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1. Nonlinear thermomechanics of immiscible mixture 

1.1. Introduction 

Thermodynamic modelling of immiscible mixtures began with works of R. M. 

Bowen [1, 2]. These fundamental works as well as numerous original papers of 

Bowen contain very important results on the structure of nonlinear constitutive 

relations for mixtures in which at least one of the components is an elastic solid. 

However, in spite of its path breaking character this approach contains two flaws 

which went unnoticed in various contributions to this macroscopic model of 

diffusion processes in porous materials. 

First of all, R. M. Bowen introduces a Lagrangian description in a way 

which is obviously erroneous. For instance, the formula (1.1.1) in [1] which is 

supposed to describe the motion of an arbitrary component α , has the following 

form (in the original notation of R. M. Bowen) 

( ),, tαα Xχx =  (1) 

where “ αX  is the position of a particle of the α th body in its reference 

configuration, t  the time, and x  the spatial position occupied at the time t  by 

the particle labelled αX ” [1]. As a consequence, field equations in such a 

description are not defined on the same space as, for instance, each partial 

balance of momentum for the component α  is defined on the space Bα of points 

αX  and, even worse, different contributions to those equations describing 

couplings with other components depend on variables from different spaces Bβ. 

αβ ≠  of points βX . In order to obtain a proper mathematical formulation one 

has to transform them to the Eulerian description loosing all advantages of the 

Lagrangian description. In addition, equal smoothness of functions αχ  is 

necessary and, in addition, ( ) ( )tt ,, ββαα χχ BB =  for all α, β. This fault has 

been later on repeated by many authors. It is even worse when we choose the 

same reference configuration, say, B0, for all components as this yields particles 
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of different components to lie very far apart in any current configuration. Then, 

in the Eulerian description, particles interact with each other on long distances 

which means that the theory should be nonlocal. The reason for the fault not 

being noticed by R. M. Bowen is most likely related to the fact that his papers 

are primarily devoted to the construction of constitutive relations for 

homogeneous materials and nonlinear field equations are not even quoted. All 

boundary-value problems considered by Bowen such as propagation of acoustic 

waves are linearized and then the Eulerian and Lagrangian description are 

identical. 

 The second fault is related to the form of the second law of 

thermodynamics. It is based on the entropy inequality (e.g. relation (5A.1.8) in 

[2]) 

,0//div`
1

≥







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
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

+∑
=
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α

ααααααα

θρθηρ q  
(2) 

in which the vector of the entropy flux is assumed to be dependent only on 

partial heat flux vectors and partial temperatures. It does not contain terms 

dependent on relative velocities which appear in a natural way in all mixture 

theories. Such extended relations were introduced by I. Müller [6]. In addition, 

there exist numerous unsolved problems following from different temperatures 

of components. They are not continuous across any material surface and, 

consequently, they are not measurable. This means that classical boundary 

problems of heat conduction cannot be formulated. In the case of a single 

temperature field this problem is solved by the assumption on the existence of 

the so-called ideal walls (e.g. [7, 11, 13]). Attempts to extend this notion on 

mutitemperatrure fields of many components are not yet successful. 

 In this note, we present a way in which the faults appearing in Bowen’s 

papers can be corrected. We show how to introduce the Lagrangian description 

for immiscible mixtures in a proper way and we discuss some constitutive issues 

mentioned already by R. M. Bowen but not elaborated enough. Many important 

details of the construction of nonlinear models have been established in a very 

recent research and they yield essential deepening of Bowen’s models. This 

concerns, in particular, a corrected structure of the second law of 

thermodynamics for multicomponent systems with a single absolute temperature 

field θ . In contrast to works of R. M. Bowen, we also use a specific form of the 

objective relation for relative accelerations. For instance, in the article [2] 
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Bowen accounts for the objectivity requirements making the assumption that the 

skeleton is viscoelastic. This assumption can be avoided by shifting an 

appropriate dependence on the rate of deformation gradient to the nonlinear 

definition of the relative acceleration. 

1.2. Lagrangian description 

Description of motion of multicomponent systems can be constructed in many 

different ways. In the case of a system whose one component is solid one can 

use either the Eulerian description of motion or one of Lagrangian descriptions. 

In the first case, the motion is described by fields of partial velocities ( )t,xvα
 

of components given as functions of points 
3ℜ∈x  in current configurations and 

time t . In principle, under appropriate smoothness assumptions these functions 

can be integrated – it is the problem of the solution of the set of nonlinear 

ordinary differential equations 

( ) ( ) .,...,1,0,, Ntt
td

d
==== ααα

Xxxv
x

 (3) 

A unique global solution exists always and one obtains the set of trajectories for 

particles 
αX  of components (initial positions of particles of the α -component). 

This step is usually not doable analytically and, therefore, ignored in practical 

applications. All other fields, mass densities, deformations, diffusion velocities, 

partial stresses, temperature distribution, etc., one obtains without an explicit 

knowledge of trajectories, i.e. solutions of the set (3). 

 One can choose as well a reference configuration of a chosen component 

to describe the motion of all other components. In the case of porous materials, it 

is usually a configuration of the solid component (skeleton) and the motion of all 

other components is described relative to the skeleton. However, there are cases, 

for instance suspensions, in which a reference configuration of the fluid 

component is more convenient than this of the solid phase (suspended solid 

granule). We present here in some details the method of Lagrangian description 

with respect to the reference configuration of the skeleton. 
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 As in a single component continuum it is assumed that, for a chosen 

reference configuration B0 the motion is described by the diffeomorphism  

( ) 0,, B∈= XXfx t
S

 (4) 

which specifies the position x  of an arbitrary material point of the skeleton X  

at the instant of time t . As usual, its gradient defines the deformation gradient of 

the skeleton 
SF , and its time derivatives the velocity of the skeleton 

Sx′  and 

the acceleration of the skeleton 
Sx ′′  

.0det,,,Grad ≠
∂

′∂
=′′

∂

∂
=′= S

S
S

S
SSS

tt
F

x
x

f
xfF  

(5) 

 The function of motion 
Sf  is assumed to be almost everywhere twice 

differentiable with respect to spatial and temporal variables. 

 Note the difference in the notation in comparison to Bowen’s work on 

this subject. 

 The choice of the skeleton as the reference of the motion can be 

interpreted that the motion of fluid components filling the pores of the skeleton 

takes place not in the usual Euclidean space but in a special deformable space 

made available by the skeleton, or rather by its channels. We introduce the 

description of this motion by means of the usual Eulerian description and the so-

called pull-back operation [5]. It means that the partial mass densities 
αρ , 

partial velocities 
α

v  and all other partial quantities of the α -component, 

A,...,1=α , are functions of the current position, x , and the time, t . As the 

function of motion of the skeleton is invertible, we can define the following 

functions on the reference configuration B0  

( )( ) ( )

( )( ) ( ) ,,...,1,,,,

,,,,

Attt

ttt

S

S

=′==′

==

α

ρρρ
ααα

ααα

XxXfvx

XXf
 (6) 

and similarly for all other quantities describing fluid components. In order to 

make the presentation as simple as possible we are here a little sloppy with the 

denotation of functions. 

 As we see in the next Section, the differences of partial velocities of fluid 

components and of the velocity of the skeleton have a particular importance. 
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They describe the diffusion in the body. Projected on the reference configuration 

of the skeleton they have the form 

( ),1 SS xxFX ′−′=′ − αα
 (7) 

and these objects are called Lagrangian velocities [11]. They are objective, i.e. 

invariant with respect to the rigid body motion defined by the relation 

( ) ( ) ( ) ( ),, 1

0 tttt
T −∗ =+= OOxOxx  (8) 

where ( ) ( )tt Ox ,0  are arbitrary functions of time. As objective quantities they 

can be used as constitutive variables in thermodynamics of porous materials. 

 Other quantities which appear in relation to microstructural properties of 

porous materials are relative accelerations. It is easy to see that the differences 
Sxx ′′−′′ α

 are not objective. However, there are many ways of introducing 

objects which contain the difference of accelerations as the main contribution 

and simultaneously are invariant with respect to the rigid body motion. The 

simplest definition of this art was introduced in the work [12] and, for many 

fluid components, it has the form 

( ) ( ) ( )
,Grad

Grad1,

S

S

rr t

xX

xXxxXaa

′⋅′−

−′⋅′−−′′−′′==
αα

αααααα

z

z
 (9) 

where 
α
z  are arbitrary constitutive scalar parameters. It is easy to observe the 

similarity of this definition to the Oldroyd definition of the acceleration in a 

single component continuum 

( ) .grad,, vLvL
t

v
xxaa =+

∂

∂
=== T

t &&  
(10) 

However, instead of the Eulerian description in Oldroyd’s definition, we have in 

the present case the description of motion with respect to the reference 

configuration of the skeleton. In this configuration all fluid components are 

“moving” as this reference configuration was the space of motion. These 

motions are, obviously, defined by the pull-back operation. 

 In the above relations as well as in the rest of the paper the operators 

DivGrad,  are referring to the Lagrangian coordinates of the skeleton and the 

operators divgrad,  are referring to the Eulerian description. 
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1.3. Balance laws 

As in the case of a single component continuum the balance laws form the 

foundation of continuous modelling of porous materials. These laws specify time 

changes of fields of mass densities, momentum densities, energy densities, 

entropy densities and in some models, some additional microstructural quantities 

such as the porosity. The basic notion in the construction of such laws is the 

notion of material domains. In the case of a single body these are certain 

measurable subsets of the body. In models in which the body is identified with 

its reference configuration B0, and this is the case for the skeleton in the above 

chosen Lagrangian description, these subsets satisfy axioms introduced to 

continuum mechanics by M. E. Gurtin, W. Noll, W. O. Williams (e.g. [3]) and 

presented by C. Truesdell [8] (see also: [10, 9, 4]). For such a material subbody 

0BP ⊂S
 the balance law for the skeleton has the general form 

∫ ∫∫
∂

+⋅=
S S

SS

S

SS
dVdSdV

td

d

P PP

,ϕ̂ϕρ Nψ  (11) 

where 
S

P∂  is the boundary of the subbody 
S

P  and N  is the unit outward 

normal vector on this surface. 
Sϕ  is the specific density – it may be scalar, 

vector or tensor quantity,  which satisfies the balance equation. It is equal to 1 

for the mass density of the skeleton, 
Sx′  for the momentum balance, 

SSS
xx ′⋅′+

2
1ε  for the energy balance, 

Sη  for the entropy balance. 
S

ψ  is the 

nonconvective flux, and 
Sϕ̂  is the additive combination of external supplies and 

sources for the skeleton. Obviously, in the Lagrangian description with respect 

to the skeleton, the left-hand side of this relation can be written in the form 

( )
.∫∫ ∂

∂
=

PP

dV
t

dV
td

d
S

S ϕρ
ϕρ  

(12) 

 This is not the case any more for balance equations of fluid components. 

Material subbodies for the α -component are defined in current configurations 

by the velocity fields ( )t,xvα
. The domain ( ) 3

0 , ℜ⊂⊂ tS

t BP f
α

 in those 

configurations is material for this component if its boundary 
α

tP∂  moves with 

the velocity ( )t,xvα
. Consequently, its image in the reference configuration 

defined by the mapping ( ) ( )tt t

S ,1 αα
PP

−= f  has the kinematics determined by 

the Lagrangian velocity ( )t,XX α′ , i.e. its boundary points are moving with this 
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Lagrangian velocity. Obviously, they are not material with respect to the 

skeleton in which case they would have the zero velocity of boundary points. 

The balance equation for the α -component possesses the same structure as in 

the case of the skeleton 

( ) ( )
∫ ∫∫

∂

+⋅=

t

dVdS

t

dV
td

d

α α

αα

α

αα ϕϕρ

P PP

,ˆNψ  (13) 

but the domains of integration are now functions of time, i.e. 

( )
( )

( ) ( )
∫∫

∫

∂

⋅′+
∂

∂
=

=

t

dS

t

dV
t

t

dV
td

d

α

ααα

α

αα

α

αα

ϕρ
ϕρ

ϕρ

PP

P

.NX

 (14) 

 The above global relations yield local balance laws in regular points and 

jump conditions on singular surfaces. We quote here only the set of three 

fundamental balance equations for the skeleton and for fluid components. They 

have the following form 

 

 - partial balance equations of mass 

( ) ,ˆDiv,ˆ ααα
α

ρρ
ρ

ρ
ρ

=′+
∂

∂
=

∂

∂
X

tt

S
S

 (15) 

 

 - partial balance equations of momentum 

( )

( ) ( ) ,ˆDiv

,ˆDiv

ααααααα
αα

ρρ
ρ

ρ
ρ

bpPXx
x

bpP
x

+=−′⊗′+
∂

′∂

+=−
∂

′∂

t

t

SSSS
SS

 
(16) 
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 - partial balance equations of energy 

( )( ) ( )

( )( )

( )( )
.ˆ

Div

,ˆ

Div

2

1

2

1

2

1

αααααα

αααααααα

αααα

ρρε

ερ

ερ

ρρε

ερ

r

t

r

t

T

SSSSSS

SSTS

SSSS

+⋅′+=

=′−+′′⋅′++

+
∂

′⋅′+∂

+⋅′+=

=′−+
∂

′⋅′+∂

bx

xPQXxx

xx

bx

xPQ
xx

 (17) 

Hence, as could be expected, balance equations for the skeleton have the form 

similar to the case of Lagrangian description of a single continuum. 
SP  denotes 

the partial Piola-Kirchhoff stress tensor in the skeleton, 
Sε  is the partial specific 

internal energy of the skeleton, 
S

Q  is the partial heat flux in the skeleton, 
SS r,b  is the body force of the skeleton (it may include forces appearing in the 

case of a noninertial frame of reference) and the partial energy radiation, 

respectively. As always in the theory of mixture, there appear interaction forces 

in the form of mass source 
Sρ̂ , momentum source 

Sp̂  and energy source 
Sε̂ . 

 However, balance equations for fluid components contain not only 

contributions analogous to those of the skeleton but additionally convective 

terms. They describe additional fluxes created by the fact that material surfaces 

for the skeleton are not identical with material surfaces of fluids. Fluid 

components flow through material surfaces of the skeleton with the Lagrangian 

velocity carrying partial mass, momentum and energy of these components. 

These contributions are missing in works of Bowen as, in his formulation, each 

contribution of a particular component to partial balance laws is written in 

relation to its own reference configuration and its own notion of material 

surfaces. This is, of course, physically and mathematically erroneous. 

 As usual in the continuous theory of mixtures proposed by C. Truesdell it 

is assumed that the bulk conservation laws are satisfied. For mass, momentum 

and energy they have the following form 

.0ˆˆ,0ˆˆ,0ˆˆ
111

=+=+=+ ∑∑∑
===

A
S

A
S

A
S

α

α

α

α

α

α εερρ pp  (18) 
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 These restrictions yield local conservation laws for bulk quantities which 

we shall not present in this note (compare [14]). 

1.4. Entropy inequality 

The second law of thermodynamics is formulated in the theory of mixtures as a 

condition imposed on constitutive relations by the so-called entropy inequality. 

The formulation of this inequality requires the formulation of balance laws for 

partial entropies. As in the cases discussed in the previous Section, we have in 

the Lagrangian formulation with respect to the skeleton the following set of 

relations 

( )

( ) ( ) ,ˆDiv

,ˆDiv

ααααααα
αα

ηρηρ
ηρ

ηρ
ηρ

+=+′+
∂

∂

+=+
∂

∂

s
t

s
t

SSSS
SS

HX

H

 
(19) 

where 
αηη ,S

 are specific partial entropies, 
αHH ,S

 are partial nonconvective 

fluxes of entropy, 
αss S ,  are specific entropy supplies and 

αηη ˆ,ˆ S
 are partial 

entropy sources. Fluxes of entropy were introduced by I. Müller as constitutive 

quantities (e.g. [6, 7]). In the theory of single continuum the single entropy flux 

is proportional to the heat flux and the coefficient – coldness – is equal to the 

inverse of the absolute temperature. In the theory of mixtures with the common 

temperature of components it is often assumed that the partial entropy fluxes and 

heat fluxes satisfy the analogous relations. However the total flux in the bulk 

entropy balance relation contains additional contributions related to the 

diffusion. Certainly, it is also the case for porous materials. The addition of 

partial balance laws of entropy yields 

( ) ( ) ,ˆDiv ηρηρ
ρη αααα +=










+′++

∂

∂
∑ s

t

S
HXH  (20) 

where 
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.ˆˆˆ,
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SS
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(21) 

 The second law of thermodynamics has then the following form: for all 

admissible thermodynamic processes (i.e. all solutions of field equations) the 

entropy production must be nonnegative, i.e. 

.0ˆ ≥η  (22) 

This restriction yields the entropy inequality 

( ) ( ) ,0Div
1

≥







+′++

∂

∂
∑

=

A
S

t α

ααααηρ
ρη

HXH  (23) 

in which the entropy supply was neglected as an external agent which means that 

it can be switched off in the process of evaluation of the entropy inequality. 

 Neither in the case of the common temperature θ  of all components nor 

in the case of a multitemperature model the assumption 

,,...,1,, A
S

S === α
θθ α

α
α Q

H
Q

H
S

 (24) 

where 
αθθ ,S

 are absolute temperatures of components, incidentally – not 

defined by Bowen for the multitemperature model, the entropy inequality (23) 

would be identical with this of R. M. Bowen (5A.1.11) written in his formulation 

for immiscible mixtures with different reference configurations of components 

[2]. The missing terms in convective fluxes of the energy and entropy are the 

main reason for this fault. Consequently, at least a dependence on diffusion 

velocities in constitutive relations obtained by Bowen is wrong. An example of 

the model of immiscible mixture in which a proper form of the entropy 

inequality is evaluated is presented in details, for instance, in the works [12, 13, 

14]. In the next Section we illustrate those results by a few examples. 
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1.5. Example of constitutive relations 

In order to demonstrate some consequences of the Lagrangian formulation of 

thermodynamics presented in this note, we quote here a few representative 

results for a particular nonlinear model of porous media. This model contains 

fully nonlinear field equations for the following fields 

{ },,,,,,, θρρ αα nSSS Fxx ′′  (25) 

where θ,n  are fields of porosity and temperature, respectively. Clearly, we do 

not introduce the function of motion 
Sf  as a field but we require its existence. It 

means that fields (25) must satisfy the integrability conditions 

( ) ,GradGrad,Grad

23

TSSS
S

t
FFx

F
=′=

∂

∂
 

(26) 

where the second relation means that the gradient of the deformation gradient 
SF  must be symmetric with respect to the second and third index in Cartesian 

coordinates. 

 It is the standard strategy of continuum thermodynamics to construct field 

equations for fields (25) by means of the assumption that quantities appearing in 

balance laws which are not explicit functions of the fields and their derivatives 

must be given by constitutive relations. This is the so-called closure problem. In 

models with hereditary properties these constitutive relations are functionals on 

the history of fields and their derivatives. In some models these hereditary 

functionals are replaced by evolution equations. This is, for instance, the case 

with the porosity equation. R. M. Bowen proposed for this field an evolution 

equation. The analysis of a linear Biot model of porous materials indicates an 

influence of diffusion on changes of porosity which resulted in the proposition 

of a balance equation of porosity [11]. However, in contrast to standard balance 

laws this equation does not require additional boundary conditions. 

 For the model of poroelastic materials with the single field of temperature 

the set of constitutive variables appearing in constitutive relations is as follows 

(e.g. [12, 13, 14]) 

{ }.Grad,,Grad,,,,, θθρρ αα n,nα

r

SS aXF ′=C  (27) 
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 A few remarks on this choice are appropriate. The field of the mass 

density of skeleton 
Sρ  appears among fields and constitutive variables only in 

the case when there is a mass exchange between components. Then the mass 

source in equation (15)1 is different from zero and this partial mass density 

changes in time. Otherwise it is a constant and can be skipped in the lists (25) 

and (27). Otherwise we need an additional field, an internal variable, describing 

the mass exchange. It may be the vector of chemical reactions or some other 

field describing the rate of mass transfer. We shall not discuss this problem in 

this note and assume that 
Sρ  is a constant Lagrangian mass density of the 

skeleton. 

 The remaining mass densities 
αρ  possess a different character. Even if 

the mass exchange is absent, i.e. all mass sources are zero, these quantities 

change due to the deformation of fluid components. In contrast to the skeleton 

whose deformation is measured by the deformation gradient 
SF  the fluids in 

poroelastic materials are macroscopically ideal and their deformations yield only 

volume changes determined by changes of partial mass densities. 

 Special role is played by the contribution of the gradient of porosity 

nGrad . Its presence is necessary for the appearance of certain couplings of 

partial stresses whose necessity is indicated by linear models (e.g. [14]). In such 

linear models it yields constitutive relations in which volume changes of fluid 

components influence partial stresses in the skeleton and, conversely, the 

volume changes of the skeleton influence partial pressures in fluid components. 

The lack of this coupling yields the so-called simple mixture model. Its 

counterpart appears also in the theory of mixture of fluids [7]. 

 A dependence on the relative accelerations 
α

ra  was introduced in the 

linear model by M. A. Biot who claimed that it describes the so-called tortuosity. 

The tortuosity is a measure of deviations of channels in porous materials from 

the straight line geometry. This claim was frequently repeated in the literature. 

However, it can be easily shown that contributions of relative accelerations yield 

reversible effects [12] while an influence of tortuosity should be irreversible. A 

detailed discussion of this problem can be found in the forthcoming paper [15]. 

However, an influence of the relative accelerations and the so-called added mass 

coefficients is not forbidden by the second law of thermodynamics. 

 It is also seen in (27) that we assume the temperatures of components to 

be equal. This means that energy sources 
αεε ˆ,ˆ S

 are equal to zero. The reason 
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for this assumption is the problem of measurability of partial temperatures and, 

consequently, the problem of formulation of boundary conditions for heat 

conduction problem. This problem is still unsolved. 

 Constitutive relations are constructed in the thermodynamic strategy in 

this way that they automatically satisfy two fundamental principles: 

- thermodynamic admissibility, 

- objectivity (frame indifference). 

As already mentioned, this problem has been discussed by R. M. Bowen as well 

as in many more recent papers. Examples and further references can be found in 

[11, 12, 13, 14]. We present here only two special results to illustrate the 

deviations of modern constitutive models from those constructed by Bowen. 

 Let us begin with energy balance. In the case of a single temperature only 

added energy balances, i.e. the energy conservation equation has the bearing. 

Then one can show (e.g. [13]) that the heat flux vector Q  and the entropy flux 

H  are related in the following way for the two-component mixture (i.e. F=α ) 

( ),1 FFF
XQH ′−= ψρ

θ
 

(28) 

where 
Fψ  is the Helmholtz partial free energy function of the fluid component 

depending on deformations of both components and on the porosity gradient. 

Consequently, the relations assumed by Bowen in his exploitation of the second 

law are not appropriate. 

 The second example concerns the constitutive relations for partial 

stresses. Again we limit the attention to the two-component case. In such a 

model with a linear dependence of momentum sources on the relative velocity 

and relative acceleration 

,ˆ
12

F

r

F

V

ST
aXpF ρ−′Π=  (29) 

where VΠ  is the so-called permeability coefficient and 12ρ  is the added mass 

coefficient. This relation yields the classical Darcy law but not its nonlinear 

generalizations (e.g. the Forchheimer generalization for turbulent flows). It is 

also assumed that hereditary effects are not appearing. Otherwise, the law (29) 

would contain at least some convolution integrals reflecting the memory effects. 

 However, one should stress that the model is still highly nonlinear in 

relation to the deformations and changes of porosity. The second law of 
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thermodynamics and the objectivity yield then the following constitutive 

relations for partial stress tensors in isotropic poroelastic materials 

( )

( )

( ) ,1

,

12

2

12

FFSF

TSS

EF

t

F
F

t

F

FFSF

TSS

ES

S
SS

Jnn

Jnn

XXF

FP

XXF

F
F

P

′⊗′−−

−−−
∂

∂
=

′⊗′−

−−+
∂

∂
=

−

−

ρ

β
ρ

ψ
ρ

ρ

β
ψ

ρ

z

z
 

(30) 

where 
FS ψψ ,  are Helmholtz partial free energy functions depending on the 

deformations of components, porosity and temperature, 
SS

J Fdet=  and En  is 

the equilibrium porosity dependent on the same arguments as free energy 

functions. 
F
z,β  are material constants. It is clear that Bowen’s model does not 

contain an influence of the nonequilibrium changes of porosity as well as a 

quadratic dependence on the relative velocity which follows from the influence 

of relative acceleration. The deviation of the Bowen model is even more obvious 

when we include farther nonlinear effects such as a nonlinear diffusion 

coefficient.  

1.6. Concluding remarks 

The structure of a thermodynamic model presented in this note indicates three 

features of nonlinear modelling of porous materials which were not following 

from the pioneering works of R. M. Bowen. The first one is a different form and 

structure of Lagrangian balance laws. This follows from the fact that Bowen was 

using distinct reference configurations for each component which is both 

physically and mathematically incorrect. The second one is a complex 

constitutive dependence on diffusion velocities which does not follow in the case 

of simplified structure of fluxes in Bowen’s model which is in turn the 

consequence of the erroneous Lagrangian formulation of Bowen’s model. The 

third one is the reference to the relative accelerations and, consequently, to the 

added mass contributions as agents following from tortuosity. According to the 

second law of thermodynamics this cannot be the case as the first one is 

nondissipative while the second one must yield a dissipation. 
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