Pigj) (344)
Siji = Sijj (p, Pijs Pijs)
pn = pn(p:pij pij;) »
hi = hi(p, pij; pijj) »

where the last two relations for the entropy density pn and the nonconvective entropy flux
h; belong to the second law of thermodynamics. We have used here the decomposition:
Plijyk = Plijk) — %pku@j—|—%pju6ik+f—5pi”6jk which means that we need only the constitutive
relation for the fully deviatoric part p;j,).

The constitutive dependence on the velocity, or in the above notation on F;, has been
omitted because of the Galilean invariance. There remains a dependence on one scalar
variable, one vector variable, and one variable which is the symmetric tensor of the second
rank. Simultaneously, the assumption on the material objectivity of these constitutive
relations yields in Cartesian coordinates

OirOjsOktp<TSt> (:07 Pij ,Oijj) = Plijk) (,0, OiTOjs,Ors, Oir/)rjj) )
OirOksprijs (Ps Pijs Pijs) = Pijjr (Ps OirOjsprs, Oirpri) ,
OirOjsSirsy (p: pij» ijs) = Stij) (p, OiwOjsprs; Oirprjs) (345)
OirSrjj (05 igs Pizi) = Sijj (05 OirOjsprs, Oirprij)
( ) = pn(p,0:0jsprs; Oirprjs)
) = hi(p,05:0;5prs, Oirpris) »

where O;; are components of an arbitrary constant orthogonal tensor. Hence, the consti-
tutive quantities are isotropic functions of one vector and one tensor variable. For these
functions we have representation theorems which were quoted in Lecture 4. However, we
shall not use them here and simplify the model by making an additional assumption that
the dependence on p;j (i.e. the stress deviator t(;;) and on 3p;;; (i.e. on the heat flux
qi) is linear. Then the isotropy property yields

PN\Ps Pijy Pijj
Oirhy (05 Pij, Pijj

Pljky = 0,

Pijik = QO + BPiky, (346)
1

Sy = — Pl
1

Sijj = _T_pijj>
q

where the coefficients «, 3, 7, 7, may be functions of p and py.
It should be stressed that the isotropy results are the same for the requirement of the
Galilean invariance and for the material frame indifference with the matrix O dependent
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on time. This is different from the ordinary thermodynamics in which the material frame
indifference requiring the invariance with respect to the Euclidean transformation is more
restrictive than the Galilean invariance. In this sense, the material frame indifference is
not required in the extended thermodynamics and this explains as well the appearance of
nonobjetive contributions to constitutive relations of extended thermodynamics.

It remains to exploit the entropy principle. We begin with the direct evaluation of
the entropy inequality restricted by the field equations (339), (341). In the inertial frame
and without external forces we obtain the following inequality

%+%_A 6F+8Fk — A %4_% _
‘ (975 axk

ot al‘k ot axk
OF, 0F; OF,; OFn
_ A i wk 2 ) A iJJ ik fo) > A
J < ot + (93% f(z])) I < ot + axk fzgg) = 07 (3 7)

which must hold for all fields { F, F;, Fj, %Fijj}. If we insert the constitutive relations this

inequality becomes linear with respect to the following derivatives

— . 4
(975’ (975’ ot ’ ot ’6wk’8xk’ 6wk’ 6a:k (3 8)

This yields the thermodynamical identities which can be written in the following compact
form

d(pn) = AdF + NidF; + AjjdFij + Nd Fijj, (349)
d(pk = AdFk + AZdFZk + Aideijk + Allidﬂjjk- (350)

Roughly speaking, the relation (349) determines the multipliers and the relation (350)
gives rise to thermodynamical identities restricting constitutive relations.

There remains the residual inequality

D = Nijfujy + Muifij; = 0, (351)
which represents the dissipation (nonnegative entropy production).

As we have shown above the Galilean invariance yields an explicit dependence on the
velocity field. This concerns also Lagrange multipliers. Bearing this property in mind,
after rather tedious calculations we can write the above results of the entropy principle
in the following form

d(pn) = XMdp+ Nijdpij + Mudpsjj, (352)
dhy, = Ndpix + Nijdpijr + Auidpijjr,

Mep + Njji (2pi + pudir) = 0, (353)
2X\kjpji + Mim (2Pmii + pijidme) = [pn — Ap — Ajipjt — NumpPmgj) Onis
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In these relations, A-multipliers are velocity independent internal parts of A-multipliers
and the two are related in the following way

A= A + Aijvivj + Allﬂ)ﬂ}Q,
)\i = AZ + 2/\1]'1)]' + Allj (1)26ji + Qvﬂ)@') s
Aij = Nij + Nur3vdigy, (355)
A = Ay
Clearly, relations (352) indicate that the internal parts of multipliers are functions of
constitutive variables {p, pi;, pij; }-

Principally, we are done with the entropy principle. However, there remains a tech-
nically difficult part of evaluation of the above results. For details, we have to refer to
the literature. We present here only the most important conclusions.

First of all, we investigate properties of the thermodynamical equilibrium, i.e. pro-
cesses in which the dissipation D is zero. This corresponds to the vanishing sources Sy
and S;;;. Such an analysis is easier if we transform the fields {p, pi;, pi;;} — {A, i, Aui}-
We have used a similar transformation at the beginning of this Lecture. Then we have to
transform the four-potential in the following manner

W' = —pn+Ap+ Xijpij + Njjipa, (356)
h, = —hi+ AijPijk + NjjiPittk
and rewrite (349), (350) in the alternative form
dh’ = pdA+ pijdXij + puidAjji,

apmk

dhy, = [Ajjiaimﬁ] dA + {Pz‘jk + Attm @mn

ap”k}dAﬁ-+ (357)

8)\1‘3'
apnk
+ [pijjk + )\llmamna)\—ppi:| dAgqis
—h'6 = 2Xijpik + Nijt (2puik + PrppOii) -

The multiplier )\; has been eliminated and has brought the tensor a;; defined by the
relation

1
a;j = p (2pi; + pudij) - (358)

We return now to the definition of equilibrium. In new variables, the condition
D = )\<ij>‘E S<ij>}E + Al g Sijjlp = 0 implies that this is a minimum of this function
which yields

Nijylp =0, Auslp =0. (359)
Hence, with p; = 2pe we conclude (see: (352))

2
d(pn)lp = 5 Xiilp d (pe) + Aedp. (360)

Comparison with the Gibbs equation yields

21 g PE

)\ii|E=§f7 )\EZ—?, 9:5—T77E+77 (361)
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where T is the absolute temperature and g is the Gibbs free energy (specific free enthalpy).
The above results conclude the identification of multipliers in equilibrium.
Before we apply this knowledge, we investigate the Gibbs equation which we can now
write in the form

1 PE

This equation implies the integrability condition

Oe 1 OpE
— ] == —T| — . 363
<0P)T P (pE (3T )p> (363
For a monatomic gas we have pgp = %pa and then we can integrate the above equation.
The result is

3 ' (2) HP(2) p
__ m5/2 _ Y _ - .
pE=T"°®(2), 77E2/< . 3 2 dz+Cy, 2= 757, (364)
where ® (z) is an arbitrary function, ¢’ = —‘fg, and C is an arbitrary constant. Conse-

quently, the thermal equation of state is determined by a function of a single variable. It
follows as well

Z-—4 [ =dz—0C. (365)

We limit our attention to nonequilibrium processes described up to terms of the first
order with respect to the deviation from equilibrium. Calculations of this approximation
are based on the so-called Maxwell iteration procedure which we do not present here. The
final results are

Pljk)y = 0 (2)>
ot
s = o ([ i) v
T ofold
+T5 [/ . dz+01] pap + 0(2),
S
Su) = ~grapgli T 02, (366)
S
Sij = — K pa+ 0 (2),

5T92 [7 ([ 224z + Cy) — 52]

where O (2) denotes contribution of the second and higher orders with respect to variables
pij) and pyy, and ¢, ¢, are proportionality coefficients related to characteristic times 7,
appearing in the representations (346) of the production terms

1 dP’ 27 1
7, =2T"?0~, 1,=5T"? [7 (/ dz + 01) — 5—} —. (367)
Gt z Z | S
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The above results yield the following relations for the entropy and the entropy flux

3 [(2_ 59 PLis) Pi)
= pls [ (==2=)dz+ 5| - E2LED
P p{Z/(z 3z2) i 3} ATT2d

PrkiPlli
_ , +0(3), 368
107770 [7Z ([ *2dz+ 0y) —572] ) (368)

11 2 Piiy 5Pui

h = __Pllk—5m+0(3).

T2
There remains the convexity condition with respect to the densities F, I, F};, Fiy; or
P, Pij, Puii- In the case of nonequilibrium variables pjy, pu;, it follows immediately from

(368)

! 2
B (2) >0, 7(/¢jdz+01)—5%>0. (369)

In addition, Hessian of pn with respect to p, ppr must be negative definite. After some
calculations, it follows

50
0<d < -—. 370
3 (370)
In the simplest case of a classical ideal gas the thermal state equation has the form
k k
p=—pT ie. @(z)=—=z (371)
m m

Nothing is known about the constant C; but in the kinetic theory it is zero. Then the
function @ of the relation (371) identically satisfies conditions (369), (370).

Let us write the field equations which we have obtained in the above analysis in the
form customary in the classical thermodynamics. In an arbitrary noninertial frame, they
are as follows

(%k
: —f _0 372
ptpgy =0 (372)
. .0 0 5/2
1% [Ui — 1 — QQkak] — —axk (t<1k> —T°“® (2) 67,k) = O, (373)
3 D (2)\* Ok 5/2 Qi _
r3 <T . ) o, (tuwy — TP (2) 6 o 0, (374)
t{ik) * tj(i avk> t]‘<i 4 8q<z 1
PR A R R A X o P [Nt R S 375
pK p ) B T R B T T 7
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o |7( T 5 oty
— Z iy — =T7126,. /
o 2 (we ~77) ([ Foev )+

2 Ovy, 4 Ovy 1 0
Sg—= 4 = L 2 (tyn —TP® (2) 6;) —
+5q Oy + 5Qkamk) P ( (i5) (2) J) e

(tgwy — T2 (2) 6) +

3T°2® (2) 0 1 p
SLTPOWE) 9y R () 8,) = — g x = L 376
T g (2) 6 G 2 (376)

In order to see clearly the structure of these equations we rewrite the system in the
absolute notation and substitute ® = kz/m, p = 2pe/3, C; = 0, T = TP — p1. It follows

p+ pdivv =0,
p[v—i —2Qv] —divT =0,

pé +divgq—T-L =0, (377)

0 (T—) FRL-22) T -} (adq)” = 17

p Tt
* 7
p (ﬂ) + (L—2Q) q — div lg <—T —&—pl)} +
p p\2
2 1 1
+-qdivv—— T—§p1 divT = ——q,
) p 2 Tq

where (grad q)D = % (grad q+ (grad q)T> — %1 div q and similarly for [2 (L—2%) T]D.

This completes the thermodynamical analysis of the model. We have obtained results
which are explicit up to three constants C4, Cy, C3 and the function ® (z). The latter is
fully determined by the equilibrium thermal state equation. It remains to compare these
results with the kinetic theory and with the ordinary thermodynamics. We proceed to do
SO.

Comparison with the results of the kinetic theory discussed in the previous Lecture
(viz. relation (296) for the entropy and the entropy flux and (300), (301) for the remaining
quantities) reveals an almost perfect agreement. Indeed if we set the constant C equal
to zero we obtain both in the kinetic theory and in the extended thermodynamics of ideal

gases with ® (2) = £z the following relations for the entropy and the entropy flux

_ _1 C Mg ag) 1Y 378
i 2
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Consequently, it is clear that the continuity of the heat flux ¢; and of the entropy flux h;
on the material walls do not yield the continuity of the temperature 7" as it is the case in
the ordinary thermodynamics. Only in the linear approximation we obtain such a result.

There exists a small difference between the two approaches as far as the relaxation
times are concerned: in the kinetic theory they are equal to » = 7 and 7, = %7’, re-
spectively, while in the extended thermodynamics they are independent. As a matter of
fact, they are related to the viscosity and the heat conductivity, respectively. This can be
seen if we perform the so-called Maxwell iteration on constitutive relations (375), (376).
Namely, if we evaluate these relations in an infinitesimal neighborhood of equilibrium (i.e.

at t;jy = 0,¢ = 0) we obtain as the first step of iteration

(91)(- k
tiny A~ 2u—— =T°207, = for &= — 379
(ig) 'uaxj)’ 2 Tt pT1y lor mZa ( )
oT 5 o2 dP’
¢ ~ —K—, K=-"71°%|5—_7 / dz+Cy || 174 =
o0x; 4 z z
5 p? k
= —p—Tq for ¢ =—z.
2pT m

The second step of the iteration follows when we insert the first step on the right-
hand side of relations (375), (376) and calculate the stress deviator and the heat flux
again. We shall not do so in this Lecture but we mention a few properties which follow
from this procedure. First of all, the second iteration step contains the dependence
on at least squares of relaxation times 7, 7,. This continues in further iteration steps.
Hence, the Maxwell procedure is a kind of polynomial expansion with respect to these
times. Secondly, already in the second iterate there appear nonobjective contributions
depending on €2;;. Let us demonstrate this nonobjectivity on a simple example. We
consider a process of the rigid rotation with the constant temperature of the material
element of the fluid, i.e.

av(i . .

=0, T=0. 380
(937]') ’ ( )
Then the relation for the heat flux (376) reduces to the following form
or av[k orT
;= — 427, | Qs — —, 381
¢ e {8332- M < g 5’%’}) 8xlj (381)
5 P2 ot
o= =T {5——7/ dz+01}
4 z z

The second contribution is the frame-dependent objective vector and it indicates that the
heat flux is not parallel to the temperature gradient. Such an effect has been discussed by
I. Miiller who indicated that the transition from the microscopic description yields these
contributions as a consequence of Coriolis forces appearing in microscopic equations of
motion.

Finally, the second iterates contain coupling terms between the stress and heat flux
relations.

Modeling presented above shows clearly adavantages of the application of extended
thermodynamics. However, there are also weak points of this approach which have not
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been removed as yet. The assumption that field equations follow from balance laws means
that for each subsequent level of the hierarchy we need additional boundary conditions.
This means that either we have to add some additional control on the boundary (e.g.
simultaneously a temperature and a heat flux) or that there exist some microscopical
mechanisms which produce constraints on the boundary automatically. These may be,
for instance, some conditions imposed on fluctuations as a part of the physical definition
of the boundary. As the first possibility seems to be physically meaningless the second
one has been tested. Various simple examples have been considered (for instance, the
so-called minimax principle of Weiss and Struchchtrup) but none of them seems to be
indeed a solution of the problem. We return to the discussion of this issue in relation to
boundary conditions for porous materials.
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Lecture 8: Thermodynamical model of viscoelastic ma-
terials

In the previous two Lectures we have demonstrated the construction of a macroscopic
model of heat conducting viscous ideal gases. The kinetic theory has motivated the
macroscopic modelling called extended thermodynamics. This strategy of constructing
macroscopic models can be extended to materials for which the kinetic motivation is
remote or even none at all. Viscoelastic materials belong to this class. In the present
Lecture, we discuss the thermodynamical construction of the model whose behavior is
solid-like and therefore the Lagrangian description is appropriate. We focus the atten-
tion on isotropic materials and investigate their general model following from extended
thermodynamics. In particular two special cases will be considered: viscous fluids and
linear viscoelastic solids. In viscous heat-conducting fluids the resulting equations have
the same structure as these presented in previous Lectures for ideal gases but the theory
is less restrictive about some scalar coefficients. As the special case of the model of vis-
coelastic solids we obtain the standard linear solid of viscoelasticity. This construction of
the model has been performed by I-Shih Liu in 1989!3.
We consider the construction of the model for the following 21 fields

— F;x — deformation gradient (9 components),

— v; — velocity (3 components),

— T — temperature (1 component),

— 1{;;y — viscous (Cauchy) stress deviator (5 components),
— ¢; = J'QkF;x — heat flux (3 components).

Both Lagrangian and Eulerian indices are referring to Cartesian coordinates.
Field equations follow from the set of balance equations

o O )
88? — gifi = po (b +10) +20,,G;, (383)
agtij * %ﬁ( — Stij) = 2G i (by) + 1)) — 2 (Gyvr + Gow — PpyrFir) , (384)
aca;;jj +(9(;1’;(jiK —Sii; = 3G s (bjy +1%) =3 (Gipvr + G + W)k Frc) -(385)

The first relation is, obviously, the integrability condition for the deformation gradi-
ent. The second one represents the momentum conservation in a noninertial frame with

131-Shih Liu; An Extended Fields Theory of Viscoelastic Materials, Int. J. Engng. Sci., 26, 331-342,
1988.

I-Shih Liu; Extended Thermodynamics of viscoelastic materials, Continuum Mech. Thermodyn., 1,
143-164, 1989.
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the quantity G; = pov; representing momentum density. The remaining notation is the
same as in the previous Lectures.
The trace of (384) represents the energy conservation law. Therefore we identify
%Gii = Do (E + %02) as the total energy density and %\I/ij = Qk — Pjkvj as its flux.
Bearing Galilean invariance of balance laws in mind, we obtain on the basis of the
Ruggeri Theorem the following explicit dependence on the velocity

Gij = povivi + pig,  Gijy = pijs + 3pG;v5) + poviv?,
Vi = i — 20k, Vijjx = Rijjr + 3valtjjx — 3v6v; Pk (386)
Stig) = Sty Sigg = Sijj T 386505),

where pi;, pijj, Riji, Rijjr, Pjr, S(ij), Sij; are velocity-independent and Galilean invariant.
These relations yield the following identifications
! Qr = Jq;Fr: Ln (387)
€ = 5 Pii; = JQil'g; = SLUIK,
2p0p K q K1 2 K
where ¢ is the specific internal energy and )k denotes the material heat flux, i.e. the heat
flux vector in the Lagrangian description. In addition, apart from the Piola-Kirchhoff
stress tensor P;x we frequently apply the symmetric Cauchy stress tensor T;; = J ' Py Fjx
=T}
In order to construct field equations we have to close the system of balance laws
(382)-(385) by constitutive relations. We select the following set of constitutive variables

¢ = {EKa T7 t?ij)a Q1} ) (388)

where tiij) 1 supposed to represent the deviatoric viscous stress tensor which we identify
later. For technical reasons it is more convenient to choose the variables appearing in
(386) instead of the above physical variables. We shall do so and after the evaluation of
thermodynamical principles we return to this more suggestive choice. Hence, we choose
the following set

C= {E’K;Pz’pﬂijj% (389)
and assume that the following constitutive quantities
F ={Pix, Riji, Rijixc, Siijy» Siji | » (390)

are sufficiently smooth functions of constitutive variables
F=F(@C). (391)

The velocity v; or, equivalently, the vector G; does not appear anymore among constitutive
variables which is the consequence of the Galilean invariance. Some other restrictions
following from this invariance shall be presented later. Simultaneously, the constitutive
dependence contains only fields (comp. (388)) or their transformations (389). There is
no dependence on gradients or time derivatives of fields. This is the characteristic feature
of the extended thermodynamics and, for this reason, we call constitutive relations (391)
local.
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As usual the constitutive relations must satisfy the condition of thermodynamical
admissibility which is formulated by means of the entropy inequality

67’] 6HK
2y sy 2
P T ax, =V (392)
where
n=n(C), Hg=Hg(C). (393)

It is obvious that the entropy flux in the Lagrangian description is independent of the
velocity. It contains only the nonconvective part which depends on constitutive variables
C.

Entropy inequality must hold for all thermodynamical processes, i.e. for all solutions
of field equations. As before this constraint is eliminated by Lagrange multipliers which
are also constitutive functions. Easy calculations yield then

podn = NigdFirx + Nijdpij + Nigrdpijg, (394)
dHg = —XNdPig + NijdRijx + NigpdRijik,

where the multiplier of the momentum balance equation does not contribute to the above
relations and the remaining multipliers A;x, Aij, \igx are velocity independent parts of
multipliers corresponding to constraints imposed by (382), (384) and (385), respectively.
It follows as well that the multiplier of the momentum balance equation contains the
velocity independent part given by the relation

3
Ai = —— P \j)kks (395)
Po

and the multiplier \;x has the form
Aik = —2Xi; P + 3w Rijyk- (396)
There remains the residual inequality of the following form
Aij8 (i) + AigjSijiT (397)
+ [2Xi5 (pij — Pix Fir) + A (prjj + Rjjx Fur) + 2XuRijx Fer] Qi > 0.

Since the inequality must hold for all frames it must be independent of the matrix of
angular velocities §2;;. Consequently, the following identity must be satisfied

[2Xij (pij — PixFix) + Nin (prji + Rjj Frr) + 2\ juRijx Frx| €y = 0, (398)
where €;;; is the permutation symbol. Simultaneously, the residual inequality becomes
D = Aijsij) + Aiggsijs = 0, (399)

and this relation defines the dissipation D in the system.
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As we know already it is convenient to change variables { Fix, pij, piji } — {Fir, Nij, Ak }
which is possible due to the convexity assumption. Then we can define the conjugate four-
potential

R = Nijpij + Nikkpiji — pol, (400)
Hy = —MNPig + NjRijr + NiwrRijix — Hx,
It follows
dh/ = pl]d)\lj + pijjd)\ikk — )\inEk, (401)
dHy = —Pigd\i+ RijxdNij + RijjrdNigs.

We proceed to analyze the thermodynamical equilibrium defined by the condition
D = 0 which corresponds to the requirement of vanishing productions s |, = 0, s; |z =
0. As the inequality (399) is the condition for the minimum of the dissipation in the
equilibrium we conclude that the multipliers Ay, Aij; also vanish in equilibrium. This
makes the new choice of variables so attractive from the technical point of view.

Bearing (394); and (396) in mind, we obtain in equilibrium

2 1
dng = 3N <d5E — — Piklg dFiK) - (402)
3 Po
Therefore we can identify
2 1
FNi = 7 403

where T is the absolute temperature. The relation (402) becomes Gibbs equation. Con-
sequently, we can introduce the equilibrium Helmholtz free energy ¢ g = eg — Tng which
yields

Op g , (055
R’K|E:POE, EE:¢E—T8—T> hE:PO?, (404)

where relations % pj; = poc and (403) have been used. In addition, the evaluation of the
identity (398) in equilibrium leads to the relation

P g = % Tij)|p, Ty=J 'PxFix = %PiKFjK- (405)
Further analysis will be limited to a few key results of an approximate theory. We
construct constitutive relations in the second order approximation with respect to the
deviation from equilibrium which is measured by multipliers A;;, and A;;; vanishing in
equilibrium. Detailed structure, in particular symmetry properties of material parame-
ters in the nonlinear theory as well as the derivation of restrictions following from the
hyperbolicity condition (convexity assumption) are technically so involved that it would
be impossible to present them in the form of the single Lecture. We refer for details to
the publications of I-Shih Liu.
In this approximation we have

1 1 1
W= p <¢_; 2 Tis | o iy + 3 hight Ay ety + §’fz’j/\ikk>\jll> +0(3),
H] = J 'HiFix = (Xij + XA ) Ajmm + O (3), (406)
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where the coefficients hiju, kij, Xij, X;jkl as well as g and Tj;;  are isotropic functions
of the Cauchy-Green deformation tensor B;; = FixFjx and of the temperature T'. The
first coefficient, h;ji, is, in addition, traceless symmetric in both pairs of indices and it is
symmetric with respect to these pairs. k;; is symmetric.

The above relations for the four-potential yield constitutive relations for all con-
stitutive quantities of the model except of productions. They enable the exploitation
of relations (403) which are the generalization of the Gibbs equation to nonequilibrium
processes with multipliers as process variables. We proceed to exploit these relations.

In the second order approximation, the first equation (401) yields after easy calcula-
tions

720 Ty
T Ohyin T? Ok,
2 81]_7 (k1) — 2 oT )\zkk)‘]ll + O3 ( )
1
Pijy = Po P Tig| g + higd) ) +0(2),

pijj = pokijAu+O(2),

_po e O(Ticlg Fir) \

Aow = _ o
T Ok OF W)
ahz]lm 8k’t
)\ )\ 9 —— Nimm A 0O (3). 407
<8FkK (i7) )y + OF . xc JPP) + ( ) ( )

Combination of these results yields the relation for the Helmholtz free energy

T T

¢ ¢E Ukl)\ (ij) )\ (kl) — gkij)‘imm)\jpp + O (3) . (408)
Inspection of (396) shows that up to second order terms we have

v *Yp

tyy =T — Tijlg =T —Tij|E+PijKﬂL Aty +0(2). (409)

We have anticipated that R;;x is vanishing in equilibrium. We return later to this point.

Thus the stress is decomposed into an equilibrium part Tj;|, and a non-equilibrium
part ¢;;. The former is referred to as the elastic stress and the latter as the viscous stress.
One can introduce the following spatial elasticity tensors (first and second)

A = %F F (410)
gkl  — 8EK8F]¢L JKLIL,
Ciju = Aijt — Tjil g bin-
Then
ty; = TCiuApy + 0 (2) . (411)
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Now we are in the position to specify the second order approximation of the multiplier
Ai given by (395)

i = (rik+ i Ain) Mewp + O (2) (412)
where
10 2 10720 Tyjy|
Tik = —§€E61'k — ; T{ik)}E, rgjkl = 377@1 — thjkl- (413)

This completes the constitutive consequences of the first equation (401) in terms of
multipliers Ay, Agpp as variables describing the deviation of processes from the equilib-
rium.

These results make possible the exploitation of the second equation (401).

We easily obtain the following relations for quantities transformed to Eulerian de-
scription (e.g. Rijk = JﬁlRinFkK, Rijjk = JﬁlRiijFkK)

6 = (Kwi + KAy Mepp + O (3), (414)
Riijy = gy + O (2) (415)
Rippt = Bra + Bz + O (2), (416)
where
ki = —1° (% Tjilp + %X;) ;
mgjkl - _T7? (5(7;,‘;51) Tl + 5?9(;%1& 4 TCpl<ij>%) , (417)
Qijl = T;jkp Tolg + X;jkl’ Bij = rip Tl g + Xij ﬁz{jkl = aijrr + TrrpChpigig-

By means of the above relations we can construct the viscous stress in an explicit
form. The result is

tiy =T (Cijkl)‘<kl> + Cijra A kppAtmm + C'{;-kZmnNszwmn)) +0(3), (418)

where the following abbreviations for the coefficients of the second order have been intro-
duced

, 1% 6k:kl 10

Lk = 5@@1{ + 204 (k1y; + g’fi(kéwja (419)
P 8hklmn
z{;klmn D) OFx Ejx = 2T C1j) tmn) -

Finally, the comparison of results (400), (406) and (414) yields
1
We conclude that the classical Fourier relation Hy = q/T holds only in the first order.
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It remains to eliminate the multipliers and return to the physical variables which we
have mentioned at the beginning of the Lecture. We obtain from (411) and (414)

1 v _
Aligy = f0<ij1><kz>t<kl> +0(2), iy =r5'9+0(2), (421)
where
C1 C( Wkl) = 1 Oik0i1 + 040k — g&"ékl . (422)
(ig)(mn) ~\mn 9 LA LV} 349

The higher order terms can be also obtained by the iteration which we do not present
here.

In order to complete field equations of the approximate model we need constitutive
relations for productions s; and s;;;. We know that they have to satisfy the inequality
(399) for the dissipation D. Zero value corresponding to equilibrium is the minimum of
this function. Consequently, the matrices

1 0s4j) 1 O0Sikk

(423)

ikt = % 8)\<kl) E’ i = Po 8)\jmm E7
are positive definite, i.e. for arbitrary matrices A; and arbitrary vectors B;
Ot Aujy Ay >0,  7;B;B; > 0. (424)
Hence, for linear relations we obtain by means of relations (421)
Sujy = %o—zjklc@ oy Loy + 0 (2), (425)

Sij; = poTij/i;rrllQm + O (2) .

It is helpful to collect in the juxtaposition the material parameters of the second
order model for nonequilibrium variables A;;; and Ayj;. We do so in the following Table
10.

Table 10: Nonequilibrium material parameters for constitutive quantities of the second
order model in terms of variables Xijyand \ij;

entropy oo ki 5hij

entropy flux Hi | Xij Xt

specific internal energy | € —T72/2 0k;;/OT | —T?%/2 Ohjp/OT
Helmholtz free energy | ¢ —T/2 kij —T/2 hiji
viscous stress tensor ty; TCijrl

heat flux qi Kij Kijkl

stress source S(ij) PoTijkl

heat flux source Sijj | PoTij
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As shown before, they are not all independent.

The above considerations complete the construction of the model. We do not show
here the final form of field equations as further results for this set are nonexistent in the
general case. Instead, we present two important particular cases: viscous fluids and linear
viscoelastic solids.

Let us begin with the viscous fluid. For this material, a constitutive dependence on
the deformation tensor B;; reduces to its determinant (volume changes) or, equivalently,
to the dependence on the current mass density p. Simultaneously, all constitutive tensors
of the second order model become isotropic functions for which we know representations.
The resulting constitutive relations are as follows

v Jp
Ljlg = —pby Ty = —pbij + 14, p=ppT), a0
(98E
= T — >0
6 €E (p’ ) ) 8T )
p 0 v
Pis) = ;0 <1+5) iy, vY=7pT), 2p+7v<0,
pPo [ Q2 10 10
Pij; = ; <; — ?) g, a=ay(p,T), as— glﬁl <0, (426)
10&1 2
R(ij)k = Z? (Qiéjk + q]'6¢k — §qk(5¢j) , Q1 = 0q (p’ T) ,
Rug = B+ (2 — Doy ol) e — B(p, T
ikkj = PO+ 4’0_T—§5E+ ; tligy B=p(pT),
PO _w
S = gppotln 7= (P T) >0,
B (T >0
Sijj = KTqZ, T=1(p,T) >0,
where
o 10 Op
=-T* (o5 — ey |- 427
) <aT 3 5E(9T) (427)

Hence, apart from the thermal equation of state p(p,T") and caloric equation of state
eg (p,T) the model requires the knowledge of 6 equilibrium material parameters: 3, -,
oy, ag, o, T, the latter two related to the relaxation times 7, 7,, discussed in previous
Lectures.

Bearing these constitutive relations in mind, we obtain from the balance equations
the following equations

4 2T 8’01' 2 . avi Ovrs
£, = L { @ 2P +2 g <t§’ij> - gy O t?kw) N
Po axi) 4p 8xk} axk}
ay Oqg YT [ [ Ovg vy
- — Q’L v _ Q v , 428

k2 [0oT T? 10 . O
? prT? |0z; w2\ ° 3 4 B k] e
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Ole at?ﬁ@ 1 5 61}[1-
S S U1 Y (PO — Q) . 429
dpk Oxy, + pT a2 3041 Oz k) (429)

Obviously, the underlined terms represent the Navier-Stokes relation and the Fourier
relation of the classical thermodynamics. The above generalization contains, in addition,
rate terms for ti) and ¢;, the coupling of both relations and the contribution of noninertial
frame which makes the above relations material frame indifferent.

However, the model does not account properly for the so-called normal stress ef-
fects (Weissenberg effects) which appear in the classical Maxwell model of viscoelastic
fluids as well as in the so-called Rivlin-Ericksen fluids. This problem has been discussed
separately’®. Unfortunately, there is no uniform approach to this problem of extended
thermodynamics which would account for all properties of both classes of models.

We proceed to present the linear viscoelastic solid. We assume the initial config-
uration to be stress-free and, for small deformations,

Bij [ (Sij + 25@'. (430)
It follows

T%- = )\5kk6ij + 2,uz—:ij + tq(}ij)’ ie. (431)
Cijri =~ Aijr = N0ijor + 1 (6651 + 6j10a)

where \, p are Lamé moduli, e = £ (T") and

7\ o
PGy = 2M€<z‘j>+(1+@) Eiigys

(o, e fdB\TT
Pii = 3 "7 \ar %>

ap (dB\ " 2
R = 412 \ 4T Qi5jk+q]'5ik—§l1k5¢j ) (432)
10 o 10\,
Riwrj = Boij — 5o (Aernbij + 2ueij) + (4M—T - 380) tiijy
[
Suj) = QM—TU%w
p (dB\"
Sikk = T\ gT Tq;.

All material parameters can be arbitrary functions of temperature and the following re-
strictions must be satisfied

d€0 2

— >0, A+=u>0 >0, 2 <0 433

dT Y + 3/’L ) /’I’ ) /’L+fy Y ( )
10 _.d

Qg + §T2£ <0, ¢>0, 7>0. (434)

141, Miiller, K. Wilmanski; FExtended Thermodynamics of a non-Newtonian Fluid, Rheologica Acta,
25, 1986.
K. Wilmanski; Thermodynamics of a Heat Conducting Maxwellian Fluid, Arch. Mech., 40, 1988.
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Now the balance equations for stresses and the heat flux yield

—-1
: . aq dp 8%
L) + Tiijy — 2peqi) — 2 (7 +v) €y Y AuT? <dT) o (435)
, oT a K (dp\ " 0ty
i+ K— +q = — = ot =T — 2uenn, 436
Tl R Gy T T (dT) ;T T hu T ) (436)
where
20T T2 (dB\>
y = T T (4 (437)
po pT \dT
T 1 10_,dp
— _1 9 - —T71?=).
T pa( pt), T p <oz2+ 3 dT)

The wviscosity coefficient v, the thermal conductivity K, the stress relaxation time 7, and
the thermal relazation time 1, are all non-negative.

The equation (435) describes the so-called standard linear solid in viscoelasticity!s.
For isothermal processes, this can be integrated and we obtain the following stress-strain
relation of the hereditary type (a linear material with fading memory)

t

v v _t=s

Tt Tt 0

Simultaneously, the equation (436) without the right-hand side is the Cattaneo equation.
In any case, the above models are hyperbolic which means that disturbances propa-

gate with finite speeds.

15¢.g. see: Christensen, R. M.; Theory of Viscoelasticity, Academic Press, New York, 1971.
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Lecture 9: Thermodynamics of miscible mixtures

Continuum models of multicomponent systems rely on the assumption that particles of
distinguishable species are sufficiently densely distributed to enable the volume averaging.
For instance, let us consider a domain P (x,¢) which contains at the instant of time ¢ a
chosen point x of the space. Now let us choose an a-species and denote by p%;.., (z,t) the
real mass density of the a-species at the point z and the instant of time . The domain
P (x,t) is assumed to be sufficiently large to contain many subdomains of the substance
a. Then the macroscopic average mass density of the a-species over the domain P (x,t)
is defined in the following way

1
O (x, ) = —— & )X (2, 1) dV, 439
000 = B o, P (oD 220 (439)

where x* (2, 1) is the characteristic function of the a-species, i.e. it equals 1 at the point
in which a particle of the a-species appears and it is 0 otherwise. vol P (x, t) is the volume
of the domain P (x,t). Obviously, this definition works also in the discrete case when the
microscopic density has the form

Prmicro (2, 1) X* (2, ) = Z m®6 (z —z° (1)), (440)

Zn €P(x,t)

where z“ (t) is the location of an a-molecule at the instant of time ¢ and m® is the
corresponding molecular mass. The quantity p® (x,t) can be considered to be a smooth
field of mass density provided the domain P (x, t) is sufficiently small from the macroscopic
point of view and, simultaneously, sufficiently large from the microscopic point of view to
include many subdomains of a-species or many a-molecules. We return further to a more
detailed discussion of this averaging procedure for porous materials.

In this Lecture we consider miscible mixtures which means that a microstructure de-
scribed by the characteristic functions x“ (z,¢) does not influence macroscopic properties
of the mixture. It is different from immiscible mixtures such as porous and granular ma-
terials or suspensions where these characteristic functions extend the set of macroscopic
fields on, say, porosity, tortuosity, etc. We consider such mixtures later in this course.

It is convenient to describe mixtures of fluids, as we do in the fluid dynamics, in the
Eulerian reference. It means that the current configuration is the reference configuration
for the motion. All fields of the model are functions of the spacial variable x €B; and the
time variable ¢ € 7. The domain of the mixture B, depends on time and in any instant of
time each point of this domain is occupied simultaneously by particles of all species of the
mixture which means there are no subdomains of B; of the nonzero volume measure in
which one of the species does not appear. The species of the mixture on the macroscopic
level of description will be called components. The above assumption means that each
component of the mixture is described by a set of partial fields with a common domain of
the definition B; at any instant of time t. We distinguish the components by the index «
running from 1 to A, where A is the number of components.

In the case of thermomechanical systems considered in this Lecture the thermody-
namical process is assumed to be described by the following fields

*ve T, a=1,.. A, 441
p
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where p® are the current partial mass densities of components referring to the common
unit volume in the current configuration B;, v® are the velocity fields of components and T’
denotes the absolute temperature common for all components. The last quantity requires
an assumption that all components possess the same temperature. In many practical
applications this assumption is not satisfied. However, the problem of thermodynamical
modeling of multicomponent systems with multiple temperatures is still not fully solved.

Field equations for the fields (441) follow from the partial balance equations of mass
and momentum and from the energy balance equation for the mixture. The partial balance
equations for a« = 1, ..., A have the form

d

| prav = / 5edv, (442)

dt Jpg Py

d .

— [ pvedV = 7{ TndS + / (p*b* 4+ p%) dV, (443)

dt Jpg apg P

d a (o 1,a o Joe’ «

— p* (6% + v - vH)dV = (T — q%) - ndS+

dt Jpg apg

+/ (P"D* - v + p%r® + %) dV, (444)
Py

where P C B; is a measurable subset of the current configuration which moves with the
kinematics of the a-component and 9P;* denotes its surface with the unit outward normal
vector n. The quantities with the hat are volume densities of sources (productions) and,
according to the fundamental assumption of Truesdell’s mixture theory they must satisfy
the following conservation laws

A A
d =0, Y p*=0, ) & =0. (445)
a=1 a=1

The remaining quantities T® b* % q%, r* denote the symmetric partial Cauchy stress
tensor in the a-component, the body force per unit mass of the a-component, the par-
tial density of the internal energy of the a-component, the partial heat flux in the a-
component, and the density of energy radiation in the a-component, respectively.

The assumption that partial densities satisfy balance laws yields, according to the
Cauchy Theorem which we have discussed in Lecture 2, the existence of partial stress
tensors T“ and partial heat flux vectors q“.

In the case of the single temperature field the partial energy balance equations are
not used and we need only the energy conservation of the mixture. This must have, of
course, the classical form

d

Sl iy . =
7 73tp((€+2v V)dV j{

(Tv—q)'nd5+/p(b~v+r)dv. (446)
oPs

Pt

We obtain indeed this relation if we add equations (444) and introduce the definitions

A A A
p= Zpa’ v = Zpava’ pe = Zpa (Ea + %ua,ua) 7
a=1 a=1 a=1
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A A
T :Z (Ta . paua®ua) . q= Z (qa + pa (Sa + %ua.ua) u® — Taua) 7
a=1 a=1
A A
pr = Zpo‘ (r*4+b%-u%), u®=v*-—v, Zpauo‘ = 0. (447)
a=1 a=1

The presence of convective terms containing the diffusion velocities u® follows from the
fact that subsets P; of the current configuration B; possess the kinematics of the barycen-
tric velocity field v and it means that fluxes contain additional contributions — none of
these subsets is material with respect to any of the components.

It can be easily checked that the above definitions yield as well the classical conser-
vation of mass and momentum for the whole mixture

A
d d
— [ pdV =0, —/ pvdV—j{ TndS—i—/ pbdV, pb =Y p*b“. (448
dt Jp, dt Jp, P Py 2 s

a=1

Let us remark that the presence of diffusion yields a macroscopic heat flux q even in
the case when the partial heat conduction contributions q® are absent. This property is
essential for a peculiar form of the second law of thermodynamics of mixtures which we
discuss further.

The above global balance equations yield in a standard way local laws. They have
different form in regular points in which fields are continuous and in singular points on
surfaces on which fields may suffer jumps. Namely

op”

— +div (p*v®) = p°,

ap*v®
ot

Ope

6_pt + div (pev +q) = T-grad v + pr, (449)

+ div (pava RV — Ta) — paba 4 15017

in regular points. The last equation, the so called balance of internal energy, follows
by elimination of the contribution of kinetic energy by means of mass and momentum
conservation laws.

In singular points the balance equations have the form of jump conditions across the
surface. We use them here only for the bulk mass and the bulk energy of the mixture but,
of course, they may be easily derived for all other equations as well. We have for these
two quantities (comp. Table 4, Lecture 2)

lo(v-mn—o) =0, [[.]]= ()" ().
la-n)) = [T(v—en)]]-n—[[c+(v—en) (v—en)]]p(v-n—c), (450)

where ¢ denotes the speed of the surface and n is the unit normal vector to this surface.
As indicated the double parenthesis denotes the difference of limits on both sides of the
singular surface.
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As we know already from thermodynamical theories of single component systems
the system of balance laws may be transformed into field equations by means of the
closure. This means that we have to specify constitutive relations for a set of constitutive
quantities.

We begin the discussion of this problem with the specification of mass sources for
chemical reactions. Components of the mixture are then not the most fundamental ingre-
dients of the macroscopic picture. These are rather molecules (constituents) which satisfy
laws of mass conservation. To see this structure let us consider the simplest example of for-
mation of water from hydrogen H and oxygen O. These two are molecules (constituents)
while the mixture consists of the following components: H, O, Hy, Oy, OH, H,O. They
are participating in chemical reactions which can be symbolically written in the form

Hy, —2H =0, 20 100 0
Oy — 20 = 0, 0 2010 0
H+0—0OH =0, (v)=[1 1 00 -1 0 [,
H+ OH — H,0 =0, 1 0 00 1 -1
2H, + Oy — 2H,0 = 0, 0 0 210 -2

(451)

The matrix of coefficients v/, « =1,...,6, r = 1,...,5 in this set of relations is called
the stoichiometric matriz. Its rank determines the number of independent reactions. In
our example this rank is equal to 4. The conservation of mass for molecules (constituents)
in each reaction can be written in the form

A
> ViMapn =0, r=1,..,R, (452)
a=1

where M, denotes the molecular weight of the component «, ppy is the mass of a hydrogen
atom and R is the number of reactions.

Further we consider only the set of independent chemical reactions and we denote
their number by v. The contribution of each reaction to the production of components
depends also on the rate of reaction which we denote by X", = 1,...,v. Then the mass
source in partial mass balance equations can be written in the form

5 = > A Mo (453)
r=1

It is clear that the conservation relations (452) imply (445);.

Let us now return to the general closure problem. We transform the balance equa-
tions (449) into field equations for the fields (441). We use the strategy of continuum
thermodynamics and assume that the constitutive quantities

F={N,T%p%e,a}, (454)

are sufficiently smooth functions of constitutive variables. The choice of the constitutive
variables specifies the class of substances admissible in the model under construction.
We consider here only an example of inviscid fluids. However, in contrast to the ther-
modynamical modeling of the single inviscid (ideal) fluid we include among constitutive
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variables the gradients of partial mass densities. It has been shown by I. Miiller that this
yields a desirable structure of interactions of components. We return later to this point.
The chosen set of constitutive variables is as follows

C ={p® grad p®,v*, T,grad T} . (455)
Hence the closure of the set of balance equations has the form
F=F(C). (456)

These relations must satisfy the conservation restrictions (445)s.

In order to describe viscous fluids we would have to add a dependence on gradients
of velocity to the set of constitutive variables. This can be easily done but the results are
not so transparent as in the present case.

The constitutive relations (456) in the thermodynamical modeling procedure must
satisfy principles which we were already discussing for single component continua. For
fluid mixtures two of them will be presented in details

— material objectivity (material frame indifference),

— thermodynamical admissibility.

As we know already the principle of material objectivity (material frame indifference)
concerns the behavior of field equations under the so-called Euclidean transformation,
i.e the transformation described by the following relation for an arbitrary point of the
configuration space

x*=0(t)x+c(t), OF'=0"" (457)

Let us recall that the scalar, a, the vector, w, and the tensor, T, transform in an objective
manner if they satisfy the following transformation rules

*

a*=a, w'=O0Ow, T'=O0TO". (458)

Obviously, neither the velocity nor the acceleration transform in an objective manner.
Differentiation of (457) with respect to time yields

dO ., dc

* — * C : —_— e 4
% Ov+0Ox+¢, O R (459)
a* = E+V-gradv = 0Oa+20v + Ox + ¢.

Consequently, the momentum balance equations do not transform in an objective manner.
The transformation from an inertial to a noninertial frame yields centrifugal, Coriolis,
Euler, and translational forces which form together the inertial forces discussed already
in previous Lectures. Simultaneously, the mass and energy balance equations transform
in an objective manner.

In the case of chemical reactions there appears an additional problem related to the
contribution of mass sources to the momentum balance equations. It becomes clear when
we use the chain rule of differentiation on the left hand side of (449)s and substitute mass
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balance equations (449);. Then the above described structure remains unchanged under
the Euclidean transformation if we assume that the following vector

P — pve, (460)

is objective rather than the momentum source itself. We do so in further considerations.
The principle of material objectivity (material frame indifference) requires that func-
tions

FO = {)‘TaTa7f)a _ﬁava’(g’ q} :fo (C)> (461)
remain unchanged under an arbitrary Euclidean transformation, i.e.
Fo=F(C7). (462)

Note that the constitutive function F, (.) is the same in (461) and (462).

An immediate consequence of the above principle is the elimination of one of veloc-
ities among constitutive variables. Instead of partial velocities this set may contain only
relative velocities which are objective. These may be diffusion velocities u®, or, as they
are only A — 1 independent variables of this art, relative velocities

w = v — v, (463)

which are more convenient in the calculations.

The full representation of constitutive functions in their objective form is a rather
complicated task and we shall not do so in this Lecture. We limit our attention to
constitutive functions which are linear in grad p®, w,gradT. In this case the most
general form of the constitutive equations compatible with the material objectivity is as
follows

A= X (T,

T = _pa (pﬁ7T) 1a
A A-1
pe — pive = Z Mpo‘ﬁ grad p® + Z MPwP + Mg grad T, (464)
p=1 B=1

A A-1
a = Z qg grad p® + Z ¢ew’ + qrgrad T,
B=1 p=1

er = er(p”,T),

where the index I denotes the so-called intrinsic part of the quantity

A A A
ar = q—» 3p*(u*u*)u* = Z q® + Z (p%e“l — T)u”, (465)
A pa A ,0a
1 a a a
gr = € — 5s—Uu u = —E
a=1 ’ p az; p
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The coefficients appearing in relations (464) may be dependent on p” and T'. However,
they are not independent due to the previously discussed restrictions on sources. Namely
we have

A

S M =0, B=1,...4 (466)
A
S M4+ =0, f=1,...,A-1,

A
d Mg o= o0
a=1

In spite of the above assumed linearity the whole model remains nonlinear due to
various nonlinear explicit contributions.

We proceed to impose the condition of thermodynamical admissibility on the above
constitutive relations. As in the case of the single component continua we assume that the
second law of thermodynamics is based upon the entropy inequality. As discussed earlier,
the strategy of continuum thermodynamics in construction of macroscopic models relies
on the assumption that solutions of the field equations identically satisfy the second law
of thermodynamics called also the entropy principle. This law consists of four parts:

i/ There exist a nontrivial entropy density function n and the entropy flux h which
are both constitutive. In the case of miscible mixtures, considered in this Section, they
must have the following general form

A-1
n=np"T), h= Zhagradp —i—ZhO‘W + hrgrad T, (467)
a=1 a=1

where hg, hy,, and hy may be functions of PP T.
ii/ The entropy density satisfies the balance equation whose form in regular points is
as follows

dpn
% +div (ppv +h) =7, (468)

where 7) denotes the entropy source.
iii/ The entropy source is nonnegative for all solutions of field equations, i.e. for all
thermodynamic processes. Consequently, the following inequality holds

0
Vadl thermodynamic processes apn + div ( PNV + h) Z 0. (469)

iv/ There exist ideal walls on which there is no entropy production and the temper-
ature is continuous across it, i.e.

[h-n]+ (gl p(v-n—c)=0, [[T]=0. (470)

The method of Lagrange multipliers applied to the inequality (469) yields the follow-
ing extended form of the inequality

opn
: +d1v (pnv +h) — ZA’” (—+d1v Z’ya a,uH)\>

vall fields ™o, )
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- Z A" <8p + div (p*v* @ v — T9) — f)a) - (471)

—A® (aait + div (pev + q) — T- grad v) > 0.
The Lagrange multipliers A?", A*", A® are functions of constitutive variables p?, grad p°,
vP T, gradT. After the exploitation of the above inequality these multipliers must be
eliminated as auxiliary quantities.

Insertion of constitutive relations into the inequality (471) leads to an inequality
which is explicitly linear in the derivatives

8

T B
{ % ,grad ® grad T, Op” ,grad ® grad p°, 86‘; ,grad Vﬁ} . (472)

ot
Since the inequality (471) must hold for arbitrary fields these derivatives can be chosen ar-
bitrarily. Consequently, the inequality can be violated if these contributions do not vanish
identically. This yields a series of identities which, on the one hand side, determine mul-
tipliers and, on the other hand, restrict constitutive relations. In addition, there remains
a nonlinear part of the inequality, the so-called residual inequality which determines the
dissipation density of processes.
The identities following from the entropy inequality have the following form

g—; - AES—; =0, (473)
22 Asg—g =0, g=gradT, (474)
5_;_ ;; +1(n—A€5)—%Aﬂ“—%va-M‘*:0, a=1,...,A—1 (475)
7@gfaltlipa _ Afﬁ =0, a=1,..,4 (476)
86;7& — AE% — p—:A”“ =0, a=1,..,A—1, (477)
<§—; — A 685 ) 1-— p—AET— (479)
_L<ah A 8q)+ SAT U =0, a=1,. A—1,
pp* \ Ow® ow®
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A-1
an Oe 1 oh oq 1o,a 4 1
LA )1y — = AT ) A — AT = 0.(480
<0pA 8/)A) ; ppt (5W5 3Wﬂ) )T (480)

There remains the residual inequality which has the following form
A

oh oq on Oe

— N ) —p =% A= U’ —
; Kapﬁ (9/)@) P (apﬁ apﬁ) v

A Lop° 1
S AT 4 AT’ | - grad plt
a=1 apﬂ p

oh 0q = . Op® - -
— — AN - A= . AP A p* > 0. 481
S WS SRS RS s AN
We use further the following relation following from the above identities
A A
AN T == pAT +p(n— Ney), (482)
a=1 a=1
where
s s 1 8 o
A=A —T(vﬁ-uﬂ—%uﬂ-uﬂ):Af (p™,T). (483)

Before the discussion of thermodynamical properties of the mixture let us check the
form of the above relations for a single fluid, i.e. we set A = 1. We obtain

A’ = 0,
dy = A° <d5 - %dp) ,
p
h = A®q, (484)
op q- grad p + a7 q-gradT' > 0.

We use now the part iv/ of the second law of thermodynamics. Let us consider an
impermeable ideal wall which separates two different single fluids I and II. Such a wall
moves with the speed ¢ = v - n (material surface). The jump condition (470) yields then

[h]] mn=0 and [[T]]=0. (485)
Bearing (450) and (484)3 in mind, we obtain
A7 (pr, T) = A3y (prr, T) - (486)

This relation must hold for an arbitrary independent choice of p; and p;;. Hence it can
be satisfied only if it is independent of mass densities at all. We conclude

AL (T) = A (T). (487)
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Consequently, the function A® (T) is the same for all ideal fluids and, for this reason, we
call it universal.
In order to determine this function it is sufficient to inspect (484), for the case of
ideal gases. Then it is identical with 1/7". Hence it follows in general
A= 2 (488)
==
Relations (484) become

1 p 1
dn = = (de — ?dp) ., h =74 @ gradT" < 0. (489)

These are the results identical with those of the classical thermodynamics. The first
relation is, of course, the Gibbs equation.

If we consider an impermeable wall separating a mixture I from a single fluid II and
account for the jump conditions we obtain immediately

A5 (03.7) = 7. (490)
Hence the multiplier A®* remains universal also for mixtures.

One cannot argue in the same way in a general model of mixtures in which each
component possesses its own temperature. The multipliers of the partial energy balance
equations are not in general universal functions of the absolute temperature. This means
as well that temperature cannot be measured on the surface of contact between two
different systems because such a surface, even if it is an ideal wall, does not yield the
continuity of temperatures. Consequently, we cannot construct thermometers.

Let us now consider a semipermeable wall separating two mixtures I and II. The wall
is assumed to be permeable for a single chosen component v. On such a wall

a r’
vi-n=c for a#7y, v= cn—l—; (v —cn). (491)

The jump of internal energy (450)s reads

) n— | |22 = e = fv-a) - (v-en)| | (v -ne) =0,

or, bearing the separation (465) and the relation

A
T:—Z(po‘1+p°‘ua®ua),

a=1

in mind, we obtain

[a]] - n+

A
D> p e+ (v—em)- <v—cn>] ] p(v-m—c) =0 (492)

Simultaneously, the jump of the entropy is of the following form

[(h]] - n+[[n]] p (v - n—c) = 0. (493)
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These two relations can be now substituted in one of the identities following from the
evaluation of the entropy inequality. The result is

A A
1 G
[ er—Tn+%(v—cn)- (v—en) +=> p*=T> " <575 - p—) A1 | = 0.(494)
l)azl a=1 p
Bearing (482) in mind, this relation can be transformed as follows
[u"]] =0, (495)
where
W = 4} + 3 (v—en) - (v—en), 4] = ~TAf, (496)

This quantity continuous across ideal semipermeable walls is called the chemical potential
of the component . This can be determined experimentally. Namely according to the
relation (482) we have

A A
S pug=pler—Tn)+> p° (497)
a=1 a=1
and, for the single fluid,
m:e—Tw%, (498)

which is, of course, the free enthalpy, and, hence, a measurable quantity. We can now argue
in the same way as we did for the temperature. The contact between the mixture and
the fluid identical with the y-component of the mixture through the semipermeable wall
for this component yields the measurement of the chemical potential of this component.

The remaining results of the exploitation of the second law of thermodynamics can
now be written in the following compact form

. 1
AT = o,
1 A
d(p) = = (d (per) — Zu‘i‘@“) ,
a=1
A
pler=Tn) = Y pug—p, (499)
a=1

1 A
h = T (q—;pa/f}ua> .

Equation (499), is the Gibbs equation for the mixtures. We investigate further its
consequences. Equation (499)3 is called the Gibbs-Duhem equation. Finally, the relation
(499)4 between the entropy flux h and the heat flux q demonstrates the fundamental
difference between the thermodynamics of single component media for which h = q/T
and the multicomponent media. The presence of the additional term in the above relation
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proves that we cannot rely in thermodynamics of mixtures on the classical Clausius-
Duhem inequality as the form of the second law of thermodynamics. This is one of the
main observations made by Ingo Miiller in the construction of thermodynamical mixture
theories. There is a simple physical explanation of the difference between these fluxes.
They describe the transfer through an interface which moves with a velocity either related
to the barycentric motion and then the components move with respect to the interface
with the diffusion velocity u® or related to the motion of one of the components, say (3,
and then components move with the relative velocity v® — v”. In any case the transfer
of energy and the transfer of entropy through the interface will be caused not only by
conduction in which case the fluxes h and q would be proportional but there is a drag
transfer through crossing the interface by particles moving with the velocity different from
the velocity of the interface. This is exactly what the additional contribution in relation
(499), is describing.
The above presented Gibbs equation yields immediately the following relations

o_ Op(er—Thn) _Op(er—Tn)

= 500
I apa ? pn aT ( )
as well as the integrability conditions (comp. (256))
0 O(uy/T)  oug  ouf
PET _ _T2 (lu[/ )7 Hr — M ) (501)
op~ or op®  Op>

Hence the derivatives of the Helmholtz free energy density p (e; — T'p) specify constitutive
relations for chemical potentials and for the entropy. In addition, integrability relations
demonstrate couplings between components: the chemical potential of component a de-
pends on all other mass densities.

There are some additional restrictions due to the fact that the multiplier A® is de-
pendent only on the temperature. For this reason the residual inequality contains a
contribution linear in grad p® which must vanish according to the same argument which
we made before. This yields the following identity

O oA A ap°
oo ¥ __ A€ ay a __
o pu® + o7 b gradT — A }21 (Mp 5,07) u® =0. (502)
Consequently, we obtain
op® ouy
g =0, MW=L _ 0 (503)

r 0p? 0p?

This yields the following form of the energy flux and the sources in momentum equations

A-1
qr = qregradT + Zqﬁw’g
=1
A-1 s
AQ Ao GO af ﬂ a I
P — v MTgradT—i—;M +Z(8pﬂ P 5 )gradp (504)

112



We see that the only place where the gradient of partial mass densities appears in
the model is the source of momentum. However even this weak form of influence has an
important bearing on interactions in the mixture. Namely, if we assume that the gradient
of mass densities does not appear at all in the model we obtain from (504)

1 9p* _ Oug
—— = . 505
p*0p®  9pf (505)
This relation yields the following integrability condition
1 op® 1 op*
N e (N v VC Lo (506)
pa2 apﬂ pa2 ap’y
Hence it follows
8 (01
8—; —0 when a#p. (507)

This means that the partial pressure p® depends in this case on its mass density p® but
not on the mass densities of other components. We say then that the mixture is simple.
Molecules in such mixtures do not feel forces of interactions created in the material due
to heterogeneity. This observation made by Ingo Miiller in 1968 has solved one of the
fundamental problems of the classical theory of mixtures of fluids. We see further that a
similar problem arises for immiscible mixtures.

Obviously the relation (505) yields for simple mixtures pu¢ = u¢ (p*,T'). Hence

&p(er —Tn)
0p0pb
Consequently the free energy is the sum of functions which depend on only one mass

density and temperature. The entropy density possesses the same property and so does
the internal energy. Therefore we can write

=0 for a#p. (508)

A A
per =Y pe (pT), pn=>_p"n*(p*.T). (509)
a=1 a=1

This decomposition shows that there is no energy of interaction between components in
simple mixtures. It yields as well the following relation for chemical potentials

(67

g = =T+ L (510)
p
which means that in simple mixtures the chemical potential and the partial free enthalpy
are identical.
We proceed to investigate the residual inequality which remains after the analysis

presented above. It has the form

Do gradT \ ([ —%4& AP gradT \
T w A® —%Mﬁjﬁ w?

v A-1
1
T (Z (g = pf + 5w - w?) 'YZLMauHX’> >0, (511)

r=1 a=1
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where

aﬂ?*ﬂ; A-1 pap’y
Y (pa(sm——) . 512
= ] 1 : (512

The function D is called the dissipation density and it consists of four contributions:
- chemical reactions which are primarily characterized by the difference of
chemical potentials u$ — u,

- heat conduction which contributes with the square of the temperature gra-
dient grad T,

- diffusion which contributes with the square of the relative velocity w<,

- thermal diffusion which contributes with the product of the temperature
gradient and relative velocity.

The vanishing dissipation defines the thermodynamical equilibrium
gradT|, =0, (uf — puf) ;=0 w%p=0, a=1,..,A—1L (513)

Such processes correspond to the minimum of dissipation and this yields additional
conditions — thermodynamic stability conditions of equilibrium.

Let us add that, in addition to this classical approach to thermodynamics of mixtures
there exists also a relativistic extended thermodynamics of mixtures of ideal fluids and

this theory gives an important physical insight to the description of chemical reactions.
Details can be found in the book of I. Miiller and T. Ruggeri.
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Lecture 10: Thermodynamics of immiscible mixtures:
introduction and models without the field of porosity

The main topic of the following Lectures is the construction of continuous models of
multicomponent systems in which one of the components is a solid creating skeleton (a
solid confinement) for the motion of fluid components. As we allow for large deformations
of the solid phase we shall mostly use the Lagrangian description of motion. Such models
are called porous material models.

Theories of porous and granular materials can be constructed on different levels of
observation. Microscopic models rely on Newton’s equations of motion of material points
or molecules and use methods of molecular dynamics. Such models can be transferred on
a semimacroscopic level by multiscaling and averaging procedures. Some numerical meth-
ods such as Monte Carlo are also used in practical applications. On a macroscopic level
continuum field models are constructed. These may either follow from semimacroscopic
models by homogenizing, averaging over Representative Elementary Volumes (REV), con-
struction of moments of kinetic distribution functions or they may be constructed by
means of a phenomenological macroscopic approach. In these Lectures we present solely
the latter type of models with a marginal reference to averaging procedures.

The construction of macroscopic continuous models of systems with a solid component
in its most sophisticated form stems from models of multicomponent systems. Differences
are primarily connected with an art of interactions within the solid component. Models
must be clearly different in the cases of suspensions, of granular materials or of porous
materials. In the first case solid particles interact with each other either through the fluid
or through collisions and there is no permanent contact between them. In the second case
a granular solid component may behave as a solid which cannot carry a tensile loading
(unilateral constraint on constitutive relations) or it may fluidize and then behave as a
suspension. Finally, a porous material behaves in average as a usual solid and it forms a
deformable carrier for fluid components. We limit our attention to the last case.

The most important feature of porous materials is the appearance of different kine-
matics for the solid component - the skeleton, and fluid components in channels of the
skeleton. This yields diffusion processes characterized by relative velocities of components.
In most cases of a practical bearing the dependence on the relative velocity is reduced to
a linear contribution to momentum balance equations (momentum sources) or even to a
simpler form called the Darcy law.

The problem of thermodiffusion within such models is still very much open. This
is related to difficulties with an appropriate definition of the temperature on the macro-
scopic level of description. The most important property of the classical thermodynami-
cal temperature, its continuity on ideal thermal walls and, consequently, its experimental
measurability, is not fulfilled in porous materials. Simultaneously, such processes as phase
transitions or chemical reactions in porous materials are characterized by real thermody-
namical temperatures (e.g. melting and freezing points, evaporation, etc.) of components
on a semimacroscopic level of description. It means that even if we have introduced a
macroscopic notion of temperature we would have to know a rule of transformation of
this quantity to the semimacroscopic level. This is mathematically an ill-posed problem.
Even though one can formally work with notions such as partial heat fluxes, specific heats
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etc. their operational meaning is not clarified yet. This seems to be the most important
challenge of modelling porous and granular materials.

In addition, we have to deal frequently with the problem of different temperatures
for different components. In contrast to gases a local thermodynamical equilibrium is
reached in porous and granular materials after macroscopically long relaxation times.
For instance, a hot water flowing through a cold porous material does not reach locally
a common temperature with the skeleton within seconds or minutes. Consequently, we
should construct thermodynamical models with different temperatures of components.
Such a construction, as we have indicated in the previous Lecture, is missing even in the
case of fluid mixtures. One of the reasons is again the problem of measurability.

Let us mention in passing that in theories of granular materials stemming from a
kinetic equation it is common to work with a kinetic temperature rather than a thermo-
dynamical temperature. It is defined in a way similar to this of the kinetic theory of gases
(275) as a mean kinetic energy of granulae. There are numerous difficulties connected with
such a notion. For example a natural equilibrium state of a granular material in which
particles do not move would have a temperature equal to zero. Consequently, deviations
from the equilibrium state which are used in the construction of macroscopic moment
equations of the kinetic theory (comp. (293)) would have to be constructed by means of
a trivial distribution function. Certainly, this cannot give any reasonable physical results.
For this reason moment equations are constructed by a reference to a Maxwell-like distri-
bution describing processes of simple shearing flows rather than real equilibrium states.
In contrast to, say, Grad’s 13 moment method of rarified gases such procedures are not
justified in any way. Moreover the questions of measurability of kinetic temperature, a
relation to the thermodynamical temperature etc. are not even asked as yet!©.

Within multicomponent continuous models an exchange of mass is described by mass
sources in partial mass balance equations. These contributions, as demonstrated for fluid
mixtures, must contain additional microstructural variables. This requires an extension of
the set of field equations. In many cases additional equations for microstructural variables
have the form of evolution equations. Then there is no need to introduce additional
boundary conditions. Such microstructural variables cannot be controlled, they develop
spontaneously from initial data. On the other hand, the latter can be usually easily
formulated because many microstructural variables are defined in such a way that they
vanish in thermodynamical equilibria.

Further in these Lectures, we present in some details a model of processes of exchange
of mass called adsorption. These processes appear in cases of components which, in
contrast to chemical bindings, form weak van der Waals bindings solely with the skeleton.
Such are, for example, processes of transport of many pollutants in soils. According to
the simplest model of these processes, developed by Langmuir, they are described by an
additional field of the so-called number of bare sites. In the case of materials with very
small diameters of channels adsorption processes possess a hysteresis loop in the relation
between the partial pressure of adsorbate in the fluid phase and an amount of mass
adsorbed by the skeleton and this plays a very important role in controlling technological
processes in such materials. Such loops are caused by capillary effects. For this reason,

16¢.g. see: N. Bellomo, M. Pulvirenti; Generalized Boltzmann Models in Applied Sciences: A Kinetic
Theory Approach (Modeling and Simulation in Science, Engineering and Technology), Birkhauser, Boston,
2000.
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they do not appear in materials with moderate and large channels which is characteristic
for usual soils but they do appear, for instance, in concrete.

As already mentioned above multicomponent models of porous materials contain
more than one velocity field. This yields field equations following from partial momentum
balance equations with a corresponding number of partial accelerations. Consequently,
one expects that in such models additional modes of weak discontinuity waves (acoustic
waves) have to appear. This is indeed the case. One of these modes was predicted by M.
A. Biot in 1941. Due to the tradition stemming from geophysics this mode is called P2
compressional (Biot’s) wave as the usual longitudinal wave registered in seismograms was
called P1. Existence of this mode was confirmed in numerous experiments. It has been
found out that it is the slowest of three modes P1, S (transversal wave) and P2. It is also
very strongly attenuated.

As consequence of existence of additional bulk modes there exist as well additional
modes of surface waves. Apart from the classical Rayleigh wave there exist the so-called
Stoneley waves, various leaky waves and, in general, a number of possible modes of surface
waves depends on properties of neighboring systems, i.e. on the structure of boundary
conditions. We discuss this problem further in these Lectures. Let us mention that surface
waves are much weaker attenuated than bulk waves and for this reason they are easier
attainable in measurements. In recent years one can observe a vehement progress in these
measuring techniques.

Couplings of dynamical properties of porous and granular materials with mass ex-
change between components play an important role in various combustion and explosion
problems. These are connected with the propagation of strong discontinuities such as
shock waves and combustion fronts in combustion of solid fuels or deformations of soils
due to impacts of meteorites. Models for such processes are still rather weakly developed.
Most important contributions are based on the model proposed by M. A. Goodman and
C. Cowin which refers to some additional microstructural properties called the principle
of equilibrated pressures. The model leads to a quasilinear hyperbolic set of equations
which admits the existence of shock waves. Incidentally, a similar model is used in the
description of avalanches, landslides and mud flows. However, apart from some simple
properties of propagation conditions, usually one-dimensional, results are rather scarce.

Some elementary properties of one-dimensional Rankine-Hugoniot conditions have
been also investigated within the frame of the model with the porosity balance equation.
However a comprehensive theory of shock waves is still missing and one of the reasons is
lack of a selection (entropy) criterion.

Many processes in porous and granular materials are connected with the development
of instabilities. They lead to fluidization of saturated sands, to the creation of patterns
in porous materials and to some instabilities, such as Saffmann-Taylor, in flows of fluid
components. As usual they are connected with nonlinearities appearing in the model.

One of the most spectacular phenomena accompanying earthquakes is the fountain-
like explosion of water and mud from the sand. It has been found that prior to this
phenomenon the character of permeability of the soil changes in an unstable manner. In
the first stage the homogeneity of the system breaks down and a pattern of chimney-
like channels with a very high permeability is formed. In the second stage one of these
channels becomes dominant and this leads to an explosion-like eruption of water from the
ground. This behavior seems to be connected with a nonlinear coupling of the diffusion
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velocity with the gradient of porosity.

Another class of instabilities appears in the model with the balance equation of
porosity. These are connected with the coupling between dynamical changes of porosity
and partial stresses in components. Let us mention one of those instabilities. In a case of a
Riemann problem the system develops soliton-like waves of porosity. These are connected
with the loss of symmetry of the front of propagation if the two-dimensional front is
concave. Most likely in the vicinity of the symmetry axis the system develops a mushy
region. Multicomponent modeling of porous materials is based on the assumption that
additionally to usual fields of theories of fluid mixtures there exists a microstructure which
is reflected in the simplest case by a single additional field of porosity and by solid-like
properties of one of the components. In some models this microstructural extension is even
broader and corresponding models contain, for instance, the so-called volume fractions
of all components, double porosity, tortuosity as a simplest measure of complexity of
geometrical structure of channels, couple stresses etc.

We begin the presentation of models of porous materials with an example of a two-
component system whose theory is based on the assumption of incompressibility of com-
ponents. Models of this art appear quite frequently in applications to soil mechanics or
glaciology.

First of all, let us make a comment on the calculation of averages in modeling porous
materials. The microstructure of these materials has usually characteristic dimensions
of an almost macroscopic nature. Typical dimensions of granulae or radii of channels
are in the order of micrometers and sometimes even millimeters. This means that we
can, in principle, apply a continuum model on this semimacroscopic level and consider
either a single component continuum (skeleton) or a mixture of fluids (fluid components in
channels of the skeleton). This is not being done because extremely complicated shapes of
channels practically rule out the possibility of formulation of boundary value problems for
semimacroscopic field equations. Instead we construct volume averages over the so-called
Representative Elementary Volumes. These are three-dimensional sets whose dimensions
are sufficiently large to be able to assume the randomness of the microstructural geometry
and, simultaneously, sufficiently small when compared with macroscopic dimensions in
order to be able to prescribe average properties to values of corresponding macroscopic
fields. In Figure 10, we show schematically such a REV-domain and the distributions of
the skeleton and channels on the semimacroscopic level. These distributions are described
by characteristic functions x® (Z,t) which, for the a-component, has the value 1 if the
point Z is in the instant of time ¢ occupied by the a-component and 0 otherwise. The
notation Z as well as X appearing further is characteristic for the Lagrangian description of
the multicomponent system which we present later in details. In the following derivation,
it is immaterial as we consider the time ¢ only as a parameter and the whole considerations
concern spatial properties of the system which may be represented in Lagrangian as well
as in Eulerian description. This issue will be made precise further in this Lecture.

Let us denote by M (X, ¢) the REV-domain which at the instant of time ¢ is located
at the point Z = X. The point X selecting M can be chosen arbitrarily but it is usually
convenient to make a special choice related to the geometry of REV. Namely, the shape
of REV-domains should be chosen in such a way that it does not deviate from natural
symmetries of the microstructure. For instance, in the most common case of isotropic
microstructure the shape should be spherical. Then M (X, ) is the ball of the constant
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radius R whose center lies at X at the instant of time ¢
M (X, t)={Z| X By & |Z - X| < R}. (514)

By this choice, R must be much larger than, say, typical diameters of channels and much
smaller that the macroscopic dimensions of the body.

A

/

Fig. 10: Schematic Representative Elementary Volume (REV).

Obviously, there is a problem of defining REV in the vicinity of the boundary as well
as the problem of the definition of the boundary 9B, itself. We return to this question
in the discussion of boundary conditions. However, it should be mentioned that these
problems yield the existence of boundary layers which are replaced by additional surface
quantities.

Now let us consider the construction of volume averages. For an arbitrary quantity
©® (Z,t) characteristic for the a-component we construct the average

=g [y @ (515

where V' = vol M (X, t) and, for simplicity it is assumed to be a constant. By means of
this definition of the volume average we have to define macroscopic gradients of quantities
(p*) (X, t) and their time derivatives. The latter is straightforward because we construct
instantaneous averages over the spatial domain. However the construction of the gradients
is more complicated. Let us choose an infinitesimal vector 6X which is constant over
M (X, t). This vector defines the shift of the REV-domain M (X, t). We have

1
W)X+ X) =3 [ @) @0V, -
M(X+6X,t)

1
S {/ O (Z,t) x* (Z,t) dVz+
VAl mxp
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+]{ ¢ (Z,t) X" (Z,t) Nz (Z,1) - 5dez} +0 (|6X°) =
OM(X,t)

“ l iv [ @ g 2\ _
=" (X t) + {A(X,t)D [0* (Z,) X* (Z,t) 6X] dV: } +0 (|6X])

() (X, ) + %5)(. / Grad [o° (Z.t) x* (Z.1)] dVy + O (|6X?) =
M(X,1)

= (") (X,t) + 6X- (Grad %) (X, 1) +

1
+—6X. ¢* (Z,t) Grad [x* (Z,1)] dVz + O (|6X[%) (516)
14 M(X,1)

where Nz is the unit outward normal vector to the surface OM (X, t). In order to evaluate
the last integral let us introduce the set

MO (X, 8) = {Z € M(X,0)x" (Z,1) = 1}. (517)
Then the above relation yields
(%) (X+6X, 1) — (¢%) (X, 1) = 6X- (Grad %) (X, 1) + (518)
1
+—6X- ¢ (Z,t)Nz (Z,1)dSz + O (|6X]%).
14 AMe (X H)NM(X,t)

We have used here the formula for the differentiation of the characteristic function x* (Z,t).
Obviously, the gradient of this function is zero in the interior of M®*(X,t) and
M (X, t) \M* (X, t), where this function is constant. One has to evaluate only the deriva-
tive in the direction orthogonal to the boundary OM® (X, t). We can do this using local
coordinates such that at every point of the boundary we choose the origin of the orthog-
onal frame with the coordinate £, whose unit base vector is N;. We demonstrate the
calculations using the following definition of the characteristic function in the vicinity of
the point £ =0

X (6,4) = 5 Jim [1 — tanh (ag)] (519)
where the dependence on the other two local coordinates is immaterial. Then
Grad [x* (Z,t)] = (Ngz-Grad[x*(Z,¢)])Nz = (520)
B G (1] N lim —o | Njy=
¢/ SR P 2 a—o0 cosh” (af) [

= _68M0‘(X,t) (6) NZ>

where dppqx ) (§) is the Dirac-delta function for the surface OM® (X, t). This yields the
transition from the volume integral in (516) to the surface integral in (518).

The relation (518) for the directional derivative of the average (p®) gives rise to the
following formula

VéX - inﬁnitesimal6X' Grad <90a> (Xa t) =
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1
= 6X. (Grad ¢*) (X, t) — V(SX- e (M) ©*(Z,t)Ny (Z,t) dSy (521)
« t m t

To demonstrate the meaning of this relation let us consider a special case in which
©*(Z,t) is piecewise constant. Then the first contribution vanishes identically and in
the second one most contributions vanish due to the outward orientation of the vector
Nz (Z,t). There remain only those whose counterpart lies outside the domain M (X, ).
We explain this argument in the one-dimensional diagram of Fig. 11. Contributions of
M= (X, t)-sets: (2),...,(6) vanish due to the opposite orientation of the normal vector on
their ends. There remain the contributions of the set (1) and of the set (7) because their
ends lie beyond the set M (X, t) and this gives the contribution ¢ — ¢ of the integral in
(521), where ¢f, % are values of ¢ on the subsets (1) and (7), respectively. As V is in
this example identical with the length L of the interval in Fig. 11, we obtain the average
value of the gradient identical with (% — ¢f) /L.

Ap=

v

Fig. 11: Construction of macroscopic gradients in 1D-case

It is obvious that this construction is extremely singular. One cannot expect ever any
differentiable macroscopic functions to follow from such a construction. Consequently, it
is essential that characteristic dimensions of the microstructure are much smaller than
macroscopic increments [6X|. In addition, the heterogeneity of the function p*(Z,t)
should be sufficiently small for the contribution (Grad ¢®) (X, t) to be negligible in (521).
Such a contribution is characterized by the parameter of heterogeneity of the microstruc-
ture epeter = |(Grad ¢*) (X, t) / Grad (¢*) (X, t)| which must be much smaller than the
parameter €micro = R/l < 1, where [ is the macroscopic characteristic length. If these
conditions are satisfied we can speak about macroscopic fields as volume approximations
of real semimacroscopic quantities. We shall not discuss any further the mathematical
structure of such constructions and assume sufficient smoothness for all operations which
we perform on the fields.

We illustrate the above considerations on some simple models of poroelastic materials
with an incompressibility assumption. As in all continuum models we define in Eulerian
description fields on a common domain B; which is time dependent and corresponds to a
part of the three-dimensional space of motion occupied in a current instant of time by all
components. In the case of semipermeable boundary 0B; parts of components which flow
out of this domain are considered separately and one has to solve contact problems.

In a purely mechanical model which we want to consider in this Lecture processes
are described by two current partial mass densities p; (x,t), pf" (x,t),x € B, C R%,t €
T C R, for the skeleton and the fluid component, respectively, and by two velocity fields
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v¥(x,t),vF (x,t) for these two components. All these fields are macroscopic which means
that they are defined on the common domain B; and, for instance the fluid mass and the
skeleton mass contained in a subdomain P; C B; are given by the Lebesgue integrals

Py = [ ofav. Sy~ [ g (522)
Pt Pt

In the definition of incompressible components one uses a ” pseudomesoscopic” quan-
tities which are called realistic mass densities. We denote them by pP® and pf'F. They
are also defined in each point of the domain B; and not in points of the skeleton or of the
fluid, respectively. They may be related to mesoscopic (or semimacroscopic) quantities

PSR pER by the following formulae

1
SR (x.t) = 7/ SR (z,1) (1 —x") dV, 523
1
p o (x,t) ) Lo, ” (z,1)
where
M, = MPUME, MPnME =0, (524)
F
VM) o= [ v V)= [ e an,
M My

and x¥ (z,t) is the characteristic function for M{". M, is the image of M (X,¢) if we
choose to describe the motion of the skeleton, as we customarily do in the Lagrangian

description, by the function of motion £° (.,¢) : By — B;. Then M, = M (£ (x,t) ,¢).
In contrast to pPf, pf'® which do not possess any physical interpretation in points of the
real fluid for the first quantity and in points of the skeleton for the second one, the mass
densities p>%, pE'R are defined solely in points of the real skeleton, and of the real fluid,
respectively. Consequently, they possess a usual physical interpretation. For instance,
pIE is equal to 100025 for water in normal conditions.

It is easy to check the following relations

V(M) =1-n)V(My), V(M)=nV(M,), (525)

1 P /
- v, V(M,):= [ av.
S M) /Mf‘ M=

The quantity n defined in (525)3 is called the porosity.

Consequently
1
o= M) /M o (L= x") dV = (1 =n) %, (526)
1 FR_F FR
Pt V (M,) /.A/ltp X Pt
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Clearly, the smeared-out, partial mass densities p;, pf” are related to the common macro-
scopic volume in the current configuration. Their definitions contain the full volume of
REV.

By means of the above relations we are now in the position to introduce the notion
of incompressibility appearing in some theories of porous and granular materials. Namely
it is assumed for such models that

PP = const., pf = const. (527)

Consequently the current mass densities pf', p{ are not independent fields. They can
be reduced to the single field of porosity n. In such a case partial mass balance equations
(without mass exchange!) reduce to the following form

1 (0p , _ on ,
p;q_R{a_;+d1V (pfvs)} = —E—Fdw ((1—n)vs) =0, (528)

L [op] | on .
PR {8—; +div (pva)} = o +div(m") =0

We can also combine these two equations to the following one
div (nv” + (1 —n)v®) = 0. (529)

If we consider equation (528); as a candidate for the field equation for the porosity n
then equation (529) is a constraint condition of the model. This condition yields certain
limitations on constitutive relations appearing in the phenomenological model which are
not always physically and mathematically acceptable. We show here two examples of
models which are thermodynamically admissible. The first one is used frequently in soil
mechanics and in the description of suspensions. In order to obtain field equations we need
momentum balance equations which have the following form in the Eulerian description

0 (pv?)
ot
AAS
ot

+div (p)v® @ v — T%) = p°, (530)

+div (o vF @ vF = TF) =p", p*+p" =0,

where T, TF denote symmetric partial Cauchy stress tensors, p°, p” are momentum
sources. We make the assumption that these quantities satisfy the following constitutive
relations

T = T (n, gradn, eS,W) ., TF=1F (n, gradn, €, W) , (531)

where the symmetric deformation tensor of the skeleton e satisfies for small deformations!”

the equation
oe®
ot

7 e. HeSH < 1, where HeSH = max {)\(1), A2, )\(3)} and A, A®) \B) are eigenvalues of e°.

= symgrad v°, (532)
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and w := v — v¥ is the relative velocity of components.

By means of the second law of thermodynamics one can show that the constraint
(529) is thermodynamically admissible. This would not be the case were constitutive
relations (531) independent of grad n. In this sense we deal with a higher gradient model.
If we assume in addition the isotropy and linearity with respect to both vector variables
gradn and w then we obtain a relatively explicit form of constitutive relations

T° = —(1-n)pl+ T (n,e”), TF=-—npl+ Ty (n,e), (533)
p5 = —pf=n (n,es) w—pgradn,

where Tfff,Tfff are the so-called effective partial stress tensors. The second one is
frequently assumed to be zero and the first one, if it is linear (small deformation of the
skeleton Hes H < 1), is given by a Hooke’s law with material coefficients depending on the
porosity n. The permeability coefficient 7 is also usually assumed to be constant. The
pore pressure p is the reaction force on the constraint.

In order to account for instabilities of the microstructure one can try to extend the
above model by accounting for nonlinear dependence on the relative velocity w. This is
justified because such instabilities appear by flows of a high intensity of the fluid com-
ponent. In a continuum model the latter corresponds to contributions pf'w. Such an
extension yields in the lowest approximation the following constitutive relations

T° = —(1—n)pl + T (n,€°) +ow R w, (534)
T = —npl—i—Tfff (n,es) — W QR W,
p° =—p" =7 (n,e) w— (p+T'w-w)gradn,

where 6 and I' are additional material parameters.

Such a model seems to be appropriate to describe, for instance, instabilities leading
to fluidization and eruption in water saturated sands by earthquakes.

The above described class of models shall not be discussed any further. In spite of
their important role in some problems of soil mechanics these models have some faults
which do not seem to be acceptable in cases of wave processes. Most important of them
is the lack of hyperbolicity (the part of the operator connected with the constraint is
elliptic). This leads to a reduced number of real eigenvalues corresponding to speeds
of propagation and, consequently, to the lack of certain modes of propagation of weak
discontinuity waves. In particular the P2-wave and some important surface waves cannot
be described by such models
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Lecture 11: Thermodynamics of poroelastic materials
with the balance equation of porosity

In this Lecture we present the model of porous materials developed in the recent years
for an elastic skeleton and ideal fluid components. We present its nonlinear foundations
for a system with A fluid components. Only a few basic thermodynamical features will
be discussed in order to place the model within the rational extended thermodynamics.
Thermodynamical details will be discussed in further Lectures for two-component models.

Geometric nonlinearities connected with possibly large deformations of the skeleton
indicate that the convenient way to describe processes is to define fields on a reference
configuration By of the skeleton. For such a configuration the deformation gradient of
the skeleton is defined as the unit matrix: F¥ = 1. Hence we formulate the Lagrangian
description of motion of the porous material. Let us mention in passing that there are
papers on this subject in which the Lagrangian description is introduced separately for
each component. It is not only an unnecessary formal complication but sometimes it
yields erroneous results. We do not present this approach in these Lectures.

The aim of the model is to find the following fields defined in points X of the reference
domain By C R? and in instances ¢ of the time interval 7 C [0, c0):

1. mass density of the skeleton referred to a unit reference volume: p¥ (X, t),

2. mass densities of the fluid components referred to a unit reference volume: p* (X, ),
a=1,..., A,

3. velocity of the skeleton: %° (X, ),

4. deformation gradient of the skeleton: F° (X,t), J°:=detF% >0,
5. velocities of fluid components X* (X,t), a=1,..., A,

6. porosity: n(X,t),

7. temperature common for all components T" (X, ?).

Consequently a thermomechanical process is described by the mapping
w: (X, 1) — R W= {ps,pa,ﬁS,FS,f{a,n,T} , a=1,..., A (535)

Field equations for these fields follow from balance equations which we proceed to
formulate.

Balance equations are formulated in their global form on material domains of compo-
nents. For porous materials in the Lagrangian description the family of material domains
for the skeleton is defined as a class of subsets of By which is time independent and satisfies
conditions identical with those of the classical continuum mechanics. Material domains of
the skeleton are time independent because the reference configuration By is defined with
respect to the deformation gradient of skeleton F¥. For this configuration F* = 1.

It is not the case any more for fluid components. They have different kinematics
than the skeleton which means that domains in the space of motion containing during the
motion the same particles of a particular fluid component move with respect to material
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domains of the skeleton. In the Eulerian description the velocity field for this motion is
given by the difference v® (x,t) — v (x, t) for the fluid component o, where v* (x,t) is the
velocity of the fluid and v¥ (x, t) is the velocity of the skeleton at the same spatial position
x and at the same instant of time ¢. This relative motion yields the time dependence of
material domains of fluid components projected on the reference configuration By. The
projection is carried by the function of motion of the skeleton

VX eBytecT: x=f(Xt)=

£5 (X
iS:a ( >t)

— F¥ = Grad f* (X, 1), TR

(536)
whose existence is assumed in the model. The condition for the existence of the function
of motion f° shall be formulated later.

In order to describe the kinematics of material fluid domains projected on the ref-
erence configuration we consider the mappings shown in Fig. 12. In the current con-
figuration B; = f°(By,t) we consider an arbitrary subset P® C B; which is material
with respect to the component «, i.e. by an infinitesimal increment of time At it be-
comes PP a, i= {X EBppae| x — v* (x,t + At) At € P}, These two subsets of the space
of current configurations are maps of the subsets P (t) , P (t + At) of the reference con-
figuration By, one at the instant of time ¢ and the other at the instant of time ¢ + At.
Obviously, they contain the same particles of the component a.. This construction is shown
in Fig. 12. Now, we choose an arbitrary particle of the component o which occupies the
position x €P;* at the instant of time ¢, i.e. its position in the reference configuration is
X = 571 (x,t). Its position x + Ax at the instant ¢ + At can be written in the form

X+Ax = x+%X*(Xt)At =5 (X + AX,t + At) =

S
= x4+ Gradf® (X, ) AX+%A1& = (537)

— x+FAX + %At

Fig. 12: Projections of material domains of the a-component (pull-back)
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Consequently, the set P*(t) C By is endowed with the kinematics defined by the
following velocity field

. AX N (e _ S-1[(sa .S
VX € By : I%IEOE—.X (X, t) =F>" (%" = X°). (538)

Obviously, in the above relations we were using the following transformations
%5 (X, t) =vo (£ (Xt),t), X*(X,t) =v*(£5(Xt),t). (539)

In order to appreciate the operational meaning of this transformation we formulate
balance equations of mass for all components. They have the following form

— [ pfav = / poav, (540)
dt 735‘ 'pS

for every material domain of the skeleton P C By, and

d
S v = / prdv, (541)
dt Jpeq) Pa(e)

for every material domain of the a fluid component P (¢t) C By, « =1,...A. In the
above relations p°, p* are the mass sources which satisfy the following bulk conservation
law

A
VX € By, t €T : Zﬁ = (542)

Time dependence of material domains for fluid components yields the following rules
of time differentiation

d
— deV—/ 0 sav,
PS

dt 735‘ 815
d 0 .

pedV = / pedV + % PN - X dS, 543
dt Jpag Pot) at” aPe(t) (543)

where N denotes the unit normal vector field of the boundary 0P (t).
These relations yield the following local form of mass balance equations for a =

1,..., A,

aS ~ 9 aNro A
%:ps, 6L+D1V< X)—p7 (544)

in regular points (almost everywhere) of By, and

Ul =0, [[p (X nN-0)]]) =0, (545)

in points of singular surfaces moving through the reference configuration B, with the local
speed U. The brackets [[---]] denote the difference of finite limits of quantities in these
brackets on the positive and negative side of the surface (comp. (48)).
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In a similar manner we obtain the following partial momentum balance equations in
their local form. For the regular points of the reference configuration B,

(9 S¢S
('0 X ) —DiVPS :ﬁS+prS7
ot
0 (po%%) A
2P =) | Div (po‘fco‘ ® X* — PO‘) =p b, P P =0,  (546)
ot £

and for points on singular surfaces

p°U [[£%]] + [[P®]] N =0,
o (X2 N = U) [%]) - [P N =0, (547)

In these relations P®, P® denote partial Piola-Kirchhoff stress tensors, b®, b® are
partial mass forces, and p°, p* denote the momentum sources. Relation (546)3 expresses
the bulk conservation of momentum.

We do not need to present details of partial energy balance equations. Under the
assumption of a single field of temperature we need solely the bulk energy conservation
law. The derivation is based on a principle of the theory of mixtures that bulk quantities
must be defined in such a way that balance equations for these quantities have the form
of classical conservation laws of the single component continuum thermodynamics.

Bearing this principle in mind we define the following bulk quantities

A A A
pr=pT+ Y o pki=pTKT Y % pXi=)poXe, (548)
a=1 a=1 a=1

which are the bulk mass density, the bulk momentum, and an objective relative momen-
tum connected with the reference of the motion to the skeleton rather than to local centers
of gravity;

A
P - —PI—FS{pSX®X+Zpa<XO‘—X)®(XQ—X>}, (549)

a=1
A
P, : =P+ P
a=1

this is the bulk Piola-Kirchhoff stress tensor with the so-called intrinsic part Py;

A
1 . . . . . .
e (o) e (5 ()
a=1
A
per = pe’ 4+ Zpaea, C* .= FTF%, (550)
a=1
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this is the bulk specific internal energy with the intrinsic part pe;. The symmetric tensor
C?® is the right Cauchy-Green deformation tensor of the skeleton;

Q:=Q,+ % {_psx @ X @)gg o (X0X) ® (X0 X) @ (X*-X) } s,

A

A
Q : =Q°+ ZQO‘ — pSESX+Zpa5a (XO‘ — X) + (551)
a=1

a=1

A
+PSTFX- Y P (Xa _ X) ,
a=1

and this vector describes the bulk heat flux in the Lagrangian description. Again the
intrinsic part Q; was separated.
The bulk balance equation of energy can be now written in the following form

0 1 1 .
57 (E + 53:’2) + Div {p (E + 53:’2) X+Q- PTX} = pb - X+pr, (552)

where

A
pb = pb% + 3 " p b,

a=1

A A
pr;::pSTS<+—j£:[f%i¥—‘prS':FS)(+‘§£:}flba’:FS ()(a _')()7 (553)

a=1 a=1

and r¥,r® denote the partial radiations.
We skip the presentation of the energy condition on a singular surface because it shall
not be used in these notes.
In the Lagrangian description and with the choice of fields (535) we have at disposal
the following integrability condition
OF®
—; = Grad %5 (554)
This condition yields the existence of the function of motion (536). By the choice (535)
of unknown fields this relation plays the role of the field equation for the deformation
gradient F*.
It is useful to write equation (554) in the following weaker form
d
— | Fodv = 7{ %% @ NdV, (555)
dt PS oPS
for every material domain of the skeleton P° C By. This balance equation yields the
following condition in points of singular surfaces

UlF?]] = - [[¥]]eN. (556)
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This relation is usually derived by means of the Hadamard Theorem for singular surfaces.

Before we present remaining equations of the model let us discuss some properties
of the objects which we have introduce above. It is easy to notice a striking similarity
of the structure of bulk quantities to that appearing in the classical theory of mixtures.
This concerns terms with explicit contributions of velocities. However in contrast to the
mixture theory all velocities of the present model are objective because X and X are
relative velocities. Due to constitutive relations these velocities may be also present in the
implicit form in intrinsic parts of stress tensors, internal energy and heat flux vector. It is
also important to notice that the explicit dependence is at least quadratic. If we consider
processes with small deviations from the thermodynamical equilibrium these contributions
can be neglected.

In order to turn over mass balance equations (544), momentum balance equations
(546), energy balance equation (552) and compatibility condition (554) into field equations
for fields (535) we need constitutive relations for partial stress tensors, momentum sources,
the bulk internal energy and the bulk heat flux. If we had these relations we would have
14 (A + 1) equations. Consequently we would be missing one equation. This is connected
with the fact that the porosity n is the additional microstructural variable and this requires
an additional equation. We proceed to formulate this equation.

We have seen in the previous Lecture that changes of porosity may be described by
a balance equation (528). This was the consequence of incompressibility of components.
If the components are compressible we are missing this equation. Compressibility of
components is an important feature in the wave analysis and many other problems of
practical bearing and linear models (e.g. Biot’s model which we present further in these
notes) yield in such cases a relation for porosity which does not coincide with this derived
for incompressible materials. In addition the porosity equation following from the mass
conservation law does not contain a source. Such a source would describe a spontaneous
relaxation of porosity. We know from experience with other microstructural variables that
this is an important property yielding evolution equations for such variables

All these arguments can be made more precise if we motivate an equation for porosity
by a transition from a semimacroscopic model. We do so by means of averaging over the
Representative Elementary Volume.

The porosity is the fraction of void spaces in the skeleton. Consequently, if x* (Z,t)
denotes the characteristic function of the solid component on the semimacroscopic level
(see: Lecture 10) then we have

n (X, 1) = % /M @), (557)

where the averaging is performed over the reference configuration of the skeleton, i.e.
X €By and it means that the points Z of the real solid move within M (X) according
to semimicroscopic equations of motion. For the purpose of motivation of macroscopic
equations it is not necessary to formulate them.

We proceed to investigate time changes of porosity. We have

on 1 oS .
" <_i — Gradz X - z) dVy, (558)

at V Jux \ ot
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where Grad;z denotes the gradient with respect to the variable Z and 7 is the velocity
of the real point of the solid. According to (520) we can transform this relation in the
following way

on .
- L memon )i
ox?° 1 .
- = Xy, 2 N, - ZdSy —
1 ox® 1 .
- = X v, — — Ny - ZdSy;+
V Jmx) Ot V' Jomsnmu(omnms)
1 .
—+— Ny - ZdSZ =
V' Jomnms
1 o 1 . 1 .
E— ——dVy,; — — Div; ZdVy; + — Ny - ZdS5. 559
V Jmxy Ot 2TV Jus vz BT VNV z (559)

These three contributions have the following macroscopic interpretation. The first one
describes the source of porosity caused, for instance, by microstructural relaxation pro-
cesses. We denote this contribution by n. The second contribution is related to the
relative motion of real components on the semimacroscopic level. Bearing the relation
(521) in mind, we can identify this term with the contribution of the macroscopic fluz of
porosity J, i.e. we can write approximately

L Div ; ZdVy = DivJ. (560)
V' s

On the macroscopic level this contribution results from the relative motion of components.
Finally, the last contribution is related to internal deformations of the skeleton. As we
consider porous materials whose skeleton is elastic this contribution, in contrast to the
other two contributions, must appear in equilibrium as well as nonequilibrium processes.

We call it equilibrium changes of the porosity and denote by Ong/0t, i.e.

1
- N, - 7ds, — 2.

561
V BMOMS 8t ( )

Bearing the above remarks in mind we introduce in regular points the balance equation
of porosity in the following general form

oA,
ot

where A,, is the deviation of porosity from the equilibrium value, the latter together with
the flux of porosity J and the source of porosity n must be given by constitutive relations.
We expect that n tends to an equilibrium under constant external conditions. The equi-
librium value of porosity ng satisfies the equation (562) with the flux and source equal to
zero. The latter as we show later follow indeed from the second law of thermodynamics.

Making an assumption that sources of porosity do not carry surface singularities we
can write the following compatibility condition for porosity on such surfaces

UllAn]] = [I]]- N =0, (563)

. Ay—n—np, (562)

131



which may suggest the form of natural boundary conditions for porosity.

It is clear that the averaging procedure does not specify the balance equation of
porosity but it motivates its structure. This is the typical situation for models which are
not based on kinetic microscopical models.

Let us collect balance equations which we have discussed in this Lecture. They are
shown in the Tables 11 and 12.

Table 11: Balance equations for the A + 1-component porous material in reqular points
of the reference configuration X €B

mass of S %’TS =p°
mass of o %% + Div p*X* = p*
S¢S
momentum of S % — DivP? = p° + p°b*
momentum of « w + Div <p°‘)'ca ® X — PO‘> = p* + p“b®
. . . : T, .
bulk energy 2p (e +1i?) + Div {,0 (e+34)X+Q-P x} = pb - X+pr
integrability of F* % = Grad X°
porosity % +DivJ =n

Table 12: Balance equations (dynamic compatibility conditions) in points of the
singular surface

mass of S U Hpsﬂ =0
mass of o pa(Xa-N—U> =0
momentum of § p°U HXSH + [ PSH N =0,
momentum of a | p° (Xa N-— U) ([%°]] — [P N =0
integrability U HFSH = — HSH ® N
porosity UlA)] = [J]]-N=0

As already indicated we do not quote here the dynamic compatibility relation for the
bulk energy.

In order to construct field equations for the fields w listed in relation (535) we have
to solve the closure problem, i.e. we have to add to balance equations of the Table
11 constitutive relations. We shall do so for some important particular cases. As the
first closure we select the simplest possible one which yields a possibility of exploiting the
second law of thermodynamics in a way typical for the rational extended thermodynamics.
The other cases shall be investigated by means of the classical approach to the exploitation
of the second law of thermodynamics.

In the case of the extended thermodynamics method we proceed as follows.
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Let us define the following vectors
1
Fo = {ps,pa,psﬁs,paﬁa,p <6 + 59’62) ,FS,An} e R,

Frc i= {0,0°X" - Gie, PG, (%" 0 X = P*) G,

<,0 <€ + %ﬁ) X+Q-— PTf() G, %50 G, TGl e RUS

K = 1,2,3,
f .= {p“S’ﬁa’Iij’f)a’O’ 0,7} € RAA+15 (564)
fept 1= {0, 0, prS7 p°b%, pb - % + pr, 0, 0} c %414-5-15’

where G denote unit basis vectors of Lagrangian coordinates. Then the balance equa-
tions can be written in the following compact form

OF O
ot 0XK

where {X K } K195 denote Lagrangian coordinates. For convenience we have chosen again

=+ feut, (565)

a Cartesian coordinate system.

In procedures of extended thermodynamics, as we presented in Lecture 7, it is assumed
that the vectors defined by (564) are sufficiently smooth functions of the vector w of
unknown fields. Then the closure assumption has the form

Fo=Fo(w), Fx=Fg(w), f=fFf(w). (566)

In the case under considerations we obtain the model of poroelastic materials without
heat conduction. In order to incorporate the heat conduction we would have to introduce
either an equation for the heat flux or a dependence on Grad 7" as a constitutive variable.
Similarly we would have to extend the model if we wanted to describe viscous or plastic
effects - we would have to add equations for partial stresses or a dependence on gradients
of partial velocities. Further we present models in which some aspects of such exten-
sions are indeed discussed within a classical approach to the problem of thermodynamical
admissibility.

Let us stress that the structure of constitutive relations (566) is one of the most
characteristic features of extended thermodynamics. Namely the constitutive variables
are fields themselves but not their derivatives as it is always the case in ordinary nonequi-
librium thermodynamics.

In order to expose the structure characteristic for extended thermodynamics we con-
sider a simpler case of the closure in the form (566) under the assumption that processes
are isothermal. This means that we leave out the temperature in the definition (535) of
w and denote it then w;, as well as we ignore the energy balance equation.

The set of equations (566) for w;, without energy balance has thermodynamically
the same structure as the corresponding set of extended thermodynamics. For this reason
we can apply the same principles connected with the thermodynamical admissibility.
They can be formulated as follows:
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- entropy inequality: there exist a nontrivial entropy function hy and a flux
H =Hy G such that for each thermodynamical process (i.e. for each solution
of field equations) the following inequality is satisfied

oh
a—t” +DivH >0, hog=ho(wi) €R, H=H(w,) eR® (567)

- convexity and causality: the entropy function hy = hg (u;s) is concave, i.e.

9?hyg

v 6Q%IZJL(AJrl)7 0: R
v v 7& 8WZ~58W¢S

(vev) <0, (568)

- principle of relativity (Galilean invariance of field equations).

The last principle yields a decomposition of all quantities of the model into two
parts: a convective part which depends explicitly on the absolute velocity fields and a
nonconvective part which does not depend on absolute velocities at all. This principle
is satisfied identically in the case of Lagrangian description because we deal solely with
relative velocities.

Entropy inequality (567) is exploited by means of Lagrange multipliers which elim-
inate the limitation of this inequality to thermodynamical processes. According to this
procedure requirement (567) is equivalent to the following inequality for all fields, and
not only for solutions of field equations

Vw;,, € RUA . 04 R A [ Z 0L 2K Fl > A eRMAHD
v ot | 9XK ot Toxk =Y ’

H = HxGp, (569)

where A are the Lagrange multipliers, and functions of w;,. As mentioned above Fo, Fx, f
are truncations of functions (564) to the subspace R4+ without the energy balance

equation.
The solution of the above problem has the following form

oA D%hg
awis B awisawis’

dhg = A-dFy, dHx =dFg-A — (570)
i.e. according to (568), the map w;s — A is globally invertible. Hence after Legendre
transformation

hy(A) = A-Fo—ho, Hi(A)=AFx—Hy —

~ ohy = OHg ~

Fo=—=2, Fx=——, Af(A)>0. 1
Consequently, the functions Fo, and Fx which determine the left-hand side of the

field equations are given if the four-potential (hy (A) , Hy (A)) is known. It leaves unspec-

ified but restricted by the dissipation inequality (571)5 only the sources f (A) of the field

equations. This is one of the most important consequences of the second law within the
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rational extended thermodynamics. Moreover relations (571) yield the symmetry of field
equations for the unknown vector A:

82hy OA  O°H), OA

OAOA O | OAOA IXK
Consequently under the second part of the condition of thermodynamical admissibil-
ity (i.e. nonsingularity of matrix Bfig&) the system is symmetric hyperbolic.

It remains to invert the variables, i.e. to find the map A — w;,. This is usually a
very difficult technical problem. For this reason we use further a classical approach which
does not require the execution of the last step.

Let us mention that the residual inequality (571)5 defines the dissipation. This func-
tion vanishes in states called the thermodynamical equilibrium states. Consequently the
necessary and sufficient conditions for the thermodynamical equilibrium within the model
discussed in this Section have the form

= f. (572)

il = 0 fora=1,... A
Pl = 0 fora=1,... A (573)
nly = 0.
They follow directly from definition (564)s of the vector f truncated to f.

In the following Lectures we discuss some particular models following from the above
thermodynamical scheme.
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Lecture 12: Two-component poroelastic materials: de-
pendence on objective accelerations and porosity gra-
dient

In order to see the structure of field equations for nonlinear nonisothermal processes
in porous materials we consider a particular case of the two-component system which
describes thermomechanical processes in saturated poroelastic materials. This thermody-
namical construction is connected with the classical Biot model of poroelastic materials.
Biot’s model and some of its linear modifications shall be presented in the next Lecture.
However, we have to mention two characteristic features of Biot’s model motivating the
construction which we present further. Within a purely isothermal framework Biot pro-
posed a two-component linear model in which partial momentum balance equations are
coupled by three terms. The first one, diffusive forces, following from the relative motion
of components, is classical. The second one follows from the assumption that the mo-
mentum source contains a contribution of the relative acceleration of components. This
yields the consequence that the matrix of partial mass densities is not diagonal. The oft-
diagonal part is assumed to be symmetric. The third one appears in partial stresses and
describes the reaction of one component on volume changes of the other. This coupling
is also assumed to be symmetric.

It is rather straightforward to show that the second contribution violates the principle
of material objectivity and the third contribution contradicts the second law of thermo-
dynamics. However, one can construct a nonlinear model whose linear limit is identical
with the Biot model. We present this construction in this Lecture. In order to simplify
technicalities, we present this construction in two separate steps. First, we construct the
model with a contribution of relative accelerations and then a model with couplings of
partial stresses.

A nonlinear objective model with a contribution of relative accelerations is thermo-
dynamically admissible if we add some nonlinear contributions to partial stresses and to
the free energy. They reflect in the simplest manner the existence of fluctuations of the
microstructural kinetic energy caused by the heterogeneity of momentum in the represen-
tative elementary volume. The existence of such fluctuations as a result of tortuosity of
porous materials has been indicated by O. Coussy in 1989'8. However, the constitutive
part of a model based on such considerations has not been presented. There exist some
attempts to derive Biot’s model with the contribution of relative acceleration by means
of Hamilton’s principle based on the fluctuation kinetic energy. As the true variational
principle does not hold for dissipative systems the dissipation through fluctuation and
diffusion is accounted for by a pseudo-potential and a pseudo-variational principle. This
does not seem to be the right way of handling irreversible processes. For this reason we
rely rather on the nonequilibrium thermodynamics in our considerations.

We consider a two-component continuum consisting of a solid skeleton and of a fluid.
As in the previous Lecture, the motion of the skeleton is assumed to be described by the
following twice continuously differentiable function

x=Ff(X,t), XecB, teT, (574)

180. Coussy; Poromechanics, Wiley&Sons, 2003.
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where B, denotes the reference configuration of the skeleton and 7 is the time interval.
The velocity, the acceleration and the deformation gradient of the skeleton are defined by
the relations

.S a_fs ),és — 8)'(5

ot’ ot’

Certainly, the value F¥ = 1 corresponds to the reference configuration for, say, t = ¢, in
which 5 (X, ) = X.

Motion of the fluid is described by the transformation of the Eulerian velocity field

vl = v (x,t) defined on the space of current configurations f° (By,t) of the skeleton.
We have

F* := Grad f°. (575)

vi=vF (£°(X,1),t) = %7 (X, 1). (576)
The acceleration of the fluid is then given by

RN, s JF X F S—1(4F _ 48

%' = —- + X Gradt”, X':=F (%" —%%), (577)

where XF is the Lagrangian velocity of the fluid with respect to the skeleton.
We proceed to determine the transformation rules for the above quantities specified
by the Euclidean transformation rule
x"=0(t)x+c(t). (578)

The relations (575) and the time differentiation of the relation (578) yield the following
quantities in the new reference system

F5 = OF5, %% = 0%+ 0x+¢& £ =085120%" +Ox+¢,  (579)

where the dot denotes the time derivative.
We assume that the transformation rule for the velocity field of the fluid component
has the same form as it does for the skeleton

£ = 0%F + Ox + ¢. (580)
Consequently
%S =0 (%" -%%) = XM=X" (581)

Bearing these relations in mind we can now easily derive the transformation of the
acceleration of the fluid. We obtain immediately

¥ = % (Och +Ox + é) + X . Grad (Och +Ox + (':> = (582)

— 0% +20%" +Ox +¢,
where the definition of the Lagrangian velocity has been used.

Due to the presence of contributions dependent solely on the choice of the frame we

say that velocities %%, % and accelerations %°, % are nonobjective. Consequently, their

difference is also nonobjective. We have

)'éF* o )'éS* -0 ()%F - )'&S) + 20 (ch _ 5(5') . (583)
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For this reason the difference of accelerations cannot be used as a constitutive variable in
a construction of the macroscopic model of a two-component system.
If we take the gradient of the transformation relations for velocities we obtain

Grad %% = O Grad%® + OF° = O =Grad (£ — O%%) F5 1,

Crad %" = O Grad%" + OF° = O =Grad (" — O%")F"'.  (584)
Consequently, we can write

20 (" —%%)=(2-3) O (*" —%%) +;0 (" - %°) =

= (2 —3) Grad (™ — 0%") X* + ; Grad (x** — 0x") X7, (585)

where 3 is arbitrary.
Substitution of this relation in (583) yields

% — %5 — (2 —35) XF . Grad ™ — 3X7 - Grad x5* = (586)
-0 (xF — %5 (2 5)XF . Grad ¥ — ;XF . Grad>’c5> .

It means that the quantity

a, = % ()’(F — )’(S) + X . Grad %" — (2 — 3) X - Grad %" — 3X - Gradx® =
) . ,
== (X" —%%) — (1 —3) X" - Grad %" — ;X" - Grad %°, (587)

is objective, i.e.
a. = Oa,. (588)

We call this quantity an objective relative acceleration. As an objective variable it can be
incorporated into the set of constitutive variables. Obviously, there exists a class of such
accelerations specified by the constitutive coefficient j.

It is easy to see that a linear momentum source P in an isotropic material may
contain a term pdya, ~ pf L0 (X — %%) as required by relations of Biot’s model. The
open question is if the second law of thermodynamics admits this type of contribution in
a fully nonlinear model.

As we have already mentioned the nonlinear poroelastic two-component model re-

quires the formulation of field equations for the following fields
V= {pF %% %" F* T,n} for (X,t) € ByxT, (589)

where pf" is the partial mass density of the fluid per unit volume in the reference con-
figuration of the skeleton, i.e. in the current configuration it is given by the relation
pl = pF'J5=1 J5 ;= det F¥. T is the absolute temperature of the medium common for
both components, and n is the current porosity. Other symbols have the same meaning
as before.
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The partial mass density of the skeleton in the reference configuration, p°, does not
appear among the fields because it is constant in a homogeneous material without mass
exchange between components.

These fields are assumed to fulfil the following set of balance equations

F._ op” . F~¢FY _
R = = +Div (p"X") =0, (590)
o%S
M5 = pS% _DivP’—p=0, (591)
F F a)’cF T F L F . F ~
M" :=p W—l—X -Gradx" | — DivP" +p =0, (592)
B .
B : =0 +DivQ—P%. Grad%® — P" - Grad " — (F5'p) - X" = 0, (593)
p o =p "+,
OFS
F:= —— — Grad %% =0, (594)
oA, : R
N = 5 +Div]—n=0, A,:=n-—ng, (595)

where P®, P denote the first Piola-Kirchhoff partial stress tensors, P is the momentum
source, € is the specific internal energy per unit mass of the mixture, Q is the heat flux
vector, ng describes the equilibrium porosity, J is the porosity flux, and n is the porosity
source. The porosity balance equation (595) yields the model essentially beyond the frame
of Biot’s model due to the contribution of relaxation source 7.

As we show in the next Lecture, changes of porosity predicted by the linearized poros-
ity balance equation are identical with those following from Biot’s model and Gassmann
relations provided the relaxation time of porosity goes to infinity (i.e. 7 = 0). However,
it should be mentioned that many other approaches to the problem of evolution of vol-
ume fractions, porosity, etc. appear in the literature. One of the most popular forms of
such an evolution equation follows from the so-called principle of equilibrated pressures
introduced by Goodman, Cowin, Nunziato, Passman and others. Even though in some
applications such an approach may by advantageous to the porosity balance, we do not
discuss it any further in these Lecture notes.

In order to obtain field equations from the above balance equations we have to specify
constitutive relations for these quantities, i.e

F = {P57PFaf)a57Q7nE7Jaﬁ} ) (596)

must be functions of constitutive variables. In the model, we are presently discussing, the
set of constitutive variables is chosen as follows

¢ = {p" FS, X" A, T.G,a, }, G i=GradT. (597)
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Hence the gradient of porosity does not appear among the variables. As we see further
it means that we can expect only the so-called simple mixture model to follow from
thermodynamical considerations in which some couplings of components are absent. We
do so on purpose to avoid technical difficulties of accounting simultaneously for two new
contributions: due to a, and due to N := Gradn. Later we consider the model with the
dependence on N but on a,. One can show that the combined model satisfies the second
law of thermodynamics.
Once the function

F=F(C)), (598)

is given, we obtain a closed system of differential equations for fields V.
Constitutive relations (598) satisfy the second law of thermodynamics in the form of
the following entropy inequality
0
gﬂmvﬂzo, n=n(C), H=H(@C), (599)
which must hold for all solutions of field equations. In this inequality n is the specific
entropy and H its flux.
This requirement is equivalent to the following inequality which must hold for all
fields

% +DivH-A""RF — A" . M% — A" - MF — A°E — AT-F — A"N>0, (600)

where
AN AT NS AT AT (601)

are Lagrange multipliers dependent on constitutive variables C.

The exploitation of the second law of thermodynamics in the general case is tech-
nically impossible. Therefore we make simplifying assumptions sufficient for the second
law to be satisfied and yielding explicit limitations on constitutive relations. They are as
follows!?:

1° The material is isotropic. Consequently, scalar constitutive functions, for instance,
depend on vector and tensor variables solely through invariants. This assumption will be
applied in some steps of our proofs. Some relations are simpler in a general form and then
we do not introduce this limitation.

2° The dependence on the relative velocity XF is at most quadratic. This assump-
tion is related to the structure of the nonlinear contribution to the objective relative
acceleration. We motivate its form further.

3° The dependence on the temperature gradient G is linear. We could skip this as-
sumption on the cost of some technicalities but the experience with the thermodynamical
construction of poroelastic models shows that this simplifying assumption does not yield
any undesired results.

4° The dependence on the deviation of porosity n from its equilibrium value ng,
A, =n — ng, is quadratic.

K. Wilmanski; Tortuosity and Objective Relative Accelerations in the Theory of Porous Materials,
Proc. Roy. Soc. A, 461, 1533-1561, 2005.
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5° The dependence on the relative acceleration a, is linear.

6° Higher order combinations of variables G, XF ,A,,a, can be neglected.

As we see further these assumptions limit thermodynamical considerations to a vici-
nity of the thermodynamical equilibrium similar to this appearing in the classical Onsager
thermodynamics.

Bearing these assumptions in mind we can write the following representations of
constitutive functions

— partial stresses

1 , ,
P% = PJ (C, A,) + 50—5 Cp)F°X" @ X", Cp:={p"F° T},

1 . .
P =P[ (Cp, A,) + §0F (Ce)FXF @ X, ng=ng(Cg), (602)
— internal energy and entropy

pe = peo (Cry A,) + %Ed (Cg) (FSXF) . (FSXF) ;

o= o (€, An) + 5a (Co) (FOXT) - (F9XT) (603)

— fluxes of energy, entropy, porosity

Q = QX" - KG+Q,Fa,,
H = HyX" + HyG+H,Fa,, (604)
J = X'+ JrG+J,FTa,,

where all coefficients are functions of variables Cg,
— momentum source

F57p = Iy X + 11;G — p,Fa,, (605)

with coefficients dependent again on variables Cg.

The contributions with the coefficients ¢4, 74 to the energy and entropy are motivated
by fluctuations of the microstructural kinetic energy caused by the tortuosity*®. We do
not introduce any additional microstructural variable describing changes of tortuosity.
For this reason a macroscopic influence of tortuosity can be solely reflected by the seepage
velocity which in our model corresponds to the Lagrangian velocity X, The classical
kinetic energy in this model is given by % (pS)'cS X5 4 pP X XE ) Consequently, the
correction %5(1 ()'(F — x5 ) : (XF — x5 ) may be considered as an added mass effect resulting
from tortuosity.

As we see further, the dependence of partial stresses on this velocity, introduced in the
simplest form by (602), is then required by the consistency of the model with the second
law of thermodynamics. In other words, we show further that coefficients o, o in the

20Tortuosity is the geometrical property of flows in channels of porous materials and it may be defined
as the ratio of the average length of the streamline within REV to the typical linear dimension of REV.
Hence, its minimum value is equal to one. It corresponds to the straight streamline.
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stress relations (602) and the coefficient €4 in the energy relation (603) are connected (see:
formula (645)).

The exploitation of the second law of thermodynamics (600) is standard. We apply
the chain rule of differentiation to constitutive laws. We skip here rather cumbersome
technical details.

Linearity of the second law of thermodynamics with respect to time derivatives

{apF OFS AN, 9%5 0%F oT ae}

ot’ ot ot ot ot ot ot
yields

A=A <§Zd Afg;;i) (FSXF) : (FSXF), (606)

r Opno dpeo
A= 2R g
0 opF 0p¥

dpno Opey 1 [ Ong Osgq . .
F _ __ A€ | Zla A e T=a Sy F\ . S~r F
A ~ OFF A OFF * 2 (OFF A OFF (F X ) (F X )’ (607)

An 9P\ :Opeo

N, oA, (608)
(pS - /)(1)2) A + P12Av — (na — A%eq) FSXF + P?QAEFSXF -
— Div (H,F®) + A° Div (Q,F®) + A" Div (J,F®) = 0, (609)
(0" = p9,) A + p,A" = (g — A%eg) FSXF — o, AFXF +
+ Div (H,F®) — A°Div (Q,F®) — A" Div (J,F®) =0, (610)
dpm ,-Opeo ong ,.024 S~¢F S%F) _
ar Nar T2 (aT AaT)<FX)'(FX>_O' (611)

These identities still contain linear contributions of Grad F®, A,,, quadratic contri-
butions of the latter as well as quadratic contributions of Lagrangian velocity. As they
should hold for arbitrary fields coefficients of these contributions must vanish separately.
After easy analysis we obtain

H,=0, Q,=0, J,=0, (612)

na — Neq — A°pY,

S oF i
PPN = —pf AV = yF5XE, pi=— =~
P — ps (1 + ;’_F)

(613)

The second law of thermodynamics is also linear with respect to the following spatial
derivatives

Grad %°, Grad %I, Grad p*’, Grad F®, Grad G, Grad A,,. (614)
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We have listed them in the order of the further analysis and, simultaneously, skipped the
derivative Grad a, because it does not contribute to the second law due to the relations
(612). The linearity with respect to (614) yields a set of identities and leaves a residual
inequality which is essentially nonlinear. It defines the dissipation in the system and
has the following form

D (8HV _AeﬁQV 4000

n-’* TF
aT aT AaT”IT)X G+

oH oK 0J
< T+ e T

+AT XE - XE + A" > 0.

Hence the state of thermodynamical equilibrium defined by D = 0 appears if
G=0, XI=0 a=0, (616)

i.e. the temperature gradient, relative motion (diffusion), and the relaxation of porosity
cause the deviation from the equilibrium.
Clearly the assumption 4° yields the linearity of n and A™ with respect to A,. In
addition, the above inequality yields homogeneity of these functions, i.e. we can write
A,
n=-——, A'"=\"A,, (617)

T

where 7, A\ can be solely functions of variables Cg. Consequently, we obtain as well

0P 0Jr
a7 =0 = 0. (618)
It is worth mentioning that due to (612) the relative acceleration does not contribute
to the dissipation. This property of the model follows from the fact that the model does
not possess any independent field of tortuosity which could relax to the thermodynamical
equilibrium.
Now we return to the coefficients of spatial derivatives of fields. The vanishing coef-
ficient of Grad %” yields the following results

9 o
AEPgFST+< P _ pc pgo) FST+(—HV +AQy + A"+ pFAgF) 1 = 0,(619)

OF% OFS
M N ong .Ogq
ar Nar =% e Mo =Y (620)
877(1 e agd F and . agd B S pS P
2(8[]] A 6[]]) LI+ p dpF A OpF =nlo +pFU 3 (621)
3= : (622)

2p%s ) (1 + ;Lf;) + As

143



where

[:=trC% II:=<(I"-trC®%, IIl:=detC® C°:=F"F", (623)

DO | =

are main invariants of the Cauchy-Green deformation tensor C%.
The coefficient of Grad %% yields

dpmo dpeg

£ S F\ __ £

A (PO+PO)—<6FS—A6FS , (624)
877d e 8€d .

oIr; A oIrr 0, (625)
1 S

37 (05 +07) = by (14 55 ) 0= %0 — ot (626)

Consequently, bearing (620) and (625) in mind,

877d c (9851 .
ops ~ N ops = 0. (627)

Next we consider the coefficient of Grad p*'. We have

AN A AT ) XE 4y FSXE FSXF =0, (628
<5‘pF op* IpF ) g Y05 0" » (628)
OHr 0K dJr

A2 —o, =L oo, 2
Gor TG =0 5 =0 (629)

Similarly, the coefficient of Grad F* yields

O0Hy saQV naq) - F FApF@sS-T 7 F =S =F
sym{(aFS A SFS A 6F5)®X +p AP F7TT @ XU +9E7 + 9B

— sym {(HV A A" FI T g XF} —0, (630)
OHr oK 0Jr
——— L AN— =0, — =0 631
gFs "M aFs " Fs (631)
where the components of tensors 2, 2 in Cartesian coordinates are given by the rela-
tions
- OPy, ; - p° OPE ,
:gKL = OT(,}I;E%X]@’ Eixr = _p_F ané; Fl?wXJ\IZ (632)

Under our assumptions the contribution of Grad A,, does not yield any restrictions.
Finally, the last condition follows from the vanishing coefficient of Grad G and it has
the form

Hr+AN°K =0, Jr=0. (633)
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Inspection of the results (629), (631) for thermal coefficients yields

A=A (T) = A= %, ie. Hp= —%, (634)
where the ideal wall argument has been used.

It is not quite clear what limitations on partial stress tensors are imposed by condi-
tions (628), (630). Derivatives of partial stresses with respect to the mass density p* as
well as with respect to the deformation gradient F° seem to restrict elastic properties of
the system in equilibrium. This does not seem very plausible. Hence we assume that the
coefficient 1y vanishes, i.e.

y = 0. (635)

Then the multipliers of momentum equations vanish as well. As the consequence of
(611), (613), (621), (627) we obtain

—p% =eq—Tng = const. = &4 =const., ng=0. (636)
It is convenient to introduce the following notation
v =e—"Tn, (637)
Py = pp — %&1 (FSXF) . (FSXF) .
Then, for Lagrange multipliers we have

Fo l 8,0wo oF

_T(?pFi 0 >

1 dpiho a1 0po

F_ _ 1 N
A= T OFS’ T 0A,

AP

= M\'A,,  (638)

and the relation (611) implies the following classical formula for the internal energy

9y
=Y —-—T—. 639
= -1 (639)
Simultaneously the relations (628), (630) yield
OHy Qv F 0P
—A° — AN =0, =—==0
opF opF T 0pF ’
aHV e 8QV FApl e _
2111 <MH—A8[H)+/) A" (Hy — A°Qy) =0, (640)
i1 2% o0 = o= 5T, - t (641)
9II1 = = 0, 0 — const.

These relations yield the following integrability condition for the multiplier AP"

oA GON" -
PF 37 S ¥ =0 = A=A (T,pf), pf — JS lpF‘ (642)
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Consequently, integration of (638); leads to the following additive splitting of the free
energy

b = pFUF 4 pSyS — %A”TA?L + %z—:d (FSXF> - (FSXF) , (643)

o= W (Tpf), o =47 (T,F%).

The above separation property is characteristic for the so-called simple mixtures. It
means that the choice of constitutive variables (597) rules out the coupling of components
through deformations: changes of the current mass density pf” do not have influence on
Y® and deformations F¥ of the skeleton do not have influence on .

In addition, integration in (640); yields

QV PF¢F . 1 F  F~GF
Hy - == -2 e, H=r (Q-p"y"X") 644
where we have accounted for the relations (633) and (634).

Inspection of relations (636), (622) and (626) leads immediately to the following

identification of constitutive coefficients coupled to the relative acceleration

€d = _:0(1)27 US = _23:0(1)27 UF =2 (1 - 5) :0(1)2 (645)

Simultaneously, relation (619) with (637), (638), (643) and (644) for partial stresses
P35 and relation (624) for partial stresses P}’ yield

apSwS P .
p° s T AT — g, FIXT @ X5, = TAMR S, (646)
Pr = —p 2¢F TS — BN TFS — (1 - 3) pl,F9XS @ X5

Hence, as mentioned in the introduction, the partial stresses do not possess a coupling
term characteristic for Biot’s model and this fallacy of the model can be removed by
additional constitutive variables.

For practical purposes it is convenient to transform equations of the model to Eulerian
coordinates. We write them in an arbitrary noninertial reference system. The set of
balance equations (590) has then the form

— mass balance for the fluid component

opf
8£ +div (p; v") =0, (647)

— momentum balance for the skeleton

v S
oY <W+V gradvs) = div T + pb* + J5 Iy grad T+n (VF—VS) —

—p12 [% (VF — VS) —(1-13) (VF — VS) cgradvli —3 (VF — VS) -grad v | ,(648)

— momentum balance for the fluid

0
pf <% + V grad VF) = div TF -+ Py bF JSilnT grad T—7 (VF — VS) -+
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+p12 % (v =v%) = (1 =3) (v = v*) -grad v —3 (v/' = v) - grad v ,(649)

— energy balance

opie
ot

+ div (pev® + q) —T% . grad v?—TF - grad vF'— (650)

— (VF —VS) : {7T (VF —VS) + J5 Iy grad T—

— P12 %(VF—VS) —(1-13) (VF—VS) ~gradvF—3(vF—VS) ~gradvs]},

— porosity balance

dJ5IA,
ot

JS—lAn
=0. (651)

+div (JTTTAVT 4 ) +
The external forces pyb®, pE'bf" | called apparent body forces, contributing to momen-
tum balance equations have the following structure

pib® = p; (by +i°%), p/b" = pf (bf +1i"),
. 2
iS::E+ZQ(vS—é)+<Q—Q)(x—c), (652)
. 2 . T
i =g 420 (v - &)+ (2-07) (x—¢), 2:=00"=-0,
where p7by, pf'bl are true (e.g. gravitational) body forces, and p?i°, pF'if" are inertial
body forces. In order of appearance in the above relations, they consist of the inertial
force of relative translation, Coriolis force, Euler force, centrifugal force. They depend
on the matrix of angular velocity €2 of the noninertial system with respect to an inertial
one. Certainly, the inertial body forces vanish in an inertial reference system. It should
be mentioned that the partial accelerations appearing in the above partial momentum
balance equations combined with apparent body forces are objective, i.e. invariant with

respect to the Euclidean transformation.
The remaining notation used above is as follows

PP =0T =t ol pa= Pt =T (653)

while the Cauchy stress tensors T, TF are given by the following constitutive relations

3 anS 8@/}5 8@/}5
TS = J5-1PSFST = 9,5 | ——BS+—— (11 - B°)B° + —/——1III1 654
P arB g ( ) B+ o + (654)

+0A,1 — 3p12 (VF — VS) ® (VF — VS) ., BY =F°F7,

T = J5'PFFY = —pf1 - BA 1 — (1 —3) pra (v = v7) ® (vF — v5)(655)

pF — pF2 8¢F
L oopl’
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with the free energy given by
pep = pp S (T, LI + pf " (T, p) ) = paa (V6 = v¥) - (v = v) . (656)
The energy ¢ and the energy flux vector q are given by

e=1) — T%, q=J""FQ=J5"Qy (v = v®) — J5 'K gradT,  (657)

and the porosity flux has the form
j=JFY T = @ (v - 7). (658)

There remains the question of practical estimation of additional parameters p?, and
3. The added mass coefficient p{, has been extensively studied in literature concerning
Biot’s model. The parameter 3 is new. There seem to exist various possibilities for its
estimation connected to the fact that it appears in contributions which may be time
independent. As an example let us consider a stationary isothermal process in which, in
a chosen inertial frame of reference, the skeleton does not move (i.e. v¥ = 0). Such a
flow of the fluid through a porous material is described by the mass balance and by the
momentum balance for the fluid. For simplicity we neglect changes of porosity. Then we
have

div (p; v") =0, (659)

[y +2(1—3)pro] vi - gradv? = —gradp” — [r+ (1 —3) pradivv’] v",

"= p" ().

The correction of the permeability coefficient 7 driven by volume changes of the fluid
div vl seems to be very small. However the correction of mass density appearing on
the left-hand side of this equation may be essential and measurable. For instance, in an
irrotational flow (rot vI" = 0) we have approximately

1
grad [ng (p — po) + 3 (pf +2(1=3) pro) vi v | +avF =0, (660)

where p = p!'/n is the pore pressure and py its constant reference value. If the pressure
increment is of the order of, say, 10 kPa the velocity of the fluid must be of the order of
1 m/s to make both contributions of the similar order. Practically measurable would be
the influence of 3 for much smaller velocities which seem to be plausible at least for rocks.

We proceed to present basic results for the model which yields couplings not appear-
ing in simple mixtures. As we have seen (Lecture 9), in order to obtain expected couplings
between components the thermodynamics of miscible mixtures requires a dependence on
gradients of mass densities. This indicates that such couplings are related to weak non-
local interactions which are described in the simplest case by the second gradients of
deformation®!. In the case of porous materials it is sufficient to incorporate a dependence

21Current partial mass densities p® are described by volume changes, say for small deformations
(p§ — p%) /p§ which, in turn, are given by deformation gradients. Consequently, gradients of current
mass densities describe a dependence on second gradients of deformation.
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on the gradient of porosity. This does not mean that models with other second gradients
are not meaningful but, of course, they are much more difficult to handle. For the pur-
pose of construction of a linear model of Biot’s type it is sufficient to add the variable
N = Gradn. The set of unknown fields given by (589) remains the same, i.e.

V= {pf %% %" FS T,n}  for (X,t) € BoxT. (661)

Also the set of balance equations (590)-(594) and the set of constitutive quantities F
(596) do not change. There is a change in the set of constitutive variables in which we
leave out the relative acceleration a, but add N. Hence, we have

C : :{pF,FS,XF,An,T,G,N}, G :=GradT, N := Gradn,
F = F(@). (662)

We have to modify as well the simplifying assumptions. We replace the assumptions
5° and 6° by the following ones

5% The dependence on the gradient of porosity N is linear.

6’° Higher order combinations of variables G, Xt , A, N can be neglected.

The analysis of the second law of thermodynamics reveals that the thermodynamical
equilibrium is again defined by the relations

Glp,=0, X~ =0 Aup=0. (663)

Vector fluxes, instead of (604), and momentum sources, instead of (605), must have
the form

Q = QvX' - KG+QuN,
H = HyX" + HyG + HyN, (664)
J = oXF + JrG+JyN,

F5Tp = Iy XF + [1;G + IIyN, (665)

where the coefficients may be functions of the reduced set of constitutive variables

C'={F° T A,}. (666)

Fin equilibrium is not inde-

The variables F°, T characterize equilibrium processes (p
pendent due to the vanishing relative velocity XF ’ = 0). The dependence on the

nonequilibrium variable A, must be treated separately due to its scalar character.

The rest of the analysis is similar to this presented in the previous case. We skip it
and present here only some final results for isotropic materials.

The Helmholtz free energy for this model has the following form

p = PS¢+ pTyT, (667)
W& o= (LI, J% pf T,A,), ¢F =9 (J%,pf T, An), pf =p"J5"
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The partial Piola-Kirchhoff stress tensors are given by the relations

8@/} 8¢

F 2 S S-T SsS— T
P -5, o F = Bopg R
pS sOv” OV sps-t

®
P oEs * oA,

while fluxes and sources satisfy the following constitutive relations
1 . .
H - - (Q - pF¢FXF) . I =0y J5XE, By = const.,

p = TFSXF — NFS~!'Gradn, f=——2.

(668)

(669)

Consequently, in this model there exist equilibrium couplings of partial stresses through
volume changes of components described by J° and pf” as well as nonequilibrium cou-
plings described by the dependence on A,,. In addition, there are couplings through the
momentum source which are due to the diffusion velocity X* as well as the gradient of
porosity Gradn. In the next Lecture we show that linearization of this model leads to an

extension of the classical Biot model of saturated porous materials.
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Lecture 13: Linear models of saturated poroelastic
materials

Linear modeling of two-component porous materials was primarily initiated by works
in the field of soil mechanics. These were investigations of H. Darcy (1803-1858), K.
Terzaghi (1883-1963), P. Fillunger (1883-1937), Y. I. Frenkel (1894-1952), M. A. Biot
(1905-1985) and many others. The aim was to construct a description of the coupling
between mechanical response of skeleton and flows of fluids through the channels of porous
and granular materials. Early models were linear and quasistatic but at the end of 1930ies
the problem of propagation of acoustic waves began to be investigated as well.

These linear models, in particular the so-called Biot model, describe the behavior of
the following fields

1. Current partial mass densities, p7, pf" or current real mass densities, pP %, pF'E.

The subscript ¢ indicating the reference to the current location is usually
dropped as in the linear model there is no distinction between Eulerian and
Lagrangian description. Descriptions by either set of densities are equivalent
if the porosity field n is incorporated: p? = (1 —n) pP&, pI' = npl'E.

2. The displacement of the skeleton, u®. Its derivative with respect to x

defines the deformation tensor. In the linear theory this is Almansi-Hamel
deformation tensor e®. The time derivative gives the velocity of the skeleton,
v®. Volume changes are specified by the first invariant of Almansi-Hamel
tensor, e = treS. If there is no mass exchange between components this, in
turn, determines uniquely changes of the partial mass density and the field of

mass density p; becomes superfluous

s _ .S
e = 1o psf’t el < 1, (670)

0

where p3 is the initial value of the partial mass density, corresponding to e® =
0. This relation follows from the following identity (integrability condition)

e’

e Oe
ot

5 divv®. (671)

=symgradv® i.e.

Therefore the mass balance equation yields

op; ) op; ) 0
8_; +div (p)v®) ~ a—; + p5 divv® = T (pf +pfe) =0.  (672)

Easy integration leads to (670).

3. The velocity of the fluid, v¥". It is customary in Biot’s model to work
with the displacement of the fluid, U. However, as in the fluid mechanics in
general, this quantity does not have any physical meaning and it is not sought
in solving boundary value problems. It plays only an auxiliary role in the
model and defines the velocity of the fluid v = 9U/dt as well as its volume
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changes, ¢ = divU. As in the case of the skeleton, through the partial mass
balance equation the latter determines uniquely changes of the partial mass
density, pI, if there is no mass exchange between components

F_F
Po — Pt e o F
=20 v — =d 1 673
€ T ivv’, e <1, (673)

where pl is the initial value of the fluid partial mass density. Derivation is
analogous to that presented above for the skeleton.

4. The porosity n (denoted by ¢ in many works on Biot’s model). In Biot’s
model this quantity does not appear in the explicit form. However, its changes
can be calculated in terms of volume changes of both components and material
parameters (compressibilities) appearing in the model. Hence, even though
not constant, the porosity is not listed among fields of Biot’s model.
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Hence, ps2 is the additional apparent mass with a change  direction,

in sign. Therefore, the dynamic coefficients may be ; O 3¢ &
writtil:l NV, +(A+N )a—z‘*{zﬁ ;{mm.+puU 2

pu=p1tpa . % (4.1)
pu=prtpa (3.18) Q—e+R~—‘=7’(m¢u;+puU-)-

P11= —pa. ..

and two other similar equations, respectively, for the

Further conditions must be satisfied by thess dynamic directions y and z. With the vector notation

coefficients if the kinetic energy is to be a positive
definite quadratic form. The coefficients py; and pse must u= (uu,u,)
be posilive - (U U
pu>0 pu>0 Wi el
wad TERQUALIONN. (5, L) A0 IEILARM . revsos sresssasvensessrvnsrensrensasasen x

i i
Pupa—pii*>0. (3.19) : .\'v‘ﬂ"'gfﬂd[(/'+1V)¢+Q!]-;’(ﬁ"|l+pnv)

These inequalities are always satisfied if the coefficients : (4.2)
are given by the relations (3.18) where and p, are :
posi%ivc Iays:h:i: physical n(nlulc). o i md[oe.'-R']-.a—,:(m‘u"-'"U)'
In terms of streses the force cOMPONENtS &TE €X- i............cccccoseseiecmmemnsinssssnsemnmnsisnsssassnssensssesssnsosmassssssnd
pressed as stress gradients, ie., These six equations for the six unknown components of
the displacements u and U completely determine the
dos O1, d7y propagation.
e o “5‘;+‘;;» (3.20) Because of the statistical i?otropy of the material, it
can be shown that the rotational waves are uncoupled
Q.= 3s/dx, etc. from the dilatational waves and obey independent
equations of propagation. This is done in the usual
Hence, we have the dynamic equations way by introducing the operations div and curl

Qe

doy 97, ar, & diva=e divU=¢

;+0—y+ 0;- 0F(ﬂll“-+ﬂllvu) culu=e cudU=0.

s & (a1) Applying the divergence operation to both equations

—=—(p1gtts+pnl), elc. (4.2), we obtain
az o *
V’(.Pe‘*'Ql)-;;(ﬁnt‘Fauf)

(4.3)

Strictly speaking, the generalized forces are defined as
the virtual work of the microscopic stresses per unit F
value of the displacement vector w and U and not as the V(Qr+ Re) = —(pyse+pase)
average of the microscopic stresses as used in expressions ar

faAany ww

(4.9

Fig.13: Quotation from the paper of M. A. Biot: Theory of Propagation of Elastic

Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range,
JASA, 28, 168-178, 1956.

5. The temperature T' does not appear in Biot’s model. Processes are assumed
to be isothermal. This assumption may be a good approximation in description
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of soils and rocks saturated by water, oil or other similar fluids. However, it
does not seem to be appropriate for acoustics of porous materials saturated
by a gas in which sound propagates rather in adiabatic conditions. This is,
for instance, the case in foams damping the noise.

M. A. Biot wrote equations of his model in the form of an extension of displacement
equations of the classical theory of isotropic elasticity. In Figure 13, we reproduce the
page of the paper of M. A. Biot from 1956 in which the governing equations (4.2) of his
model appear.

Biot himself was frequently changing the notation. In the version presented in the
Figure, the model contains the constant material parameters A, N (= u* — shear modulus)
which describe effective (macroscopic, depending on an initial porosity ng) elastic prop-
erties of the skeleton (solid component), and related to, for instance, Lamé coefficients,
A, i1, the parameter R describes the effective (macroscopic) compressibility of the fluid, @
is the effective coupling parameter, characteristic for Biot’s model, and p;5 describes the
coupling through the relative accelerations and it is usually attributed to the so-called
added mass effect. The Biot model in this form is until today the most frequently used
model for the investigation of acoustic properties of porous materials.

In some of his works M. Biot uses also the increment of fluid contents, (, as a field
replacing volume changes of the fluid, €. This field is defined in the following way

¢ =ng(e—¢e) =ngediv(u—U). (674)

The latter relation yields an important conclusion

% = nodiv (v = v"). (675)
Hence the field ¢ cannot change without diffusion: there must be a relative motion of
components in order to change the fluid contents. However, it means as well that changes
of fluid contents cannot appear in thermodynamical equilibrium processes. This conclu-
sion has the paramount consequences for the applicability of variational methods in the
theory of poroelastic materials. It indicates that, in spite of such frequent statements in
the literature, the true variational principle for porous materials cannot be introduced and
only the so-called pseudovariational method can be applied. This means that the so-called
action functional does not exist and one may only construct variations as nonintegrable
differential forms.

We proceed to derive field equations of the linear model on the basis of nonlinear mod-
els discussed in the previous Lecture. As usual we follow the thermodynamical strategy
and construct these equations on the basis of balance equations.

In an inertial reference system the partial momentum balance equations have the
following linearized form

SaVS . S S1.8 | =~ FaVF 2 F1.F =~
Pog = AT +pgb” + B, gy —- = —gradp” +pyb" — b, (676)

where the current mass densities are replaced by their reference values, convective parts of
momentum fluxes (i.e. div (p°v¥ @ v¥) and div (p"'vF" @ v¥'), respectively) are neglected
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and it is assumed that the partial stress tensor in the fluid reduces to the partial pres-
sure pf". This coincides with the nonlinear result (668) under constitutive assumptions
presented in the previous Lecture.

The first two simplifications follow from the linearization, while the last one means
that we consider the fluid component to be ideal on the macroscopic level of descrip-
tion. This does not have to be the case for the true fluid whose viscosity appears in the
microstructural relation for momentum source p. We return further to this relation.

The quantities p5b?, pi'bf" are partial external body forces per unit volume.

Frequently the partial description of momentum is replaced by the bulk momentum
and only one of the partial momenta. It is usually the partial momentum balance for
the fluid because in some cases of practical bearing the inertial force of the fluid can be
neglected and this momentum balance yields then a generalization of Darcy’s law. The
bulk momentum balance which is the sum of partial equations has the form

0 .
poa—‘t’ = divT + pob, (677)
where

pov = pavS+pivT,  pob =pib% + pib".

Obviously, T denotes the bulk stress tensor and v is the so-called barycentric velocity.
The latter is not a very useful field because it does not have any global physical interpre-
tation: Diffusion separates particles of components after a finite time so much that one
cannot define any reasonable collection of centers of gravity. However, in some quasistatic
problems the bulk momentum balance equation may be very useful. It appears, for in-
stance, in the theory of plastic deformations of soils in which the bulk stress tensor plays
an important role.

The above structure of momentum balance shows that the partial stress tensor in the
skeleton cannot be usually identified with the so-called effective stresses introduced to soil
mechanics by Terzaghi. The partial pressure in the fluid p is in many cases related to
the so-called pore pressure, p, by the relation p' = np, where n is the current porosity.

The balance equation of porosity in the simplest case of large relaxation times (7 —

00, l.e. N = —% — 0) for linear isotropic case has the following form
NP
T +<I>d1v(v —V):O, A, =n—ng, ng=mny(l+de), (679)

where 6, ® are material parameters dependent on ny. The lack of relaxation properties of
porosity is the common assumption in geotechnical applications. It is not so obvious in
applications to biomechanics, description of tissues, etc.

The above equation has the following solution

o
n=ng 1—|—6e+n—(e—5) , (680)
0

Such changes of porosity are always present in Biot’s model but not stated explicitly.
The reason is that porosity in Biot’s model is not an independent field. According to
(680), it is given in terms of volumetric strains of both components, e, ¢, and the material
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parameters required by the above equation, ¢, ®, follow from material parameters present
in the model (no additional material parameters for porosity!).

In order to construct field equations by means of the above balance equations we
need in general constitutive relations for the following constitutive quantities

{15 TF,p,Inp,n}. (681)

We have indicated already some simplifications in this set. Instead of the tensor T¥ we
need a constitutive relation only for the partial pressure pf’. For the flux of porosity J
and the equilibrium porosity ng the constitutive assumptions are already incorporated in
the porosity balance equation (679). Consequently, in order to close the system we need
constitutive relations of the form

TS = T° (eS,z-:,An,vF - vs,ar,gradn) : (682)
pF = pF (esa g, Ana VF - VSa ar, grad n) 9

and for the momentum source which we present in a linear form with respect to vectorial
variables (comp. the combination of (605), (669) in the nonlinear isothermal case)

P = Daiss — NV gradn — proa,, (683)

where Py is the part determined by the relative velocity vF — v N is a material
parameter. In the simplest case Pgifs = 7 (VF — v’ ), where 7 is the constant permeability
coefficient.

For the purpose of construction of Biot’s model we can leave out the dependence
on A,. This assumption is not necessary for the linearity of the model and some wave
problems have been already investigated with an influence of A,,. It has been found that
this influence is indeed very small. The lack of dependence on gradn would yield the
following result (see: (654), (655) & (656))

T =T% (%), p" =p"(e). (684)

This is the simple mizture model whose linearization yields Biot’s constitutive relations
for stresses with () = 0. As shown in the previous Lecture for the nonlinear model this
fault of the model can be removed. Essential is the constitutive dependence on gradn
which yields the possibility of coupling proposed by Biot.

In the linear model which follows from (682) and (683) we obtain the following rela-
tions for partial stresses

T = T+ Mel +2u%e° +Qel — N (n —ng) 1, (685)
p’ = pf — phke —Qe— N (n—nyg),
where ng is a constant reference value of porosity, A%, u°,x,Q, N are material parameters
which depend on the reference value of porosity, ng. We have incorporated in stresses
the contribution of grad n appearing in the momentum source p. This is possible for a
constant coefficient N which is the case in the linear model.

Bearing the above relations in mind we see that the set of balance equations (671),
(673), (676), (679), i.e. two scalar, two vector and one tensor equations form the set of
field equations for the fields {eS ce,n, v vl } Clearly, if we introduce the displacement
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vector u® then we can skip the tensor equation for e® and the momentum balance equation
for the skeleton becomes the second order equation for this displacement.
Consequently, the model is determined by the following set of material parameters

{)‘Saus7pg"{/aQ76aéano;Naﬂ—yp12} . (686)

The second group contains the parameter N which is additional to the set proposed by Biot
and two parameters 7, pjo which describe an influence of relative motion of components.

This set may be still reduced to a smaller and more fundamental set and we present
further a procedure which yields this reduction. We should also mention that the constant
permeability coefficient m has been found not appropriate in the description of acoustic
waves. Measurements for monochromatic waves indicate that it should be frequency-
dependent. Such a dependence has been already suggested by Biot who proposed a
correction following from a microstructural estimates. The problem is that the correction
of equations by introducing the frequency dependent complex permeability as suggested
by Biot and many others, say in the form 7F (w), is mathematically nonsensical. After
such a correction solutions of the equations of motion would have to be complex. In
addition, functions appearing in these equations are defined on different spaces: some
of them are time-dependent and some other frequency-dependent and this is, of course,
mathematically not correct. Papers concerning this subject avoid the problem by writing
Fourier transforms in which the variable of Fourier transformation is identified with the
frequency appearing in F'.

The above remarks indicate the necessity of a correction in the formulation of the
problem and this, as a matter of fact, was already suggested by Biot himself. Namely,
the influence of relative velocities in the macroscopic model should have a form reflecting
viscous-like effects following from obstacles for the motion of the real fluid in channels.
It means that, similarly to viscoelastic materials, one should expect a kind of hereditary
integral describing the momentum source.

In spite of their practical importance explicit relations for the bulk permeability 7
are not needed in the macroscopic construction of such a model. They may be adjusted
to experiments or selected by means of some analysis of microstructure in particular
problems. It is only essential in the linear model to account for their changes in time as a
dynamic process goes on. This can be done in the same way as it is done for viscoelastic
properties of solids. We proceed to construct such a model of momentum sources.

First of all, as it was pointed out, the second law of thermodynamics indicates the
following dissipation inequality

Paifrw >0, w:i= v —v5. (687)

Consequently, Pq;rr must be odd in the relative velocity. Within a linear model of isotropic
materials it has then the following form for a constant relative velocity w

Dais (W, 1) =7 (1) w, (688)

which indicates a smallness of the relative velocity. Knowledge of this single-step response
function 7 () is sufficient to predict an output Pgiry for an arbitrary constant input w.
Let us note that the time dependence of the permeability coefficient 7 should be invariant
with respect to the translation of the origin of time axis. This means that ¢ is the time
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lag since application of the constant relative velocity w. An input w (t) = woH (t — to),
where H (t — ty) is the Heaviside function would lead to the output Pgirr= 7 (t — to) wo.
Consequently, for the two-step history

w(t) = H(t —t1) Awy + H (t — t2) Awy, (689)
the output must have the following form
Daiss (t) = 1 (t,t1,12) AWy + 2 (8, L1, £2) Aws. (690)

This expression is valid for all constant increments of the relative velocity. Hence, it holds
in particular for Aws = 0. Then the momentum source must be 7 (t — ¢t;) Awy. In the
same way we identify the second contribution and it follows

2 2

W)=Y H(t—ta)AWa = Puirs(t) = Y 7a (t — ta) AW, (691)

a=1 a=1

Certainly, the same argument applies for an arbitrary number of steps. In rheology this
is called Boltzmann’s superposition principle. By means of some continuity assumptions
which are similar to these of the theory of viscoelasticity we can approximate by step
history the response to an arbitrary integrable history of the relative velocity. We have
then

t t
w(t) = / H(t—s)dw(s) = PDaiss(t) = / (t—s)dw(s). (692)
As we assume the invariance with respect to the translation the initial point of the relative
motion can be chosen arbitrarily. Therefore it is convenient to set the lower limit of
integration at —oo.
Integration by parts and the change of variables yields

Dairs (t) =7 (0)w (t) + /Ooo#(s)w(t —s)ds, 7(s):= % (693)

This constitutive relation contains the memory functional typical for viscous effect. The
instantaneous reaction is characterized by the initial permeability = (0). We demonstrate
here only some simple properties of the above relation but it is obvious that the relation
for the momentum source can be easily extended on nonlinear models. Such extensions
are known for memory materials and we shall not present any details in this Lecture.
Let us write the relation (693) for the harmonic disturbance of the frequency w. We
obtain immediately
woo= W (x)e ™ Pa= P (x)e ™ = (694)
1

— Pl = (_WW /0 Ta(s) ei“’sds) ™ (0) .

The transform of permeability coefficient in the parenthesis can be now identified with
the relation F'(w) 7 (0) proposed for the permeability as a function of frequency. This
contribution appears in Fourier transformed momentum balance equations rather than
in the original momentum balance equations which hold for an arbitrary time dependent
input.

157



The above hereditary form of the momentum source is, as already indicated, at-
tributed to viscosity of the true fluid and to the tortuosity. However, the influence of
tortuosity is assumed to lead also to the added mass effect and, consequently, to the non-
diagonal form of the matrix of mass densities. This yields contributions of the relative
accelerations which were discussed in the previous Lecture. We return to this interpreta-
tion of the added mass in the next Lecture on monochromatic waves.

This completes the general remarks on the construction of a two-component model for
poroelastic materials. However, we demonstrate here additionally a procedure of identifi-
cation of some effective materials parameters for linear poroelastic materials which seems
to be rather unique in the transition from semimacroscopic to macroscopic description.
This procedure has been initiated by works of Gassmann in 1951 and developed by M. A.
Biot and D. G. Willis in 1957.

Before we proceed to discuss this procedure we quote here another form of Biot’s
constitutive relations which possesses a particular practical bearing. First of all, we can
use the variable (, the increment of fluid contents, instead of the volume change of fluid,
e. Then the relations for the bulk stress T and the pore pressure p have the form

F
T~ T + T = Ty + (A + plk +2Q) el + 2u5e® — Qtfmry
o
TO = Tg - pOFl7
1 1 n—mn Fr pt
p:—pF%—(l— 0) {nopo—(Q+Pgﬁ)€+p0— , po=—-, (695)
n no no No no
and changes of porosity are given by the following relation
n—n P
n—oo = be + —C. (696)
0

F F
If the initial pore pressure py is much smaller than material parameters M, 27 then
no n

we can neglect the contribution following from changes of porosity. We obtain ﬁnglly

T = To+ Kel+2Gdeve® —C(1, deve® =e" — iel, (697)
Q+pik
K )\S+§MS+pgﬁ+2Qa C:Tl—oo’ G:,U/S>
ok
p=po—Ce+ M, M=222. (698)

ng
This form shows clearly that stresses consist of equilibrium parts given by the defor-
mation e® and nonequilibrium parts containing ¢. The set of parameters

{K7 G7 Ma Cv 57¢7n0§N77T,012} (699)

replaces the set (686).

We apply these relations to some simple static processes in granular materials. These
processes yield solely purely volumetric deformations. For such processes we introduce a
procedure stemming from the averaging method over a representative elementary volume
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(REV) which yields relations between \° -+ %us or K, pi'k, or M, Q or C, and N, 6, ®
on the one hand-side and true compressibilities of substances, K, K; of the solid frame
and fluid components, respectively, the initial porosity, ng and the undrained compress-
ibility modulus K4 on the other hand. Certainly, any other combination of macroscopic
parameters can be then also easily calculated. The compressibilities K, Ky are measured
in experiments on the substance of the skeleton and on the fluid outside porous mate-
rials and they are, of course, independent of any particular morphology of the porous
material. Simultaneously, the modulus K is measured in very simple undrained com-
pression experiments and is used in soil mechanics on the equal footing with the true
compressibilities.

Description of granular materials by means of a macroscopic model is particularly easy
when a deformation is homogeneous, spherically symmetric and the mechanical reactions
of the system reduce to pressures. Such a system will be now considered.

For such a deformation, we have

e’ = %el, p° = —%trTS, pf = —étTTF7 (700)

and the macroscopic constitutive relations for partial pressures are as follows (comp.

(685))
pS—pg:—()\S+§MS)6—Q5+N(n—n0), (701)
pF —pl = —plke — Qe — N (n —ny) .

For porosity changes we have (see: (680))

n — Ng P
=be+ — (e — 702

Momentum balance equations are in the homogeneous equilibrium identically satisfied.
External loading is applied through the boundary. Hence, in the static case we have the
equilibrium condition of the full pressure change with a given excess (external) pressure
Ap, i.e.

Ap=(p°—p5)+ (" —nf). (703)

In order to solve the problem, i.e. to find five quantities e, e, p° —p5, p¥" — pt’, n for a given
excess pressure Ap we need, in addition to the above four equations (701), (702), (703),
another boundary condition. This will be specified later for three different problems which
we call gedankenexperiments.

However, this simple linear problem can be also formulated in terms of semimacro-
scopic quantities eft, eft, pf — pSf pFR _pE'R and n. The first two quantities describe real
volume changes of the solid material and of the fluid, respectively, and they are related
to the real mass densities p°%, pI'® by relations analogous to (670) and (673), i.e.

SR SR FR FR
6R_po —p R_Po —P

B (704)
i o
The constitutive relations on this level are very simple
P —pgft = —K,ef, p"f—p{f =K. (705)
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The construction of the boundary condition requires an assumption which we justify in
the next Lecture. Namely, it must be assumed that surface contributions of components
to the common traction is given by the porosity. We have then

p® = (L—n)p™ pg=(1—no)ps", (706)
p" = np™ pl = nepi ",

i.e.
P —py = (1—ng) (157 = p§7) = = ngps® ~ (1= o) (p°F — ")

0

n—mn
nopy & ng (pPF — pi®) . (707)

p" = = ng (pPF - plR) +
Then the condition (703) becomes

Ap = ((1—n)p° = (1 —no)pg™) + (np™ — nopi ™) = (708)
= (1—n) (P*F = p5%) +n (™ - pi™) = (n —no) (p3% — PFF) .

The last contribution vanishes if we assume that the initial state is self-equilibrated on the
semimacroscopic level, i.e. p§® = pif. The unknown five quantities of the semimacro-
scopic description ef ef pSE — psE pf'R — pFR ' can be determined from (702), (705),
(708), provided, as in the macroscopic description, we formulate an additional boundary
condition.

However, we still have at the disposal relations between macroscopic and semimacro-
scopic description. These are two dynamical compatibility relations (707) and the follow-
ing geometrical compatibility relations

po—p° _ (L—mo)pg" —(1—n)p°" 5 n—ng
I (1 —no) pg 1—ng
po =" _mopy "t —mp™™  p n—ng
g I3 = R ~ e — .
Po noPy no

If we collect all above equations, we obtain 1 equilibrium condition (703), 1 equa-
tion for porosity (702), two macroscopic constitutive relations (701), two semimacroscopic
constitutive relations (705), two dynamical compatibility conditions (707) and two geo-
metrical compatibility conditions (709). Additionally, we expect one additional boundary
condition for each gedankenexperiment we construct. We shall see that there are three
such experiments in the model we are considering. Consequently, we have 13 equations.
We assume as well that material parameters K, Ky, K; are given.

Simultaneously, we have five geometrical unknowns, e, e, e, e® n, four dynamical

unknowns, p° —pg, pt' —pb', p?E—ps B, pI'E—pkE and the following six macroscopic material
parameters: K, M,C, N, b, ®. All together these are 15 quantities. This means that we can
find solutions of all three problems in terms of the excess pressure Ap and, additionally, if
we eliminate Ap we obtain relations between the set of six material parameters and three
known parameters K, Ky, K; and the initial porosity ng.

Three gedankenexperiments were described by Biot and Willis. They are called:
1° jacketed undrained, 2° jacketed drained and 3° unjacketed and they are schematically

shown in Figure 14.

160



Fig. 14: Schemes of Gedankenexperiments: 1) jacketed undrained, 2) jacketed drained,
3) unjacketed.

In experiment 1), the granular material is contained in the impermeable spherical
jacket which is assumed to be ideal, i.e. it does not contribute to the balance of forces in
the system. In experiment 2), the jacket is permeable, i.e. the pipes may supply or drain
the fluid from the sample. In experiment 3) a heap of the granular material is in contact
with the fluid in the container.

These experiments are called gedankenexperiments (ger. =thought experiment) be-
cause they are in principle possible but in their evaluation we have to neglect many effects
such as saturation and surface tension, nonisothermal character, boundary layers, flows
and viscosity, etc.

The conditions which describe them are as follows:

1°:¢=0, 20:pM"f=p{" 3°:p" - pl = Ap. (710)

We shall not present here the full analysis of the problem. It can be shown that it
has two distinct real solutions. One of them possesses N # 0, in the other one N = 0.
In the latter case we can construct the solution in the closed form. The formulae for the
material parameters are then called the Gassmann relations and they have the following
form

K, — K,;)° K, (K, - K, K?
k=KD g o Bl K)oy K (1)
s s K s K
Kw d Kw d Kw d
where
1 1— Un o
= —. 712
Ky K, Ky (712)
Simultaneously, for parameters describing changes of porosity it follows
KV — K TL()C — noKf
b=m—rnon-ovov-— = — 713
no(Ks—Kf)’ Ks_Kf ’ ( )
where
KV = (1 —no) KS +n0Kf, (714)

and K and C are given by (711).
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Below we present the numerical results for the relations between material parameters.
We show in Figures 15 and 16 the macroscopic parameters as functions of the porosity
ng. The following relations were used in these calculations
K
1+gng

K, =48 x 10°Pa, K;=2.25x10°Pa, K4;= (715)

The values of compressibilities K and K are typical — the first one for the sandstone,
the second one for water. The last relation is called the Geertsma equation and it specifies
K4 in function of the empirical parameter g. The typical value of g for rocks is 50.
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material parameters for Biot's model
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Fig. 15: Comparison of material parameters for Biot’s model (the left panel) and the
full model with the porosity gradient (the right panel) with Geertsma parameter g = 50.

It is seen that the compressibility K = \% +% 1S+ p&'+2Q is a decaying function of ng
and the results for the Biot model (N = 0) and for the full model coincide quantitatively.
The compressibility coefficient of the fluid M = p{'x/n3 behaves in the similar way but
there exists a quantitative difference between the models in the range of small porosities.
The coupling coefficient C' = (Q + pf /i) /ny is stronger in the Biot model than in the full
model and this is the result of an additional coupling through changes of porosity in the
full model. Finally, it is seen that values of the parameter N in the full model are much
smaller than values of other parameters. Obviously, in the Biot model this parameter is
equal to zero.

In Figure 16, we demonstrate the behavior of the coupling parameter ) for both
models. Clearly the values for Biot’s model are almost twice as big as these for the full
model. This is the indication that interactions between components are in the same range
of values because the values of N in the full model are almost identical as these for @) in
this model which means that the full interaction term is also identical in both models.
This Figure shows as well an instability of the full model for large values of porosity. This
may be the indication of a structural instability of granular materials for porosities bigger
than app. 0.58 and indicated in some structural works on this subject. This problem has
not been investigated any further.

The above results have a very important bearing in the nondestructive testing of soils
which we indicate in the next Lecture.
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Fig. 16: Comparison of the coupling parameter Q (right) for the full model and Biot’s
model with Geertsma parameter g = 50.

Unfortunately the remaining material parameters G = u°, 7 and p;, do not follow
from such simple considerations and require real experiments on porous materials.

163



Lecture 14: Waves in poroelastic materials

Due to its practical bearing continuous modeling of waves is one of the most important
subjects of continuum thermodynamics. Such wave phenomena as propagation of acoustic
waves (sound), surface waves (Rayleigh, Stoneley, Love, water waves), shock waves (col-
lision with meteorites, underground nuclear explosions, avalanches, landslides), solitons
(nonlinear water waves, porosity waves in granular materials) are commonly appearing
and require modeling for practical purposes. They are also used in laboratory and in
situ investigations of material properties of systems. Speeds of propagation and attenua-
tions of acoustic waves, decay and growth of amplitudes, transmissions and reflections on
boundaries, mode couplings, transitions from weak to strong discontinuity waves, propa-
gation of shock and solitons, all these features can be measured and deliver information on
material and transient properties of continua. In most cases of practical bearing mathe-
matical models of waves are formed by hyperbolic systems of partial differential equations.
Description by such systems motivated the creation of extended thermodynamics which
we presented in Lectures 6, 7 and 8.

The purpose of this Lecture is threefold. First, we show on the example of the two-
component linear poroelastic materials how the propagation of acoustic fronts can be
investigated. Then we demonstrate very briefly on the same example of the model the
method of spectral analysis for acoustic waves. Finally, we illustrate typical boundary
conditions for porous materials by investigating some surface waves. Due to the lack of
time we limit our attention to a purely mechanical modeling and leave out heat con-
duction and other thermodynamical effects. Still processes described in this Lecture are
irreversible. This is due to diffusion processes described by the permeability and this
yields to attenuation of waves.

We begin with the analysis of propagation of weak discontinuity waves and inves-
tigate the propagation of the front. The front of such a wave is defined as a smooth
moving surface on which the fields are continuous but their derivatives may have finite
discontinuities. This means in the case of the two-component poroelastic materials that
the following jump conditions are satisfied

[v]] =0, HVF;} =0, [[*]] =0, =0, (716)
o[ ]) e [E]
where the double bracket denotes the jump through the surface [[---]] := (--)" — (--+)7,

the quantities on the right hand side are limits of the quantities on the positive and
negative side of the surface, respectively.

The fields satisfying the above conditions must fulfil the Maxwell kinematic compati-
bility conditions on the front which follow from the general so-called Hadamard conditions.
They have the form

leradv]] = —2a®@n, [[gradv’]] = —a’ o, (717)
)] = -2[[%]]om flgadte) =3[ [F]]m
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where c is the speed of propagation of the front and n is the unit vector perpendicular to
the front.
Bearing the integrability conditions in mind

e’ 1 S T Oe . P
5 =3 [gradv + (grad v*) ] D 5T divv", (718)
we obtain immediately
G_es = —i(as®n+n®as) ngadesﬂ:L(a‘g@n—l—n@as)@n
ot 2c ’ 2¢2 ’
0 1 1
Ha—;:” = —EaF ‘n, |[[grade]] = gaF - nn. (719)

Now we form the jump of field equations on the front. These follow from the balance
equations

o S

pg% — divTS +p, (720)
ovl . .

pOFW = divT" - p,

and constitutive relations
T = T3 + Mel +2p°e® + Qel — N(n — no)1,
TF = T + plrel + Qel + N(n — no)1, (721)
p=n(v=v%), n—ng=nebe+®(e—¢).
After easy calculations it follows
{p5*1-An@n—p° (1+n®n)+ N (ngé+ ®)n®n}a’—
—{@n®n+ Ndén®n}a’ =0, (722)
—{@n®n+ N (ned+®)n®n}a® + {pf*l—pkn@n+ Nén®n}a" = 0. (723)

This is an eigenvalue problem. We split it into the normal part parallel to n and the
transversal part perpendicular to n.
In the first case we obtain

{p?— (A% +2u°) + N (no6 + @)} a? — {Q + N®}a, = 0, (724)
—{Q+ N (ngd + @)} ay + {p5 — py s+ N®}af = 0,
ad:=a%.n, daf =al n,

This homogeneous set of equations possesses a nontrivial solution if the determinant
vanishes. We obtain the following propagation condition

04_02{)\S+2M5_N(n0(5+@)+p5/<;—N<I>}

I Iz
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+{()\S+2MS)_N(TLO6+¢)}{pgﬁ—N@}_

I P
—pSLF {Q+ N®I{Q + N (ne6 + @)} =0. (725)
0/~0

This biquadratic equation for ¢ has two positive and two negative solutions which define
two longitudinal waves: P1-wave and P2-wave (Biot’s wave). Namely

1 (A +2u°—N ) Fr— N®
02:_{A o S("°5+ ) | ok i\/Z}, (726)
2 Po Po
AS 4245 — N(ngs+®) pfs—N®Y®  {Q+ N®HQ+ N (nod + ®)}
A= S - F +4 S F :
Po Po Po Po

In the second case we multiply equations (722), (723) by a unit vector n; perpendic-
ular to n. We obtain

{p5c —p®}af =0, af =0, (727)

GJJS_I:aS'IlJ_, af::aF'nL.

Hence
I
c=y|—=- (728)
1o

This is the velocity of propagation of the transversal wave. It looks like the corresponding
formula in the classical elasticity.
Let us mention that all these modes are attenuated due to the diffusion. This property
cannot be demonstrated by means of such simple arguments for the jumps on the front.
Instead of a simple but cumbersome analytical investigation of the above solutions
we present a numerical example. For this analysis we choose the following numerical data
typical for sand and water

kg kg
SR __ FR __
k
K, = 48GPa, K;=225GPa, m=nyx 107 —o-,
meSs

which we use in the evaluation of macroscopic material parameters. The value of the per-
meability coefficient 7 corresponds to the hydraulic conductivity k= 1072 2 = 0.1 darcy®.
We present the results in dependence on varying porosity ny and varying Poisson’s ratio
v.

22These two parameters are related in the following way

FR
Po  Yearth
ng———.
K

m =
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Figure 17: Front velocities of P1-, S-, and P2-waves
Left panel: Biot’s model and ”simple mizture” model (QQ = 0, N = 0)
Right panel: The full model and the simplified full model
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In Figure 17 we show the behavior of velocities of propagation of fronts of P1-, S-|
and P2-waves. These three-dimensional plots illustrate the general qualitative character
of the dependence on the initial porosity ny and on the Poisson’s ratio v.

In order to show whole surfaces in these 3D-pictures we collected the points in bars
in the direction of the v-axis. Separation of these bars reflects the steps of numerical
evaluation — for ng this is 0.02, and for v — 0.01.

First of all let us point out certain general features of these plots. They were cal-
culated by means of the relation (726), with Gassmann-like relations presented in the
previous Lecture. In both cases we have used a classical relation between the shear mod-
ulus 1° and the Poisson’s ratio v.

Values of porosity vary between 0.1 and 0.58. This range has been chosen due to the
applicability of the full model. As already mentioned in the previous Lecture micro-macro
relations for this model yield instabilities below ng = 0.1 and above the value ny ~ 0.58.
Instabilities in the first region, for ng < 0.1, follow from negative values of the shear
modulus for N # 0.

Clearly, all above restrictions of the full model are related to the extension of Gassmann
relations and, consequently, to the applicability of the full model to a certain limited class
of granular materials for which we can claim Gassmann relations to hold. They may not
fully apply to modeling of rocks, concrete and similar materials with a compact skeleton.

Plots in the left panel follow for Biot’s model and for its simplification which we call
”simple mixture” (Q = 0, N = 0). For the latter model all material parameters except @
are identical with those of Biot’s model. As we see the velocity of propagation of the front
of Pl-waves has a similar shape for both models but it is lower for the simple mixture
model than for Biot’s model. The difference is app. 10%. It is the opposite for P2-waves
where fronts propagate faster for the simple mixture model than for Biot’s model and the
difference is app. 20%. Certainly, velocities of P2-waves decay to zero in both models as
ng approaches zero.

The plot for velocities of S-waves is identical for both models.

These plots indicate already the important conclusion that the qualitative behavior
of Biot’s model and the simple mixture model is the same and quantitative differences
are small enough to be accepted in practical applications.

Plots for the full model and its simplification with the same values of material pa-
rameters except of () = 0 and N = 0 are shown in the right panel. For medium values
of porosities and Poisson’s ratio the behavior of these models is similar to Biot’s model
and the simple mixture model. Large deviations appear for P1-waves for small values of
porosity where a dependence on the Poisson’s ratio is different from Biot’s model. Also
for P2-waves substantial qualitative differences appear for small values of porosity and
small values of the Poisson’s ratio. In particular, below ng ~ 0.14 the velocity of the
P2-wave within the full model decays more rapidly than within other models.

Again the velocity of the S-wave is almost identical for both models but it behaves
differently from the Biot’s model and simple mixture model for small porosities where it
is decaying rather than growing and it possesses inflection points at app. ng ~ 0.25.

All these qualitative differences of both full models may be attributed to the singular
behavior of the shear modulus ;°. They would not appear if values of the parameter N
were smaller than these predicted by Gassmann relations.

The attenuation of waves cannot be discussed by means of the simple analysis of
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propagation of fronts. For completeness we show in Figure 18 the numerical results
following from the evaluation of dispersion relations for monochromatic waves in the limit
of infinite frequencies, w — oo.

In spite of qualitative similarity in the whole range of parameters, quantitative diffe-
rences between attenuations calculated for different models are much larger than the
differences between velocities. For instance, the attenuation of the Pl-wave as given by
Biot’s model is a few times smaller than in the simple mixture model (the left panel,
the upper picture). It is the other way around for P2-waves which are much stronger
attenuated according to Biot’s model than to the simple mixture model. However, these
differences become much smaller for medium values of parameters.

Again the attenuation of transversal waves is the same for both models — Biot’s model
and the simple mixture model.

For the full model the attenuation of P1-waves becomes negative in the case of large
porosities and small Poisson’s ratio. The range of instability is approximately limited by
the line: ng = v.

The attenuation of P2-waves becomes also much bigger than in Biot’s model for small
values of porosity.

In contrast to a singular behavior near the limits of ny and v results seem to agree
well in practically relevant medium values of porosity and of Poisson’s ratio.

We do not discuss in this Lecture any details of the analysis of monochromatic waves.
They are described by the following relations for fields

vi=VS¢, vP=vVvFg e =E%E, e=FEFE, (730)
E:=expli(kn x—wt)],

where w is a given frequency, k is the so-called wave number and it may be complex, n is
the unit vector in the direction of propagation. V°, VI ES EF are constant amplitudes.
Field equations determine the so-called dispersion relation k = k(w) which, in turn,
determines phase and group speeds of propagation, c¢,, = w/Rek, ¢, = (dRe k/dw)fl,
respectively, and attenuation of waves, Imk. However, it is worth mentioning that a
simple analysis of the dispersion relation yields some important conclusions concerning
parameters of the model. Two of them, () and p;2 have a particular bearing. As we
know from the previous Lecture the coupling parameter () can be calculated by means of
Gassmann relations. Parameter p;5 interpreted as the tortuosity coefficient is used in soil
mechanics in a transformed form proposed by Berryman

1 /1
pr2 = pe (1 —a), a—§(—+1) ie. a>1, p;p<0, (731)
o

where a is called the tortuosity. Let us apply the monochromatic wave analysis to the Biot
model and some of its simplifications. The constitutive relations (721) are now replaced
by the following ones

T = T5 + Mel +2u°e” + Qel,
T = T§ + p) kel + Qel, (732)

) ovlF  ov®
p:7r(vF_VS)_p12 <W_W)’ n—mng =ngbe + P (e —¢),
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i.,e. N =0 and we account for the influence of the relative acceleration.

We present numerical results for the fastest bulk wave, P1-wave, in dependence on
these parameters. We choose the data which practically coincide with those used for the
previous diagrams. In order to expose better the damping the permeability m has been
chosen to be bigger than before.

S S S
e = ()T 0500 m, epy— VR=1000™, 5= 4P = 1500 ™,
Po Po
oF
py = 2500 %%, = p—“s =01, m=10°%-22, (733)
0

Q = 08GPa, ny=04, a=1.75.

Four particular cases are considered. In the full Biot model both @ and pio are
different from zero, i.e. a is different from one. In the so-called simple mixture model
@ = 0 and @ = 1. In the remaining two cases either ) = 0 or @ = 1. These two cases
were investigated in order to clear what is the influence of each of these parameters.

" T
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Fig. 19: Speeds and attenuations of monochromatic P1-waves for four different models.

In the left panel of Figure 19 we present speeds of propagation of monochromatic P1-
waves as functions of the frequency. The simple mixture model (Q = 0,a = 1) leads to
the biggest difference in the speed between two limits of the frequency w — 0 and w — oc.
This difference is approximately 100 m/s and it was indeed observed in experiments on
soils. The both models with () = 0.8 GPa yield almost no difference between these limits.
This may indicate that values of the coupling coefficient ) given by Gassmann’s relation
are too large. Even worse is the influence of tortuosity a. It is seen in diagrams of the
right panel. For a moderate value of a = 1.75 the attenuation of waves decays more
than 10 times. We expect the influence of tortuosity, i.e. complicated shapes of channels
of the porous materials to have the exactly opposite effect. Such curvy channels must
scatter waves much stronger than straight channels and, consequently, increase rather
than decrease the attenuation. Consequently, in spite of numerous papers with such a
claim the added mass coefficient p;5 does not seem to have much to do with the tortuosity.
The latter has, of course, a strong influence on values of the permeability and, therefore,
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it seems to be physically justified to prescribe the influence of tortuosity only to the
hereditary character of the diffusion contribution. It should be stressed that this issue is
still very controversial.

The propagation conditions change dramatically if a boundary appears. It is known
from the simplest elastic model that due to the boundary condition on an elastic half-space
in addition to the normal longitudinal and transversal bulk waves the so-called Rayleigh
surface wave appears which propagates along the boundary with the speed smaller than
both speeds of bulk waves.

Similar effects are observed for all boundaries. These waves have a very big practical
bearing. Their spatial dispersion is much smaller than this of bulk waves because the latter
have spherical and the former cylindrical character. This is the reason, for instance, that
damages in earthquakes are caused by surface and not by bulk waves.

Before we discuss some properties of surface waves in saturated porous materials we
have to formulate boundary conditions for such media.

The construction of boundary value problems for porous materials requires a defi-
nition of the boundary. In the macroscopic description which we presented in previous
Lectures it is a smooth orientable surface 983, of the reference domain By of the skeleton.
It means that its current image 9B; moves with the velocity v of particles of the skeleton.
This definition does not relate the boundary to fluxes of fluid components and does not
specify any properties related to its morphology like, for instance, a fraction of the area
of channels approaching the boundary (surface porosity). These properties are essential
for the formulation of boundary conditions. The problem with the transition from the
real morphology of porous materials to the macroscopic description is demonstrated in
Figure 20. It is clear that there are infinitely many possibilities to envelope a porous
or granular material in a smooth surface which models the boundary. Variations of the
geometry, if they are sufficiently small in comparison with dimensions of REV, do not
have any influence on the macroscopic geometry. However, it is easy to see that these
small changes may lead to large variations of the surface porosity, i.e. the fraction of the
area of openings of channels on a chosen surface to the total area within REV.

From the physical point of view the only reasonable way to define a smooth macro-
scopic surface modeling the boundary is to locate it somewhere in the layer encompassing
boundary solid elements and whose thickness is not larger than the characteristic linear
dimension of REV. This choice should be random. Then it was proved A. Delesse in 1848
that the surface and volume porosities are equal. Certainly, it means that the boundary
surface cannot be tangent to elements of the skeleton on the boundary but it rather cuts
the material and leaves some parts of the real skeleton beyond the domain of continuous
model of the porous material. This indicates the existence of boundary layers which have
to be incorporated in boundary conditions. Similar remarks concern interfaces between
two different porous materials, a porous material and a fluid, etc.
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Fig. 20: On the definition of the boundary of porous materials

One of the consequences of the equal porosities is the condition (706) p° = (1 — n) p°%,
F

p" = np!®, etc. which describes equilibrium properties on the boundary without flow
effects, i.e. without an influence of boundary layer effects.

Now we are in the position to introduce conditions on B; which yield boundary
conditions. As mentioned above, the boundary 9B, is assumed to be material with respect
to the skeleton. Then partial mass balance equation for the skeleton does not give rise to
any conditions and the flow of the fluid must satisfy the following jump condition

mF = pF~ (vF= = v5) on = pf't (vF* —v5) ., (734)

Obviously, pf ~ is the current partial mass density of the fluid in the porous material (the
negative side of the boundary by the outward orientation of the normal vector n) and
pEt is the partial mass density of the fluid outside the porous material. If this is vacuum
this quantity is zero and the condition implies that normal components of velocities of
both components are equal. If the material outside is the fluid flowing from the porous
material then pf™ = p/". Other possibilities are obvious.

One cannot require a continuity of partial tractions in porous materials. Terzaghi has
constructed an instructive gedankenexperiment in which he has shown that the external
load is divided between components in a time dependent manner following from the flow
of the fluid through the surface. We can require only the continuity of the momentum
flux for the mixture, i.e.

(T —p" 1) n = tey, (735)

where t.,; is the full traction applied from exterior to the unit surface.

It means that we have to replace the second vectorial condition by some other con-
ditions. One of them reflects the existence of the boundary layer indicated in the above
discussion. Namely we assume that the amount of mass of the fluid which is transported
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through a unit area of permeable boundary in a unit time is driven by the difference of
real pressures in the fluid on both sides of the boundary. Hence, in general,

F— P+
m? = o <p_ — p_) : (736)

n nt

where pf'* are partial pressures in the fluid on both sides of the boundary and n* denotes
the porosity on both sides of the boundary. In the case of the porous materials only on
the negative side of the boundary, i.e. for n* = 1 we have

F

m :a(pF

T—n ), a= X (737)
Obviously, coefficients o/, o describe material properties of the boundary. The coefficient
a, in some works denoted as 1/T, is called the surface permeability. It has been intro-
duced to the theory of surface waves in porous materials by H. Deresiewicz in 1961. In
reflects jointly all properties of the boundary layer. In the particular case of the imper-
meable boundary o = 0 and conditions (734) and (737) coincide. However, the boundary
value problem does not degenerate because we do not have to solve the exterior problem.
Another particular case of an ideal permeable boundary a — oo yields the condition of
continuity of pressure: pf~ = n~pff*+ commonly used by mathematicians in the theory
of diffusion.

In addition to this scalar condition, we have to introduce two other conditions. As
(737) reflects only the behavior of the normal velocity (VF - v ) -n they are supposed to
describe the behavior of the tangent component of the relative velocity. It has been shown
by D. Joseph that, for macroscopically viscous fluids, this components of the velocity have
to satisfy a condition similar to Deresiewicz condition. In the case of ideal fluids which
we discuss in these Lectures the tangent part must be continuous. In the case of fluid
outside porous material this condition has the form

(v =v%) = [(vF" =v®) -n]n=0. (738)

We are ready to formulate the problem of surface waves. In the classical two-
dimensional case, we have to solve the field equations for the semiinfinite medium (720),
(721) under the condition that the solution decays with the depth and it moves as a wave
in the direction of the boundary.

It is convenient to introduce the displacement vector u® for the skeleton, and, for-
mally, the displacement vector u’ for the fluid. The latter is introduced only for the
technical symmetry of considerations and it does not have any physical bearing. Then

o S

u’ = grad¢® +roty®, v¥= %, e® = sym grad u®, (739)
o F

uf = grad o +rot ey’ VF:%,

where ¢ ,¢S .oF " are two pairs of potentials analogous to those appearing in the
classical elasticity.
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We choose the axes with the downward orientation of the z-axis and the x-axis in the
direction of propagation of the wave. As the problem is assumed to be two-dimensional
we make the following ansatz for solutions

©° = A% (2)exp[i (kx — wt)], AF (2) exp [i (kz — wt)], (740)
v = B (explike —wi)], wg — B () expli (ke — )]
0 = =yl =l =0,

and

p°—p5 = AS(2)expli(ke —wt)], p" —pf = AL (2)expli(kz — wt)], (741)
n—ny = APexpli(ks —wt)].

Substitution in the field equations yields relations for the amplitudes which, in the
case under considerations, have the exponential form exp (—vz), where + is different for
each amplitude. However, these exponents should have the common feature to be positive.
We know that this is indeed the case in the classical elasticity and, as the result, we obtain
Rayleigh waves. For porous materials, the problem is very complicated and only some
solutions possess indeed this property of surface waves. In some cases, such solutions do
not exist, in some other one obtains the so-called pseudosurface or leaky waves.

In addition, boundary conditions yield the dispersion relation k = k (w) which spec-
ifies the speeds and attenuations of surface waves. Due to the diffusion surface waves in
porous materials are always attenuated. Only in the limit w — 0 attenuation becomes
very small and some surface waves in porous materials remind, for instance, classical
Rayleigh or Stoneley waves. In the case of the model with N = 0,Q = 0,p12 = 0 (the
simple mixture model) the following dispersion relation follows in this limit of frequencies

e O e O et OO S
+0 (Vw) = 0.

It shows the existence of the single surface mode — Rayleigh-like wave. All other
modes characteristic for porous materials do not propagate.

We have shown the above example to illustrate technical problems which must be
overcome in the wave analysis in porous materials. Simultaneously, it is of the paramount
importance for many practical applications and one can expect an extensive research in
this field in the near future.
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Final remarks

The course on Continuum Thermodynamics presented in these Lecture notes was de-
signed to be delivered in 42 lecture hours. This extent is, obviously, not large enough
to cover even the main topics of the subject. For this reason, I have chosen a material
according to my own taste and related to my own research without any pretense to the
indication of importance or objective judgement of correctness of different approaches.
Apart from some practical purposes I have hoped to make clear that the subject of mod-
ern thermodynamics is still very attractive for the research. This concerns in particular
the thermodynamical strategy of constructing macroscopic models of complex materials,
in particular — materials with microstructure.
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