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1 Introduction to continuum theories

Continuum theories belong to the class of physical models in which fields of relevant phys-
ical quantities are defined on differentiable manifolds and are sufficiently smooth. This
mathematical specification means that in a continuum we do not use notions of material
points with a finite mass, that functions are defined on a common domain and they can
be differentiated, that some physical properties which appear in small dimensional scales
(smaller than the length of waves described by a continuous model) cannot be described
by a continuum. The latter property means that continuous models are long-wave ap-
proxzimations of systems made of real particles. We shall not discuss these limitations in
these notes (however, compare [98]) but it should be mentioned that, in spite of them,
some continuous models are useful even in such extreme cases as modeling of elementary
particles.

1.1 Reminder of tensor calculus

Continuous modeling is based on the vector and tensor analysis on Euclidean spaces.
Before we proceed to thermodynamics, primarily in order to fix the notation, we present
some basic mathematical properties of this tool.

There are many references to the subject of tensor calculus. Even though not complete
and up-to-date it is worth to recommend the classical works [78], [52] and in reference



to applications in continuum mechanics [27]. Modern brief presentation can be found in
Appendix: Elementary Tensor Analysis to the book [44].

Continuum mechanics presented in these Notes is based on the geometry of the three-
dimensional Euclidean point space £3. Points of this space, say, x,y define vectors
v =X — y which belong to a three-dimensional vector space V? called the translation
space. For this reason, the main notions of the vector calculus will be presented for such
spaces.

Definition: A vector space V is a set with two operations:

1) Vu,v €V: u+v €V and this operation is called addition,

2)Va e R,v €V: av €V and this operation is called multiplication of the vector v
by the real number «.

These operations satisfy the following rules for any vectors u,v,w €V and any real
numbers «, 5 € R:

DHu+v=v+u,

2Q)ut (v+w)=(u+v)+w,

3) there exists a null vector 0 €V such that Vv €V: v +0=v,

4) for any v €V there exists —v €} such that v+ (—v) = 0,

5)Va, e R,veV: a(fv)=(af)v,

6) Va,B € R,veV: (a+f)v=av+tfyv,

) Vae R uveeV: a(u+v)=autav,

8) Iv=v.

As already mentioned, in theories of continua we deal with three-dimensional vector
spaces. In general, the dimension n of the space V is introduced by means of the notion
of the set of linearly independent vectors which forms the basis.

Definition: A set of vectors {vy,...,v,} is said to be a basis of V, if

1) the vectors of this set are linearly independent, i.e. for any ay,...,a, € R, if
avy + ...+ a,v, =0then oy = ... = a,, = 0,

2) it spans the space V, i.e. for any vector u, this vector can be written as a linear
combination of {vy,...,v,}.

The latter means that this set cannot possess more than n elements. The number n is
called the dimension of the space and, to indicate this property we often write V" instead
of V.

Obviously, there are many choices of the basis. We usually use for the basis vectors
the notation {gi,...,g,} and write for an arbitrary vector u which in the n-dimensional
space must be a linear combination of basis vectors,

u:Zuigi, u,g,...,8,€V", dimV" =n. (1)

i=1

In addition to the above two operations the vector spaces are endowed with a bilinear
operation which we call the inner (scalar) product. This operation allows to introduce
the notions of the length of the vector and of the angle between two vectors.

Definition: An inner (scalar) product is the map

g:VxV—-R, (2)

with the following properties



HVu,v,iw eV, aeR: g(utav,w)=g(u,w)+ag(v,w),
2)Vu,veV: g(u,v)=g(v,u),

J)VueV: g(uu) >0, ifu#0.

We use the following standard notation for this operation

g(u,v)=u-v. (3)
Definition: The length (norm) of the vector v €V is defined as

vi= vl =vv-v. (4)

Spaces with such a norm are called Fuclidean vector spaces.
The notion of the angle between two vectors is introduced on the basis of the following
Schwarz (triangle) inequality
ju-v| < |uf|v]. (5)

Due to this inequality we can define the cosine of an angle # between vectors u, v in the
following manner:

Definition: For any non-zero vectors u, v, the angle between u and v,0 (u,v) € [0.7],
is defined by

u-v

(6)

Two vectors are orthogonal if = /2. Obviously, two vectors u, v are orthogonal if
and only if u-v = 0.

A vector v is called the unit vector if |v| = 1. The projection of a vector u on the
vector v is then defined as |u|cosf (u,v), or as u- e, where e is the unit vector in the
direction of the vector v, defined by the relation e = v/ |v]|.

Let {g;,i = 1,...,n} be a basis of V. Then the scalar product

cosf (u,v) = v

9ij = i * &j (7)

is called the covariant metric tensor. This name is related to metric properties of the
point space £ for which V is the translation vector space. We come back to this point
later.

Let us consider the scalar product of two vectors u, v in the above basis. We have

u-v= (u’g,) . (ngj) = uing,»j. (8)

We have used the following summation convention.
Summation convention. If an index in the multiplicative term of the expression is
repeated once (and only once!), a summation over the range of this index is assumed.

For instance . o
u'g; = Zuigi, u'v? iy = Z Zuing,»j. (9)
i=1 i=1 j=1
The basis vectors, {g;,7 = 1, ...,n}, are usually related to the system of coordinates in
the point space £. They are chosen to be tangent to parametric lines along which all but
one coordinate remain constant. We return later to this relation. However, such a relation
indicates as well that one can also introduce another set of vectors, {g’,7 = 1,...,n} which
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are perpendicular to parametric surfaces on which all but one coordinate change. Such
vectors are chosen to be perpendicular to these surfaces. Consequently, they must satisfy
the following relation

g-g =0 (10)
where 53 is called the Kronecker delta defined by
0= { 1, if i=j. (11)
From this construction we obtain
v.-gl = (ngj) g =" (12)

It can be easily shown that the set {g’,i = 1,...,n} forms the basis of V. Tt is called
dual to {g;,i =1,...,n}. The first one is the contravariant basis and, for this reason, the
corresponding components v’ of the vector v are called contravariant while the second
one is called covariant basis and the corresponding components v; = v - g, are called
covariant. The contravariant metric tensor

gi=g g = g¢gp=0", (13)

together with the covariant metric tensor g;; allow to raise and to lower the indices
u' = g%y, up = g (14)

In a particular case of the orthogonal basis of unit vectors {e;,;i = 1,...,n} — the basis
is then called orthonormal,
€; e = (5@', (15)

we do not have to distinguish between contravariant and covariant components: u; = u’
(= means that the relation holds only for a particular choice of the basis or of the frame).
This is the characteristic feature of the basis of Cartesian coordinate systems. Further
in these Notes we usually distinguish between subindices and superindices even for such
coordinates, but there may be some exceptions related to quotations from the literature.

Now we proceed to construct objects which are of primary importance for continuous
models. They describe, for example, deformations and tensions in materials. Let us
consider two vector spaces U and )V possessing properties described above. A function
T :U — V is called the linear transformation from U to V if for any u,v €ld and o € R

T (ut+av) =T (u) + aT (v). (16)

If T, S are two such linear transformations then we define their addition S + T and scalar
multiplication aT which satisfy the following conditions

(T+S)(v) = T(v)+S(v), (17)
(aT)(v) = aT(v).

With these operations the space of all such linear mappings becomes also a vector space.



The simplest linear transformation satisfying the above conditions is the tensor product
of two vectors. It is defined by the relation

Vweld: (veu)(w)=(u-w)v, veEV, ucel. (18)

Such products are also called simple tensors (sometimes called the dyadic products). One
can show that any linear transformation can be represented by a linear combination of
simple tensors:

Proposition: Let {g;,i = 1,..n} and {G,,a = 1,...m} be bases of V and U, respec-
tively. Then any linear mapping T: ¥V — U can be written in the form

T =T"g; @ G,. (19)

The coefficients T are called the contravariant components of the mapping T. Certainly,
we can easily introduce covariant and mixed components using the relations

T, =T"G.5, T =T"gj, Tin=T"6;Gus, Gap=Gq-Gs. (20)

1

Linear transformations of the vector space V into the same vector space )V are called
the second-order tensors. We skip further the parenthesis in writing second- order tensors.
For instance, relations for components of the mapping T will be written in the form

T =g T(GY) =g TG" (21)

Now, the bases {g;,i = 1,...n} and {G,,a = 1,...m} are the bases of the same space V.
The components of the tensor T =T"g; ® g; form the matrixz representation of the tensor

Tll T12 T13
|:le:| — T21 T22 T23 ) (22)
T31 T32 T33

We can define the composition of two second-order tensors T, S by the relation
VweV: SoT(v)=S(T(v))=STv==5T"ve;, (23)

where the orthonormal basis {e;,i = 1,...,n} is used.

We shall not present any further details of the tensor calculus referring the reader to,
for instance, the book of I-Shih Liu. We use the standard notation for the transpose, the
trace and the determinant of the second-order tensor

T =Te;®e;, trT=T, detT=det[T}]. (24)

In these Notes we use only vectors and tensors for three-dimensional Euclidean point
spaces. Then we can use the Cartesian frame of coordinates with the orthonormal basis
{e;,i =1,2,3}. For such tensors we have

TV =T =T/ =Ty (25)
We consider the eigenvalue problems of the form

(T-M\1) ks =0, 1=d"¢ e, (26)
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where A are eigenvalues following from the equation

det (T—A\pl) = A4+ I3 — [IpAp + 1117 =0, (27)
T T

1
Ir = &wT, Ip=5(; —wT’), Il =detT, T°=TT,

where Ip, [Ip, I11r are called the principal invariants of the tensor T, and ky are the
right eigenvectors of the tensor T.
Obviously, if /\(T“ ), a = 1,2, 3, denote solutions of the characteristic equation (27) then

3
Ip =MD, I = AVAD + AN + AN 11 = AN

a=1

In the three-dimensional spaces the second-order tensors satisfy in the Cartesian frame
the following
Cayley-Hamilton Theorem:

T — I;T? + [1;T — 11171 = 0. (28)

This Theorem shows that all powers of the second-order tensor higher than two can
be expressed by the tensors 1, T, T? and the principal invariants. The theorem holds also
true for the higher dimension n with the corresponding change of powers 1, ..., T"! and
invariants.

We use often the notion of the vector product. This notion can be easily introduced
in the three-dimensional vector spaces but some problems appear, for instance, in the
case of two-dimensional spaces. For this reason, we introduce first the notion of exterior
product.

Definition: For any v,u €V, the exterior product of u and v, denoted u A v, is
defined by

UAV=u®v-veu (29)

Obviously, this operation is skew-symmetric
vAu=—-uAv. (30)
Matrix representation of this tensor in the Cartesian frame
uAv = (u'v —v'vl) e ®ey, (31)

shows that the dimension of the space of these mappings is n (n — 1) /2, i.e. for n = 2
it is 1 and for n = 3 it is 3. Consequently, in the second case, we can introduce a vector
representing the exterior product. We can define

w = epuivte’ = (32)
EEijk (Uj'Uk — Uk'Uj) ei,
where
1 for even permutations 1 — 2 — 3
€5k = ¢ —1 for odd permutations 1 — 3 — 2 (33)
otherwise,
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is the permutation symbol. Obviously

uAv = (ujvk — ukvj) e; ® ey, (34)
which means that (32) has the form
1 . .
w=ge (UAV), e=epe @e @e" (35)

From the definition the vector w is perpendicular to both u and v. Bearing the following
identity in mind

€iik€ mn = 0imOkn — 0inOkm, (36)
we have from (32)
w-w = [wi=(u-u)(v-v)—(u-v)(u-v)cos?f(u,v) = (37)
lu)® [v[’sin?0 (u,v) = |w|=|u||v|sind (u,v).

Hence, the length of the vector w is given by the relation known from the elementary
vector calculus. Certainly, we use the following notation for the vector (cross) product

wW=uXxV. (38)

The relation (35) allows to define the vector product of vectors also in the two-
dimensional vector space V2. Obviously, this operation produces a vector which does
not belong to V2. A simple example is the vector product of two vectors tangent to a
surface at a given point. Such a product is a vector perpendicular to the surface.

Let us complete the remarks on tensor calculus with a brief presentation of frames
of reference in £3. Any given point of this space can be written as a function of three
coordinates

X=X (yl,yQ, y3) i (39)
Parametric lines C' are curves which contain points for which two of the three coordinates
are constant

Cl = {x| y? = const, y® = const} , ete. (40)
Local basis vectors g; are defined as derivatives of equations of parametric curves
0x
;== 41
& =5, (41)

Consequently, they are tangent to parametric curves. The infinitesimal line element ds
at a point x €€ in an arbitrary direction is defined by the differential

ds* = dx-dx =gydy'dy’, gij = & - g;- (42)

This justifies the name: metric of the tensor g;;. It specifies the length of an arc between
the two values of the parameter s, say s; and s, in the space £3 : fsslz ds.
In the case of Cartesian frames of reference we have

X :l'iei, €, e = (5”, (43)

and the basis vectors e; are independent of the point x €£3. This is the characteristic
property of Euclidean spaces in which the so-called parallel transport of vectors allows
to identify all vector spaces V3 in contrast to general manifolds where they are defined
individually for all points x of the manifold (compare vector spaces of a two-dimensional
surface which form tangent planes at each point of the surface).
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1.2 Geometry and kinematics of continua
Thermodynamics of continua is based on four fundamental principles

1. Continuity,

2. Balance equations,

3. Local action,

4. Thermodynamical admissibility.

The principle of continuity means that we consider functions on a three-dimensional
manifold By called a body which satisfy certain mathematical assumptions on the continu-
ity with respect to the volume measure defined on this manifold (for details see: [85], [95],
[91]). These assumptions yield the existence of densities. For example, instead of mass of
material points of the classical mechanics we deal with masses of subbodies which are cer-
tain three-dimensional subsets of By. Such masses are given by integrals of mass densities
over subbodies. In continua it does not make any sense talking about a mass of a material
point. The material point X €8 is only a geometrical notion and densities (fields) of a
continuum are functions of these points and of the time ¢. Values of these functions have
no direct physical meaning known from the classical mechanics. We speak about mass
density, momentum density, energy density, etc. but we measure in laboratories their
integrals over finite volumes — masses, momenta, energies, etc. of subbodies.

Continuity means that densities are continuous functions of the point X of the body
and of time t except of sets of points X of volume measure zero. This means that these
functions may possess finite discontinuities on surfaces, lines and at separate points. This
is, for example, the case when we consider boundaries between different media, propaga-
tion of waves or interfaces between different phases of chemically the same material. We
return to this point later.

The continuity assumption means as well that we consider a special form of changes of
the shape of the body due to motions. The motion is defined by a differentiable global
mapping (diffeomorphism) of the manifold By on the three-dimensional Euclidean space
R3. This space is called the space of configurations. For our purposes we can identify the
body By with a domain in this space occupied by the body at a chosen reference time,
say to'. Then the function of motion

£(,): By x T R, (44)

defines for each instant of time ¢t € 7 a current configuration of the body. The derivative
of this function with respect to X is called the deformation gradient F (X, t) (see: Fig.1)
and the derivative with respect to time is the velocity v (X,t) at the material point X.
We discuss these notions further in details. The deformation gradient is a linear mapping
defined on the so-called tangent space to the material manifold and it defines material
vectors essential for the description of deformations of the body.

We assume that the mapping f (., t) is invertible which means that each position x can
be occupied only by one material point X. This requires

det F # 0. (45)

! Certain models do no not admit such an identification. For example, there are continuous models of
dislocations which require a more general structure of the manifold than this indicated by the Euclidean
space (see: the collection of papers [57]).



F(X.t)(.)

Fig. 1: Local configuration of a continuum

The existence of a continuous function of motion f imposes severe limitations on
possible motions of the body. For instance, a creation of new surfaces (opening of a
crack in solids, tearing or a creation of vortices) is forbidden by the topological continuity.
Also the description of strong mixing (e.g. cigarette smoke in the air) is not possible.

The second principle — balance equations — means that some most fundamental
quantities appearing in models of the continuum satisfy relations describing their time
changes in terms of surface and volume supplies. In thermomechanical models which we
consider in this course these quantities are: mass density, momentum density, angular
momentum density, energy density and entropy density. In particular cases balance equa-
tions become conservation laws of mass, momentum, angular momentum and energy.
We discuss further the detailed structure of these equations. Apart of balance equations
a particular model may contain additional equations such as evolution equations of in-
ternal variables but we assume that the above listed conservation laws are unconditionally
satisfied in any model. The violation of conservation laws of mass, momentum or energy
leads to perpetuum mobile, i.e. the system may do a useful work without any time limit
and without any supply from the surrounding. Even though it may not be excluded in
a microscopic world described by a quantum theory the existence of perpetuum mobile
contradicts our macroscopic observations.

The principle of local action requires that a reaction of the body on external actions
is transmitted to material points by interactions of parts of the body through surfaces of
contacts, i.e. a reaction of each material point is limited to an influence of its infinitesimal
neighborhood. Direct interactions of two or more material points at finite distances are
not possible. Consequently, such actions as gravitational forces between parts of the body
or Coulomb electromagnetic interactions are not modelled by a continuum. Attempts to
include these nonlocal interactions failed and only some approximations of such actions
by the so-called higher gradient theories are possible without the violation of some basic
mathematical assumptions of the continuum. We discuss this problem within the subject
of constitutive (material) relations.

Finally the principle of thermodynamical admissibility reflects the requirement that
the second law of thermodynamics and certain thermodynamical stability con-
ditions are satisfied. These will be one of the main subjects of this course.

We proceed to discuss the geometry of the body changing in time due to the motion.
As already mentioned the current configuration of the body is defined by the function f.

10



Let us choose an arbitrary smooth curve Cy in the initial configuration By and investigate
its current image C; := f (Co,t) = {x €R3|x = (X,t),X €Cy} . It is convenient to write
the equation of Cy in the parametric form

X =X (9), (46)

where S is the parameter defining the distance along the curve. Then the vector
T=— (47)

is a unit vector (i.e. T -T = 1) tangent to the curve. The infinitesimal vector
dX =TdS (48)

is then also tangent to the curve Cy. According to the definition of the current image C;
its tangent infinitesimal vector dx is given by the relation

VX €Cy: dx=(Gradf)dX =tdS, t:=FT, F :=Gradf, (49)

where F' is the deformation gradient at the point X and the instant of time ¢. Hence the
infinitesimal vectors dx tangent to the curve C; which deforms with the body are given by
a linear transformation of the infinitesimal vector dX. This transformation is defined by
the quadratic matrix which is given by components of the deformation gradient F. It is
easy to be seen in the representation in Cartesian coordinates which are admissible due to
the assumption that configuration spaces are Euclidean. If we choose the unit orthogonal
basis vectors {ex}, K = 1,2,3 for the initial configuration and {e;},k = 1,2,3 for the
current configuration then the above relations can be written in the form

dx = d:nkek = tkede, i = FkKTK, F :FkKek X ex.

The tangent vector t is the current image of the vector T and it is given by the rule defined
by the relation (49). This rule of transformation defines the so-called material vectors.
Not all vectors transform according to this rule and we see an example of a different rule
of transformation in the sequel.

The most important property of the above transformation is that it is independent of
the choice of curve going through a chosen point X. The deformation gradient F depends
only on X and ¢ and defines the transformation of an arbitrary tangent vector T located
at the point X. We say that the gradient F' considered as a mapping maps a tangent
space at point X into the tangent space at the point x = f (X, ¢).

Let us consider the transformation of a vector which is perpendicular to a material
surface Sp. Such a surface is defined as a collection of material curves and, for simplicity,
we assume that it is parametrized by two orthogonal families of such curves. At a chosen
point X we consider two orthogonal parametric curves whose unit tangent vectors are T
and T, respectively. Then a unit vector perpendicular to the surface Sy is given by the
vector product

N=T; x T,. (51)
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This surface in the current configuration S; has at the point x = f (X,t) the following
tangent and unit orthogonal vectors

ti xt
tl = FTl, tg = FTQ, n :1_2 (52)
|t1 X t2|
Simultaneously we have
(tl X t2) € = 6kmntlthn - 6Im*mfrmM,-z—vlM}?nN,IVQN -

= 5imnEPF1;k1FmMFnNT1MT2N = SPMNJFEle1MT2M =
= JNpFy!, J:=detF >0,

where €4, €pyy are permutation symbols (i.e. they are either +1 for even and, respec-
tively, odd transformation of different indices, 1, 2, 3, and zero for equal two indices). The
above relations follow easily from the representation of the vector product in the form of
the determinant. Consequently

F-'N
|[FIN]

This is the rule of transformation for unit vectors perpendicular to material surfaces (i.e.
normal vectors).

The Jacobian J, as we see further determines changes of infinitesimal volume elements
caused by the transformation from the reference to current configuration. Its value for
the identical mapping is equal to one. According to the condition (45) it cannot cross the
line of zero values and consequently, due to continuity, it must be positive: J > 0.

As already mentioned the transformation of vectors dX caused by the motion deter-
mines local deformations of the body. We need only changes of length of infinitesimal
vectors in an arbitrary direction in order to find the local changes of the size and shape
of material elements. These length changes follow from the relation

n (53)

dx-dx = (FdX) - (FdX) =dX -CdX, C:=F'F=C", detC=J?>0, (54)

where the symmetric tensor C is called the right Cauchy-Green deformation tensor. There
arises the question what happens to nine components of the deformation gradient F if
six components of C are sufficient to describe the deformation. The answer is given by
the polar decomposition theorem: under the assumption of nonsingularity of motion (45)
there exists a unique decomposition of the deformation gradient of the following form?

F=RU, R'=R" UT'=1, (55)

i.e. there exist a unique orthogonal tensor R (it rotates vectors without changing their
length) and a unique symmetric stretch tensor U whose product is equal to the deforma-
tion gradient.

The proof of the theorem is easy and, simultaneously, it shows the procedure of calcu-
lating these two tensors. In order to take the square root of a tensor we have to represent
it in the diagonal form. We show further that U is the square root of C. The diagonal

2the dual foom F = VR, R !=R7T, VT =V, holds true as well.
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representation of C is provided by the solution of the eigenvalue problem. Namely, for
the right Cauchy-Green tensor we have the following eigenvalue problem

(C—Ac1l)Ke =0, (56)

where the eigenvalues \¢o satisfy the characteristic equation
1
AN —IN, + 1IN — 11T =0, [=trC, II= 5 (=€), [l =detC, (57)

and I,I1,1I1 are the so-called principal invariants of C. Hence, there exist three eigen-
values A\, = 1,2, 3, and due to the symmetry of C they are all real. They are called
principal stretches. The corresponding three unit eigenvectors K¢ are linearly indepen-
dent and this yields the following spectral representation of the deformation tensor C

3
C =) MK:aKE. (58)

a=1

Simultaneously for the stretch tensor U we have the following eigenvalue problem
(U-Ap1) Ky =0. (59)
If we multiply this relation by U from the left and use (56) we obtain
(C=XN1)Ky=0 — Xl =+h, Ky=Kg, (60)

where we have used the relation
C =U% (61)

This means that the spectral representation of the stretch tensor is as follows

3
U=>"VAcKc®Ke. (62)
a=1

As both the determination of C as the product of the deformation gradient F with itself
and the solution of the eigenvalue problem for C are straightforward the above relation
determines easily the stretch tensor U = C/2. It remains to find the inverse of U and we
have

R=FU'! = R'R=U'F'FU'=U'CU'=1, (63)

and, consequently, R is orthogonal.

The above considerations show that local changes of geometry are given only by the
tensor U and, consequently, by the tensor C. The orthogonal tensor R possesses, of
course, 3 independent components (e.g. Euler angles) and it determines local rotations
as an infinitesimal material element were a rigid body.

Depending on a particular application there are many possibilities to define deforma-
tion tensors. They are all equivalent. Some of them are quoted in the Table 1 (for the
extensive history of the subject of deformation measures see: [87]).

13



Table 1: Measures of deformation

Name Definition | Eigenvalues Eigenvectors | Author
igh h
right Cauchy C F'F 2\ = )\20 K=K¢ G. Green, 1841
-Green
left Cauchy B | FF” A2 k = FK J. Finger, 1894
-Green (Finger)

right stretch U C'/? A K Euler?

left stretch VvV B'/? A k Euler?

Cauchy C B! 1/)\° k L. A. Cauchy, 1827
GreenStVenant | g | o5c—1) |05 —1) |K A. de St.Venant, 1844
(Lagrange)

Almansi-Hamel 2 .
(Eler) e 05(1—c) [05(1—-1/2) |k E. Almansi, 1911
Piola Cc! 1/)\° K G. Piola, 1833

We proceed to discuss kinematics of the continuum. The main notions are the velocity
field v (X,t) and the acceleration field a (X, ). They are defined by the following relations

v (X, 1) :%(X,t), a(X,t) :%(X,t). (64)

Another quantity frequently appearing in the theory of continuous bodies is the gra-
dient of velocity L. It is defined by the time derivative of the deformation gradient F

L :%—EF—P (65)

Later we discuss this notion in some details.

In relation to kinematics of the body it is useful to introduce a certain transformation
group which has a great influence on the construction of constitutive relations. Namely,
it is assumed that material properties of bodies cannot change by changing the reference
frame in such a way that distances of material points in the configuration space remain
unchanged. If we introduce two reference systems, say, with position vectors without and
with star — in Figure 2 we demonstrate such systems without a rotation of the body —
then we require that in both systems the distance between two arbitrary points of the
body must be the same. Vectors ro —r; rj — rj may not be the same due to the rigid
rotation of the body but for both reference systems (observers) we have

vy — 19| = [r5 — 7. (66)

This is the property of the configuration space which we call isometry. The most
general form of the transformation which leads to the relation (66) is as follows

x*=0(t)x+c(t), O'=0", (67)

where O is an arbitrary time dependent orthogonal tensor and c an arbitrary time depen-
dent vector. This class of transformations forms an isometry group and each member of
this group is called an Fuclidean transformation. We require that material properties are
independent of the choice of two reference systems which differ on the isometry transfor-
mation. Incidentally, the transformation in which O and c are constant is called Galilean.
(Classical equations of motion are invariant with respect to these transformations.
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Fig. 2: Change of a reference system in Fuclidean spaces

It is useful to check the transformation properties of objects which we were discussing
in this Section. After easy calculations we obtain

f*(X,t) = O()f(X,t)+c(t),

. . ) . 00 ,  Jc
v = Ov+0Ox+e¢, O.—at, c:= e
F* = OF,
C* = C, B*=O0BO7, (68)
2?0 .. O

=0 20 O & 0= = —_—
a a-+ v + 0Ox +c, IR C IR

L* = OLOT+Q, Q:=00".

Scalars which do not change due to the transformation (67): ¢* = ¢, vectors which
change according to the rule: b* = Ob, and tensors which transform according to the
rule: T* = OTO" are called objective. Hence in the above quoted examples B is ob-
jective, F behaves like a collection of three objective vectors (objects in parenthesis):
F = (Fixer)ek, C behaves like a collection of six scalars Ck . The remaining objects
are nonobjective. It is convenient to write them in the form in which the deviation from
the objectivity is better exposed. For the velocity and acceleration we have

Ov = v"-Q(x*—¢c)—¢ Q:=00, QF=-Q, (69)
Oa = a"—2Q(v' — &)+ Q2 (x* —¢c) —Q(x* —c) — &,

where the antisymmetric tensor €2 denotes the spin matrix (matrix of relative angular
velocities of both reference systems). The contributions to the acceleration are called:
2Q (v* — &) — Coriolis, —Q2 (x* —¢) — centrifugal, Q (x* —¢) — Euler and & - relative
translational accelerations, respectively. They play an important role in the description
of motion with respect to the so-called noninertial reference frames.
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It is also convenient to separate objective and nonobjective contributions to the ve-
locity gradient L

L = D+W,
1

D = $(L+L')=D", D"=0DO", (70)
1

W = §(L—LT):—WT, W* = 0WO" + Q.

Hence the stretching tensor D is objective and the spin tensor W is nonobjective.
Finally, we consider the problem of the so-called objective time derivatives. This prob-
lem appears in constructions of constitutive laws.

dE=F(X,1)dX

f (x,7)

dx=F(X,t)dX

Fig.3: Relative deformation gradient

Let us begin with the analysis of a change of the reference configuration. This is
demonstrated in Fig. 3. The purpose is to use the current configuration at the instant of
time ¢ as the reference configuration for the motion in the vicinity of the instant ¢. The
function of motion defined on the current configuration will be denoted by f; (., .). For an
arbitrary point & in the configuration at the instant of time 7 it is given by the following
relation

E="1 [f_l (x,1) ,7‘} =1, (x,7). (71)
Corresponding deformation gradients are as follows
d¢ = F(X,7)dX=F (f'(x,t),7)F ' (f'(x1),t)dx= (72)

- Ft (X>7—) dX - Ft (677) = Ft (ft_l (€> T) 77_) ) Ft (€>7—)|7—=t = 1’

with an appropriate change of variables given by (71). The quantity F; (x,7) is called the
relative deformation gradient with respect to the current configuration.

In order to see time changes at the current configuration we investigate a material
vector Q (X). Its images in two instances of time ¢ and 7 are as follows

ax,t) = F{E ' (x1),t)Q(f ' (x1),
q&7) = F{EEn),7)Q(E () = (73)
= q (X> t) = Ft_1 (€>7_) q (€> T)}ngtfl(xﬂ—) :
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We define the time derivative of q (x,t) as a limit 7 — ¢ of the time derivative of q (£, 7).
In this way we account for time changes due to explicit dependence on time, due to the
changes of position of the material point X as well as due to rotation of basis vectors along
the trajectory. Such an operator is called Lie derivative related to the field of velocity v
(for mathematical foundations of this notion see: [80]). We have

d[F' (&7)q(&7)]

Liq(x,t) = T 3 =
_ dq(x,1) d[F; ' (§7)]
- at + \ A grad q (X? t) + dT » q (X? t)
Bearing (72) in mind we get
dF;'F, dF;! _,dF, dF;! JdF
Ittt = 2t _ _FlIp
dr 0 dr F,+ 1, dr — dr F, dr '’
ie.
d[F;"(&7)] dF (F71 (x,1) ,t) 1 1oy
e = — L —F 1 (f =-L .
- . = (£ (x,1),1) (x,1)
Hence
Laeh) = 250 4y mmda(en - Lixfatx) = (9
0 t
= - Lq, q:%—l—v-gradq(x,t).

It is easy to check that this derivative is objective, i.e.
Loq" (x",1) = O (1) Lvq (X, 1) |x—ory- - (75)

In the similar way we can define the time derivatives for material tensors of the second
order. For example, one can introduce the following Rivlin-Ericksen tensors describing
the rate of deformation

i/ as the time derivative of the right Cauchy-Green tensor C is nonobjective
one defines the Lie derivative of the relative Cauchy-Green tensor

oC,
Ci(r)=F (nF, (1) = Ai(t)= (;f_) =L" + L =2D, (76)
T=t
ii/ higher order Rivlin-Ericksen tensors
A =c = LeT (77)
(97‘” T=t
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In the same way one can introduce objective time derivatives of nonmaterial vectors
and tensors. For instance, the time derivative of a unit vector orthogonal to a material
surface has the following form

n(xt) = FTOF (NnE)|x 10 = (78)
E=£(X,r)
) T . On
— L,n=n+L n, nzza + v-grad n.

Let us mention in passing that the time derivative () introduced above is the so-
called material time derivative. It describes time changes along trajectories of material
points and it is applied in the Eulerian description which we discuss in the next Section.

There exist many modern textbooks on continuum mechanics which can be used as
amendment to the above presentation. To quote just a few: Rather sophisticated matem-
atically but with many examples is the book of J. E. Marsden and T. J. R. Hughes [50]. A
brief description of foundations and many examples of material laws for nonlinear elastic
solids can be found in [4]. Applications of the code Mathematica to nonlinear problems
of continuum mechanics are presented in the book [64]. An extensive presentation of the
linear acoustics following from the theory of continuous media contains the book [15].

Rigorous transitions from the general continuum to theories of elastic rods and plates can
be found in [2].

2 Balance equations

2.1 Balance equations in Lagrangian description

As we have already mentioned in the first Section fundamental quantities describing ther-
momechanical processes such as mass, momentum, angular momentum, energy and en-
tropy satisfy balance equations. These notions are defined on a family of measurable
subsets of the body By. Let us choose a member of this family, say P C By. Then ® (P, t)
denotes any of the above quantities prescribed to the subbody P at the instant of time t.
It is the quantity which can be measured in laboratories. It is assumed that the set func-
tion ® (.,t) is additive, i.e. for two subbodies P; and P, which are separate P; NPy = (),
O (P U Py, t) =P (Py,t) + D (P, t). For instance, the energy of two subbodies which are
not overlapping is the sum of energies of both subbodies. This assumption is usually a
bit weaker in order to admit a concentration of energy on interfaces. We skip here these
details. In addition, it is assumed that this set function is continuous with respect to the
volume measure, i.e. there exist a constant « such that for any subbody P

| (P,t)] < avol P, (79)
where vol P is the volume of P. According to the measure theory, these two assumptions,

additivity and continuity, yield the existence of the density ¢ (X,t), X €By (the so-
called Radon-Nikodym derivative) such that

(P, 1) = /P o (X, 1) dV, (80)
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where on the right hand side we have the so-called Lebegue integral. The above repre-
sentation is the most fundamental feature of continuous models. It is obvious that the
requirement of additivity eliminates long-range interactions from the model (compare re-
marks in Section 1). A contribution of such interactions would mean, for instance, that
the energy of two separate subbodies would not be equal to the sum of energies of both
subbodies but it would contain as well an energy of interaction.

The quantity ® is assumed to satisfy the balance equation

Vp S (P.1) = Ws (9P, 1) + ¥ (P 1), (81)
where Us describes the flur of the quantity ® through the surface P of the subbody P
and Wp is the sum of the volume supply of the quantity ® from the external world and
of the production of ® in the subbody P. These two functions are assumed to satisfy
axioms similar to (79) and, consequently, it can be proved that they possess the following
representations

Vs (OP.0) = § us(Xoa)ds. n(Pur)= [ [y (K +pK0)aV. (52)
where ¢ is the flux density per unit surface and unit time of the field density ¢, 1, is
the density of the volume supply of ¢ and ¢ is the production (source) per unit volume
and time of the field .

Additionally it is assumed that the surface OP is orientable and the dependence of the
flux ¢4 (X, t) on the surface reduces only to the dependence on the unit vector N (X, ) or-
thogonal to the surface at the point X and oriented outwards, i.e. Vg (X,t) = ¢ (N, X, 7).
Then one can show the following

Cauchy Theorem: there exists a function v (X, ) such that

s (X, 1) = (X, 1) - N(X, 7). (83)

It means that 15 is a linear homogeneous function of the unit vector N. We prove
this property.

We show first that 15 changes sign when the surface changes orientation: N — —N.
We divide a subbody P into two subbodies P; and P,, P; U P, such that they have a
common part of the boundary S. This surface has the outward orientation N for P; and,
consequently, it has the outward orientation —IN for P,. Then the balance equation has
the form 4

Gl eav=¢ wes+ [ e
dt Jp,up, op PLUPs

Using the balance equations for P; and P, separately we obtain

/S bdS = - /S b_sdS,

3The difference between the volume supply 9, and the production ¢ can be recognized only in relation
to the constitutive definition of the material. Then the volume supply is a quantity which is controlled
from the external world — it can be, for instance, switched off, and the production (source) is controlled
by constitutive variables which characterize a particular material.
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where —§ indicates the opposite orientation of the surface. Hence ¢)g = —1_g or, bearing
the assumption on dependence on the normal vector in mind,

¥ (N, X t) = =y (=N, X, t). (84)

Now we are in the position to prove the linearity of the above function with respect to
N. As this function is defined only for unit vectors we define first the following extension
on the space V3 of arbitrary vectors W
(W |4 (%,X t) for W £ 0,

(85)
0 for W = 0.

@(W,X,t):{

We show that this extension is the linear function with respect to W, i.e. for two arbitrary
numbers a and b we have 1 (aW; + bWy, X t) = ayp (W, X, t) + by (Wo, X, t). This
condition can be replaced by the following two conditions:

i/ for any real number a and any vector W: ¢ (aW, X,t) =a (W, X t),
_ii/ for any two vectors W, Wy: (Wi + Wy, X 1) = ¢ (W, X 1)
¢ (W2> X>t) :

It is clear that the function (85) satisfies the above conditions for either a = 0 or
W =0ora>0,W#0. Hence we confine our interest to the case a < 0 and W # 0.
We have

J}(CLW7X> t) = TZ}(_ |CL|W,X,t) = |a|{?(—w>X>t> =
= —|CL|TZJ(W,X,t):CL’(ZJ(W,X,t),

which proves i/.
In the case of linearly dependent vectors W1, Wy, the property ii/ reduces to i/. There-
fore we assume that these vectors are linearly independent. Let

W3 =— (W, +W,). (86)

Let us consider a triangular block Pj, containing X, with the faces &1, Ss, S5 normal to
Wi, Wy, W3, respectively, and the two parallel end triangles S4, S5 apart by the distance
0 (Fig. 4). Let € be the height of the triangles S;, S5 and A;,7 = 1,2, 3 be the areas of S;.
From the construction of the block we have
Ay Ay A
Wi (W (W)

(87)
The balance equation written for Py yields

1 dp 1

- av — - N,X,t)dS =

[ (F-we)v - [ vsvxa)

3

1 W;
:ZZ/&%QW X t) a5

=1

20



Fig. 4: Triangular block used in the proof of Cauchy’s Theorem

It is easy to see that vol Ps and A4, As are of the order 2 whereas A;,i = 1,2, 3 is of
order . Hence, we obtain

3
1 W,
li - — ., X,t)dS =0.
Now let us apply the mean value theorem to the above relation. We have
3
W; )
@ ¢+) =
i3 S (g X) o

=1

where X € S;. Bearing (87) in mind, we finally arrive at

3
- E : W, Vi x(i) —
ll_r,% — | z|¢S (|sz'|’X >t)

W, W, W3
= Wi (e o) + IWal s (e Xot) = IWal s (e X, =0,

which yields the condition ii/. This completes the proof.
Bearing the above results in mind we can write the general balance equation in the
following form

d A~
Vpa/PsO(X,t)dVZ 8P¢(X,t)-N(X,t)der/PWv(X,t)+<,0(X,t)]dv, (88)
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This result can be transformed to the local form. We consider two special cases of
this form — one which holds in regular points, i.e. in points X €8y in which all densities
appearing in (88) are continuous and, secondly, in points of a singular surface S which
may move through the body with a speed UN. This is the velocity of the points on the
surface in direction perpendicular to the surface. As we see further the balance equation
does not contribute anything to the description of motion which is tangential to the
surface, i.e. gliding of S along tangential directions is immaterial for our considerations.
In points of a singular surface limits of densities of the relation (88) may be different on
both sides of the surface, i.e. they may suffer finite jumps.

Let us first consider the case of a regular point X €B;. We construct an infinite
descending family of subbodies {P;};~, with three properties: i/ each set of this family
contains the point X, ii/ for each i P11 C P; and iii/ lim;_. vol P; = 0, where vol P; =
fPi dV is the volume of P;. Then using the Stokes Theorem for the surface integral we
obtain

, 1 O , . B
Zlirglo T / {E — Diveyp—o,—@| dV =0,

and, accounting for the mean value Theorem for integrals,

0 . .
== = Div ey, (89)
for almost all points of Bj.

In thermomechanics this equation is written for mass, momentum, angular momentum,

energy and entropy. We list the corresponding densities in Table 2.

Table 2: Densities of thermomechanics

Name density ¢ flux supply ¥y, source @
mass density o 0 0 0
momentum density PoV P Pob 0
angular momentum density | pyx X v ErimTiPrarer | pox X b 0
density of energy po(e+20) | -Q+P'v |p(v-b+r)]0
density of entropy 0o —-H 0oS i

All densities are, of course, referred to the unit volume in the undeformed (reference)
configuration By. P is the so-called Piola-Kirchhoff stress tensor, b is the body force
per unit mass, € denotes the specific internal energy per unit mass, %pO’UQ = é PoV -V is
the density of kinetic energy per unit reference volume, @Q is the heat flux vector in the
reference configuration, r is the density of energy radiation per unit mass, 7 is the specific
entropy per unit mass, H is the entropy flux vector in the reference configuration, and 7
is the source of entropy per unit mass. We return later to the detailed discussion of the
definition and the interpretation of all these quantities.

Let us mention in passing that the definition of angular momentum density p,x x v is
characteristic for classical continua. There are materials (e.g. some polymers, liquid crys-
tals, etc.) which require a modification of this notion as such materials possess additional,
rotational, local degrees of freedom. One of the first models of such media was proposed
by E. & F. Cosserat [20]. Recently, such Cosserat (micropolar) continuous media are also
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applied in numerical codes in order to eliminate the so-called shear locking effects (for the
extesive modern presentation of the subject see the book of M. Rubin [65]). We shall not
present those models in these notes.

Let us note that except of entropy all other sources are zero. Such balance equations
are called conservation laws. We see in the theory of multicomponent systems that for
some field quantities of mixtures it does not have to be the case.

Now let us turn our attention to points on a singular surface S. We construct again a
descending family of subbodies {P;} with three properties:i/ for each i P,NS = P;;1 NS,
ii/ for each i P;;; C P; and iii/ lim; ., vol P; = 0. Such a family is demonstrated in Fig.
5.

Fig. 5: Transition to a singular surface

First we estimate the derivative on the left hand side of the balance equation. We
have

d d d
Sfpav = S pavi S [ pav=
at Jp,” . T pr

dt
/ %dV—/ (,0+Uds—|-/ %dv—l—/ p-UdS,
pt Ot SroPF p- Ot SnoP;

where P;", P, are the part of P; lying above and below the surface S, respectively, ¢, ¢~

are limits of ¢ calculated from the positive (with respect to the orientation N) and negative

sides of §. The difference in sign in surface integrals follows from the opposite orientation
of the surfaces SN IP; and S N IP; .

In the limit ¢ — oo volume integrals vanish. The flux term can be written in the form

% v,b-NdS:/ v,b-NdS+/ 1 - NdS. (90)
P OPiNOP; OPiNIP;

Taking the limit in the whole balance equation we obtain

/Smp. [—(¢" =9 )U—(p"N-9 N)]dS =0.
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We can localize this relation as well and for an arbitrary point of the surface & we obtain
the following Kotchine condition

[l U+ N=0, [[.]]=(.)" = ()" (91)

It has been assumed that the source is volume continuous, i.e. that the surface S does
not contribute to the production. It does not have to be the case for some surfaces such
as membranes. We discuss this problem later.

For thermomechanical fields the balance equations are collected in Table 3 in the same
order as in Table 2.

Table 3: Balance equations of thermomechanical model in Lagrangian description
Left — regular points, right — points of a singular surface

% =0 [lpo]] U =0

po%t = DivP + pb [lpov]] U + [[P]|N =0
PF?” = FPT identity

o (= 40%) 4 Div (Q = V) = | [[pn (¢ + 3%)]] U~

= poV - b+ pr —HQ—PTVH-N:()
po3t + DivH = pys + 1) (o] U = [H]] - N =0

In the evaluation of the second law of thermodynamics it is convenient to work with
field equations of the first order. Then neither F should be considered as the gradient of
the function of motion f nor v should be the time derivative of this function. The function
f does not appear in such an approach. Its existence is secured by the integrability
conditions of F and v

%—]: = Gradv, GradF =(Grad F)T23 ie. %Fka = % (92)
Clearly, these relations are identically satisfied if we introduce the function f. Otherwise
they have to be used in the model in the same way as other field equations. Usually the
second condition is directly incorporated in the evaluation of thermodynamical admissi-
bility. However, the first one remains as an additional equation.

It is convenient to write the above integrability condition in the form of balance equa-

tion. We have
OF

— —Div(vel) =0 = i/FdV—% v ® NdS = 0. (93)
ot dt Jp op
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It means that we have an additional kinematical jump condition on singular surfaces
[[F]]U + [[veN]] =0. (94)

This is one of the so-called Hadamard kinematic compatibility conditions which form the
basis of wave analysis in continua (comp. [87]). We return to this problem in further
Sections of these Notes. It yields two important conclusions: on singular surfaces on
which the velocity is continuous also the deformation gradient must be continuous and
on material surfaces of contact of two bodies (U = 0) the velocity is continuous.

2.2 Balance equations in Eulerian description

The above form of balance equations related to the reference configuration at a chosen
instant of time ¢y is often inconvenient in practical applications. For instance, the fluid
mechanics never relies on such a description and it uses a current configuration as the
reference. We call the above presented description Lagrangian and we proceed now to
formulate Fulerian description in which the current configuration is used.

Let us begin with the proof of an identity which is frequently used by the transforma-
tion of balance equations. Namely?

Div (JF~T) = 0. (95)
We write it in Cartesian coordinates
0(JFg) 9] F—1+J% _
OX OXp KF T 0Xk
— JF;, 1aFlLF];k JEVF 1‘9F’L

Ll aX Lk aX

and (95) follows when we use the symmetry g—%@ = aa—if-. In the derivation we have used
the identity

8(F]},1FM) aF_ 8FkL aF_l aﬂL
\mitkt) g Dnp o pa @it Pk pap1 0L
DX TR Yy on DX Kt Lk

The transformation of Lagrangian to Eulerian description relies on the substitution of
the inverse function of motion X = f~! (x,t). We have, for instance

v = \__f( ):V( Y(x,t), ) azé(x,t):a(f_l(x,t),t),
L = L(x,t)= ( Y(x,t), ) (97)
B = B(x,t)=F(f "' (x),t) F" (f7'(xt),t).

Transformation of the velocity gradient L has a special bearing. We have

L %F ' = (Gradv)F ! = grad ¥, (98)

4In a similar way one can prove a dual identity

(96)

div (J7'F") = 0.

25



and this relation explains the name of L.
We have also the following relations for derivatives of J
oJ oF - _ -
— = JFT. — =JuL=Jdivv 99
a T o vy (%9)
GradJ = FTgradJ.

Whenever it will be clear from the context that we work in spatial coordinates (x,t)
we shall skip the bar over Eulerian quantities.
Let us investigate the balance equations. The transformation X — x in (88) yields

j <,0J Ydv = f (J7'F) -nds—l—/ [y + ¢ T do, (100)
t OPt

P
¢ = (f(x1),1),

where we have used the formula for the transformation of variables X — x known from the
classical analysis. The domain of integration is given by the transformation of the material
volume P; = f (P, t), where 0P, is its boundary and n the unit normal vector given by (53).
This formula explains the presence of the contribution J~'F in this relation. dv denotes
the infinitesimal volume element in the current configuration and ds the infinitesimal
surface element in the current configuration. J~! = J~!(x,t) is in this relation, of course,
the Jacobian of the transformation.

We introduce the following notation which will be particularly useful in thermody-
namics of multicomponent systems

=0 = TR, Yy =y g =9 (101)

all of them being functions of (x,¢). Then the general balance equation in Eulerian
description has the form

d

G Lad=4 weniss [ o) (102
Pt Pt

As in the Lagrangian description we can derive the local form of this equation in
regular points and in points on a singular surface.
In the first case the left hand side has the form

d Oy Iy
. pu— ].
= gptdv . dv+£n)t o,V - nds / {at + div (p,v )} dv, (103)

which results from the fact that the domain is material.
Hence by means of Stokes Theorem and the localization procedure discussed before
we obtain

at L +div (ov —1b,) = ¢y, (104)

for almost all points of f (B, ). This is the Eulerian counterpart of the equation (89) in
the Lagrangian description.
We illustrate the above general considerations by the mass balance. We have

d d _
—— = 0.
= podV = o PoJ dv
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Consequently, it is convenient to introduce the following notion of the current mass density

p(x,t) = po (F71(x, 1)) J7H (E71(x,8) 1) - (105)
It satisfies the following balance law (conservation of mass)

4 pdv =0, P, :=£f(P,t) (106)
dt Jp,

In regular points, we can transform this relation in the following way

4 pdv = @dv +% pv - ndv = (107)
dt P

= /Pt {% + div (pv)] dv=0 1ie. % + div (pv) = 0.

We have used in these manipulations the fact that the surface 0P; of the material domain
P; (i-e. the domain whose motion in the current configurations is determined by material
points forming the domain) moves with the speed v - n, where n denotes the outward
normal vector of this surface.

Making use of relations (99) it can be easily shown that the relation (105) p = p,J !
is the solution of the equation (107) with the initial condition p (x,t = to) = p, (f (X, 0)).
This is the reason that, in contrast to fluid mechanics, in solid mechanics in which La-
grangian description is used the continuity equation (i.e. conservation of mass (107)) is
not included in the set of fundamental field equations.

For a singular surface S; which moves with the speed ¢n we can derive the jump
condition. The procedure is similar to this used in the Lagrangian description. We have

4 pdv = / @dv + f pw - nds + % PW - nds, (108)
dt Jp, pirup; Ot oP; Py

where w - n = v - n on material surfaces 9P, N 0P, and P, N IP, and w-n = £c on
the singular surface S; N 0P . The difference in sign appears again due to the difference
in the orientation. As before we form a descending family of subsets and taking the limit
of balance equations we obtain

/SmPt [,0+ (V+ . n—c) —p (v_ -n—c)} ds =0 —

— [p(v-n—2¢)]]=0. (109)

This Eulerian jump condition (continuity of mass through the singular surface) is the
counterpart of the Lagrangian relation quoted in Table 3.
In the case of momentum balance, we have

4 pvdv:% Tnds+/ pbdv, (110)
dt Jp, oP; Pi
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In order to find the relation between the tensor T and the Piola-Kirchhoff stress tensor P
of the Lagrangian description one can use either the general relation (100) or transform
directly the local momentum balance in a regular point

Do V) Av) ) O T
5 = J 5 —I—pvat =J o +v-gradv| + pvJdivv =

N N I

J{ o —I—dlv(pv®v)]—

= Jdiv (JPE") +p, 1 =] (divT+7b)
i.e. skipping the bar for Eulerian quantities

0

% +div(pv®@v —T) = pb, T=.J'PF’. (111)
This is the local form of momentum conservation law. T is called the Cauchy stress
tensor.

Inspection of the above relations shows that the transformation from Lagrangian to
Eulerian description in regular points requires the following transformation of operators
0 a+ d, Grad — F” grad (112)
— — — 4+ v-gra rad — rad .
ot ot SR &

The time derivative appearing in the above relations is called material and it is sometimes

denoted by a dot on top of the symbol.
In Table 4 we have collected the balance equations in Eulerian description.

Table 4: Balance equations of thermomechanical model in Fulerian description
Left — regular points, right — points of a singular surface

2+ div(pv) =0, p=pyJ " [p(v-mn—0)]] =0

%) 4 div (pv @ v —T) = pb, T =J'PF" [p(v-n—c)v]—[T)]n=0
T=T7 identity

glpe+3v?)] +div(p(e+5v?)va—Tv)= | [[p(v-n—c)(c+30°)]] +
=pv-b+pr, q=J"'FQ +[la=Tv]] ' n=0
ﬂa%@%—divh:ps%—ﬁt, f,=J'%, h=J'FH [p(v-n—c)n]]+[h]] - n=0




The body force pb appearing in the momentum balance equation contains the action
of the external world on the body but it may also contain contributions stemming from
noninertial frames of reference. As indicated by relation (69) the acceleration transforms
in a nonobjective manner when we change the observer. Such a transformation

x" = Ox+ c, (113)

has no influence on the mass, internal energy and entropy balance equations but the
momentum balance changes in the following manner

pOa=p (a* —2 (VP — &)+ D (x*—c) - Q(x*—c) — c) = O (divT+pb). (114)

Consequently, the momentum balance equation preserves the form under this transfor-
mation if

pa* = div*T* +pb*, T*=0TO, (115)
pb* = pOb + pi’,
pi® = 20Q (v — &) — p? (x* —¢) 4 pQ (x* — ¢) + pi,

where div* denotes differentiation with respect to x*. pb* is called the apparent body
force because it consists of the true external force and of the inertial body force pi® which
in turn, possessrs the following contributions

2082 (v* — ¢€) — Coriolis force,

—pQ? (x* — ¢) — centrifugal force,

P2 (x* — ¢) — Euler force,

pC — inertial force of relative translation.

In the energy balance equation written in such a noninertial frame there appear an
influence of those forces due to the presence of the working term pv*-b*. However, if we
apply the mass balance and the momentum balance the equation for the internal energy
which follows by such a reduction

0
p (a—i + v* - grad *5) + divq*—T" grad *v = pr, (116)

is invariant with respect to the transformation (113).

We complete the considerations of balance equations with a few remarks concerning
particular cases of jump conditions (conditions on a singular surface).

We have already mentioned that a singular surface which is material, i.e. a surface of
contact between two bodies does not move in the Lagrangian description (U = 0) and it
means that ¢ = v - n in the Eulerian description. The jump of the mass density can be
in such cases arbitrary and the remaining conditions have the following form

[T)n=0, [ n=0, [h]-n=0. (117)

We have used the fact that on material surfaces not only the normal component of velocity
v -n but the full velocity v is continuous. This is the consequence of the Hadamard
condition (94).
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The first two relations play an important role in the formulation of boundary condi-
tions for continua. The first one — continuity of tractions, means that we may prescribe
forces on the boundary and these will be transmitted into the body by the stress vec-
tor Tn. The second one — continuity of the heat flux is used as one of the boundary
conditions in the theory of heat conduction. The second two conditions have the great
importance for properties of the so-called ideal walls which are a part of the second law
of thermodynamics. We discuss them further.

On surfaces carrying jump of velocity, we can write the above conditions in the alter-
native form

m:=p" (c—=vimn)=p (c—v m),

m[[v]] +[[T]] - n = 0, (118)

2

These equations for the stress tensor reduced to pressure T = —pl, which is characteristic
for gas dynamics, are called Rankine-Hugoniot conditions and they form a foundation for
the theory of shock waves in gases. The coefficient m — the mass transport coefficient is
related to the Mach number.

We close this Section with a few remarks on the formulation of field equations for a
particular material which frequently appears in engineering applications. Thermoelasticity
is the theory which describes changes of two fields: the function of motion f describing
time dependent large deformations of the material and the temperature 7" responsible for
the energy transfer in the material in the form of heat conduction. Further we discuss in
details the notion of temperature. For the purpose of this example we do not go into any
details concerning this field. In the Lagrangian description we do not need to consider
the mass density p, because, according to the mass conservation, it does not change in
time. In the case of homogeneous materials it is even constant.

For the fields {f,T'} as functions of variables (X,¢) € By x 7 we must formulate
field equations. As we require from the model that it satisfies the conservation laws of
momentum, moment of momentum and energy, these laws are chosen as the foundation
for the construction of field equations

m {{6+1U2}] —[[q—=Tv]] - n=0.

2

0 of
= Div P + p,b, poa—i +DivQ =P - Grad — + pr-. (119)

Pooz ot

In addition we have the restriction P (Grad f)” = (Grad f)PT. The energy conservation
law was reduced by means of the momentum conservation. Consequently, we obtain the
balance of energy for the internal energy € which does not have the form of the conservation
law (the so-called divergent form). There appears a source term which describes the power
of stresses P - Grad%.

2.3 Example of closure: thermoelastic materials

Equations (119) are not yet field equations. We must perform the so-called closure which
defines the Piola-Kirchhoff stress tensor P, the internal energy ¢, and the heat flux Q
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in terms of the fields f, 7. This is done in the form of constitutive relations which limit
the applicability of the model to a particular class of materials. For thermoelastic
materials it is assumed that constitutive relations have the following form

P = P(v,F,T.G), e=¢(v,F.T,G), (120)
Q = QVv,F,T'G), G:=GradT,

These are the simplest possible relations which do not yield a triviality of the model.
They possess a few features characteristic for such a construction

i/ among variables we have the first gradients of the fields F = Grad f,
G =Grad T which account for the influence of a neighborhood of a point
X €B, on the properties of the material at this point,

ii/ they do not contain a dependence on the function of motion f. This is
related to the principle of material objectivity which we discuss further; as a
mater of fact the same principle eliminates a dependence on the velocity v as
well,

iii/ the constitutive relations are functions and not functionals which would
be able to account for the dependence on the past history of processes. Such
functionals would appear, for instance, in cases in which at least one of the
constitutive quantities P,e, Q would be given by an evolution equation. We
discuss such classes of materials (e.g. viscoelastic solids) further in this course.

The constitutive relations must be further restricted by, for example, a condition of
thermodynamical admissibility. This will be the subject of the next Section. However, if
we are lucky we may formulate the above relations on the basis of experiments and then
no further restrictions would be needed. This does not seem to be the case ever. At least
some hints from a general model how to conduct experiments are always needed and this
is the motivation for the thermodynamical construction of models.

We close this example with an alternative formulation of the thermoelastic model
which is more convenient for thermodynamical considerations. It has been mentioned
already that the field f can be replaced by two fields F,v and then we have to require
certain integrability conditions in order to be able to integrate F and v a posteriori in
order to find the motion f. The model in this setting has the following form

i/ fields {v,F.,T'}

ii/ conservation laws

F
,00@ —DivP = pyb, (?9_15 — Gradv =0, (121)

5
pOE +DivQ = P-Gradv + pyr,
iii/ constitutive relations

P = P (V? F?T? G) Y €=¢€ (V? F?T? G) Y Q = Q (V? F?T? G) N (122)

This problem still contains a dependence on the temperature gradient G which yields the
set of the second order equations. This can be changed as well by exchanging the role
of G and Q. We demonstrate further this way of constructing field equations which is
known as the extended thermodynamics.
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3 Second law of thermodynamics

3.1 Irreversibility

Since a long time it has been clear to scientists that macroscopic processes are irre-
versible. This means that there exists no macroscopic systems which, when disturbed,
return spontaneously (i.e. without any influence of the external world) to their initial
state. Since XIXth century there exist models of physical systems in which macroscopic
properties of processes are being derived from microscopic description, in most cases stem-
ming from the classical mechanics of discrete systems. It was J. C. Maxwell (e.g. see [3]
for the popular presentation of the subject) who constructed a description of heat trans-
fer on the basis of the concept of random motion of particles. He constructed also a first
Gedankenexperiment of thermodynamics - Maxwell’s demon - demonstrating irreversibil-
ity which follows from reversible laws of microscopic motions.

Consecutively, it was observed that such a construction of models yields the contradic-
tion. Microscopic mechanical models are reversible, i.e. all processes possible for a given
choice of the time variable are also possible after a reversal of time. This contradicts the
macroscopic irreversibility. It can be shown rigorously, for example, that equations of
dynamics of many interacting particles lead to solutions in which after a sufficiently long
time the system spontaneously returns to an arbitrarily small neighborhood of its initial
state. This time is called the recurrence time of Poincare’s cycle. One can estimate this
time and for large systems containing, say 10? particles (the order of magnitude of the
Avogadro number), the recurrence time exceeds the time of existence of the Universe by
many orders of magnitude.

The above described properties of large systems led to vehement discussions among
physicists of the end of XIXth century and the beginning of XXth century. L. Boltzmann
proposed in 1868 a model of gases — the so-called Maxwell-Boltzmann kinetic theory
[11], in which the microscopic model was reversible (noninteracting particles flying free
in space and exchanging momentum and energy in elastic collisions) and the macroscopic
result described by the so-called H-Theorem, was irreversible (L. Boltzmann, 1972, [12]).
This result has been opposed by many physicists who were using, for instance, the argu-
ment based on the Poincare cycle, that the model must contain some flaws. On Zermelo’s
criticism pointing out the existence of the recurrence time Boltzmann supposedly replied:
"You should wait that long!” However for Boltzmann the result of this discussion has a
tragic end. He committed suicide.

Before we present the modern version of the principle of macroscopic irreversibility
we discuss briefly two simple models motivating this principle on the basis of microscopic
considerations.

The first example has been constructed by P. and T. Ehrenfest in 1907 [25] and it is
called "Dog and flea model” or "urn model” (see: [24], [98]). We present the idea of this
model in Figure 6.

For urn model we consider the dynamics of two urns containing N balls labelled from
1 to N. For simplicity, let us assume that initially all balls are in the urn (1) and the urn
(2) is empty. The motion of balls is given by random drawing a number between 1 and
N and then moving a ball with this number from one urn to the other. In the dog-flea
model the motion occurs because fleas are jumping from one dog to the other looking for
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better breeding conditions. It is obvious that the ”flux” must start from the urn (1) in
direction of urn (2). It may happen that we draw the same number again and the ball
then returns to the urn (1). However, for a very large N, say N = 10?3, it is much more
probable that we get a different number and another ball moves from the urn (1) to the
urn (2). Hence, despite small fluctuations, an average flux of balls has a definite direction
until we reach the macrostate in which both urns have almost equal number of balls N/2.
Although it cannot be excluded that we draw the sequence of numbers which would make
the urn (2) empty again, it is clear that such a process is extremely exceptional. This is
connected to the fact that the state with all balls in one urn is only one while the state of
equally distributed balls may appear in W = 2V variations if we ignore the numbering
of balls. It is said that the equal distribution between two urns yields the mazimum of
the entropy S = InW. We shall return to this definition later.

(a) > !
& g\e

/
@

Dog 1 Dog 2

Fig. 6: FEhrenfest’s dog-flea (urn) model (1907)

a/ state of the system at time ¢; b/ a particular microtrajectory to which two fleas jump from the dog

on the left and one flea jumps from the dog on the right; ¢/ occupancies of the dogs at time ¢ + At
(K. Gosh at al., Am. J. Phys. 74(2), 2006)

Let us note that the above analysis assumes a very large number of possible states of
the system. It is still a matter of dispute how small a system may be in order to admit a
macroscopic modeling. For instance, the diffusion process of DNA particles within cells
(translation through nanopores) is described by a variation between a few hundred states.
Still some macroscopic thermodynamical arguments are applied to such systems.
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We proceed to present an ingenious model of Marc Kac ([42]) which illustrates the
problem of irreversibility of Boltzmann’s kinetic theory. Simple calculations presented
below demonstrate that the irreversibility results from a certain assumption on random-
ness of the system (”Stoflzahlansatz”) and this is, of course, related to the large number
properties of the above presented dog-flea model.

Fig.7: Irreversibility and Stof$zahlansatz — model of M. Kac (1956).

The system consists of N white or black circles distributed in the equal distance At
on the circumference of a large circle (Fig. 7). Dynamics of the system is introduced by
the rotation of the wheel with the set, S, of M spokes distributed at random in different
middle positions between small circles. Whenever the wheel rotates on the angle At the
color of the small circle through which the spoke passes changes. We assume that both N
and M are very large but simultaneously M < N. The instantaneous number of white
and black circles is described by the following ”equation of motion” with the discrete time

N, (t+ At) = N, (£) + N, (S,t) — N, (S, 1), (123)

with
Vi Ny (t) + Ny (t) = N, N, (S,t) + Ny (S,t) = M. (124)

Certainly, N, (S,t) denotes the number of black circles which change color in the step
t — t+ At, and N, (S,t) the number of white circles which change color in this step.

Equation (123) constitutes the counterpart of the Liouville equation for N particles
and describes reversible processes on the microlevel: after two full rotations of the wheel
the systems returns to its initial state. This means that the recurrence time of Poincare’s
cycle is equal for this model to tp = 2N At.

The change in the surplus of white circles at the instant of time ¢ + At is, according
to the equation of motion, given by the following equation

[Ny (t+ At) — Ny (t+ At)] = [Ny (£) — Ny (8)] — 2 [N (S,8) — Ny (S,1)] . (125)
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Now, we make the reasonable assumption that, owing to the randomness of the set S,
after sufficiently many time steps the black and white circles will be regularly distributed,
ie.

M M
Ny (S>t) :NNw (t)> Ny (S>t) :NNb (t) (126)
Substitution of this assumption in (125) yields the following difference equation
M
[Ny (t + At) — Ny (t + At)] = (1 — 2%) [Ny (1) — Ny (1)] - (127)

This equation can be solved immediately and we obtain

[N, (1) = N, (1) = N (1 - 2%) . (128)

Let us assume that the initial state of the system was N, (t =0) = N, N, (t =0) = 0.
Then it follows

No,(t) 1 1 M\’
==-4=-(1-2— . 129
TR REAC ) (129
Consequently
Ny (t=0) . Ny(t) 1
v b Ty o3 (130)

The most important property of the solution (129) is its irreversibility. It can be easily
checked that, independently of the initial state, we obtain always the same asymptotic
end state with equal number of white and black circles. There is no trace left of the
microscopical periodicity of processes. The reason for this behavior is hidden in the only
assumption which we made (126) which corresponds to the Stoflzahlansatz of Boltzmann’s
theory. We see that conditions under which the solution (129) makes sense are the ran-
domness of the set S and long, but not too long times of observations: 1 < t < tp.
For the flavor of the discussion of the problem of macroscopic irreversibility see also the
original papers of Ehrenfest [25], [26].

The above examples motivate the following formulation of macroscopic models. Con-
stitutive equations which define a particular class of materials should have such a form
that solutions of field equations will be not invariant with respect to the time reversal
(irreversibility) and, secondly, that disturbances of finite time duration should produce
solutions which relax (i.e. possess a time limit in infinity) to an equilibrium state
characteristic for a given class of materials and for given boundary conditions.

This program is usually realized by means of an additional scalar inequality which
constraints the class of solutions. Its form has been varying since XIXth century. Clausius
and Duhem proposed the first continuous version of such an inequality and this inequality
has been very intensively investigated in the 1960th (e.g. [86]). It has been found that
results of classical thermostatics obtained by Gibbs, Caratheodory and many others follow
as a particular case (equilibrium properties) from this inequality. It has been also proved
that the linear nonequilibrium thermodynamics proposed by Onsager (e.g. [22]) is a
particular case of this inequality for single component systems. Simultaneously, it has been
shown that the Clausius-Duhem inequality is inadequate in description of multicomponent
systems as well as for some nonmechanical (e.g. electromagnetic [38]) fields. The extension
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of this inequality has been proposed in 1968 by I. Miiller (see: [53]). It is usually called the
entropy inequality and this seems to be the most general formulation of the continuous
second law of thermodynamics which has been proposed up to now.

An interesting discussion of the role of thermodynamics in continuous models can be
found in the book of J. L. Ericksen [27]. Problems are illustrated in this book by many
simple but important examples.

There is an alternative approach to the formulation of the second law of thermody-
namics which stems from the classical XIXth century works of S. Carnot and F. Reech [51]
on cyclic processes. This notion has been extended and applied to nonequilibrium ther-
modynamics by J. Serrin [68] and M. Silhavy [79] and then summarized by C. Truesdell
and S. Bharatha [89].

There were also some attempts of axiomatic foundations of continuum thermodynam-
ics (e.g. [31] within the frame of a quasistatic approach or [93], [95] as a theory of processes
modelled on infinite dimensional manifolds) but they have not extended the local formu-
lation of the entropy inequality in a manner which may have any practical bearing.

We discuss further in this course various applications of the entropy inequality. We
begin with a formulation appropriate for all models which we discuss further and, for the
purpose of this Section we assume that the notion of temperature is known. However,
we return in the next Section to the discussion of notions of empirical and absolute tem-
peratures and various problems which they may create, particularly for multicomponent
systems.

3.2 Entropy principle

The strategy of continuum thermodynamics in construction of macroscopic models relies
on the assumption that solutions of the field equations identically satisfy the second law
of thermodynamics called also the entropy principle (e.g. [53], [95], [98], [44]). This
law consists of four parts. We formulate them in Lagrangian description and then, when
needed, change variables to Eulerian description.

Entropy principle:

i/ There exist a nontrivial entropy density function n and the entropy flux H which
are both dependent on the same constitutive variables as other constitutive functions of
the model.

ii/ The entropy density satisfies the balance equation whose form in regular points is
as follows

9
,0037; +DivH = 7, (131)

where 7) denotes the entropy source.
iii/ The entropy source is nonnegative for all solutions of field equations, i.e. for all
thermodynamic processes. Consequently, the following inequality holds

d :
vall thermodynamic proccssespoa_z + DivH Z 0. (132)

iv/ There exist ideal walls on which there is no entropy production, i.e.

[H - NJ] + [[n]] poU = 0, (133)
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these walls are assumed to be material, i.e. U = 0.

The last condition is modified for multicomponent systems and concerns the existence
of semipermeable membranes. We discuss this notion further in this course.

I-Shih Liu has proposed in 1972 [43] a method of exploitation of the inequality (131)
which reminds the classical method of Lagrange multipliers in mechanics®. Namely, in-
stead of this inequality restricting the solutions of field equations we consider solutions of
an extended inequality which should hold for all fields. This can be done if we consider
field equations as constraints on solutions of the entropy inequality.

Before we formulate Liu’s Theorem we again consider a simple example of the ther-
moelastic material which has been introduced in the previous Section. The set of governing
equations is as follows (compare (121), (122))

i/ fields {v,F.,T'}

ii/ conservation laws

ov , OF
Pogr DivP = 0, wrie Gradv =0, (134)
Oe

P07, +DivQ = P-Gradv,
iii/ constitutive relations

P=P(FT,G), c=:(FTG), Q=Q(FT.G). (135)

We have left out the constitutive dependence on the velocity v. Also body forces b and
radiation 7 have been assumed to be zero. This assumption follows from the fact that the
entropy inequality should hold for arbitrary external sources. It means that constitutive
restrictions which follow from the second law should be independent of such sources.
Consequently, restrictions which we obtain without sources must be identical as these
when those sources are present. This argument is different from the argument used, for
example, in a series of papers of B. D. Coleman and his followers (e.g. [18], [19]).

The above problem should satisfy the entropy inequality of the following form

0
vall thermodynamic proccsscspogz7 + DivH Z 07 n=n (F>T> G) ) H=H (F>T> G) : (136)

Using the chain rule of differentiation, we can write this inequality in the explicit form

allfeldsPo \Gp """ 51 OT ot | 9GOt
OHy OFy, | OHy OHx 8G,

TR, 0%, T OF TG, ax, =0 (137)
where
aFkK . (%k
ot 0Xg'

ot or T OF Ot 0Ggx ot

°It has been pointed out by R. A. Hauser and N. P. Kirchner [34] that the result of I-Shih Liu is a
particular case of Farkas-Minkowski Theorem known in the duality theory of linear programming.

oT (&-)—1{ s OF.c 0Ot 0Gx
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1 (0Qk 0F; 0Qx 0Qk 0G vy,
- — G - P 138
(aF,L Xk T oT CK T 9G, oxe K Ox, (138)
and these derivatives are eliminated from (137).
Clearly, this inequality is linear with respect to the following derivatives
ot ot T0Xg 00Xk 0Xk

As the inequality must hold for ALL fields — we have eliminated constraints imposed
by field equations (note that linearity of the momentum equation with respect to the
acceleration a—a”f does not impose any restrictions because the acceleration does not appear
in the entropy inequality) coefficients of the above derivatives have to vanish identically.
Otherwise we could choose the fields in such a way that one negative term would dominate
all others and the inequality would be violated. Hence, we obtain

il — ANo— 0 ‘l’iPkK = 0, A= 877 (ag)

an Oe
—L A= = 14
0G 0Gk 0 (140)
OH 0Qx
—AEE
OF) OF)
OHu 0w _
aGL aGL ’

where the parenthesis denotes the symmetric part, e.g. Z%Lﬁ) =4 (%;K + ﬁ‘“) We have

made the assumptlon = # 0 which is physically justified as this derivative defines the
specific heat in thermodynamlcal equilibrium.

There remains the residual inequality which does not contain linear contributions
anymore

D = (% — NoP— 0Qx

ar ar

The exploitation of identities (140) requires certain additional techniques which we

present in the next Section. They are either based on a simplifying assumption that the

material is isotropic or, in more general cases, one has to use a Theorem proved by I-Shih

Liu in 1996 on the relation between the entropy flux and heat flux [48]. Under rather
general conditions this Theorem states that in our case identities (140)s 4 yield

) Gg > 0. (141)

Hi = A°Qk. (142)
Then the substitution of the above relation in (140); 4 yields
A=A (T). (143)

Let us consider a contact surface between a poroelastic material and an ideal gas. For
the latter we have the relation H = (1/7") Q which can be derived from microscopic
(kinetic) considerations (Boltzmann’s H-Theorem). Bearing the continuity of fluxes on
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the surface of contact in mind (jump conditions and the last part of the second law of
thermodynamics) we obtain

H] N=0, [Q] N=0 = A=z (144)

Consequently, we obtain the classical Fourier result for fluxes
H = ! Q (145)
= =Q.

Substitution in the definition of A® (140); leads to the classical thermodynamical

identity
Oe an

— —T—=0. 146
ar ar (146)
It is useful to define the following function
v=e—="1Tn. (147)
Then differentiation with respect to the temperature 7" yields immediately

oY oY

/’7 aT? € ¢ aT? ¢ ¢ ( Y ) Y ( 8)
where the identity (140); has been exploited. The function ) is called the Helmholtz free
energy. If we use it in (140); we obtain

9,
P = poa—;éi. (149)

Hence, if the constitutive relation for the Helmholtz free energy 1) = ¢ (T, F) is known
it determines constitutive relations for €, n, P. This is one of the main results of the second
law of thermodynamics: in general, it yields the existence of thermodynamical potentials
which reduce the number of required constitutive relations.

By means of the above results we can immediately show that the following differential
relation holds

dn = = (ds — iP . dF) . (150)

T Po

In classical thermodynamics this relation is called the Gibbs equation [23] and it is often
mistakenly called the second law of thermodynamics. Obviously, it yields relations (146)
and (149). However, it does not contain the residual inequality (141) which also follows
from the second law. In other words, Gibbs equation cannot determine the dissipation
D in the system. Bearing the above results in mind we can write the dissipation in the
following form

1
D=-=Q-G2>0. (151)

This is, of course, the requirement that heat cannot flow from colder to hotter regions.
If we assume the linear Fourier law for heat conduction we obtain the classical result for
the heat conductivity

Q=-KG = K>0. (152)
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This is related to the so-called stability of the thermodynamical equilibrium. Namely,
we define the thermodynamical equilibrium as a state in which the dissipation D vanishes.
In our case it means that the temperature gradient in equilibrium must be zero. Hence, all
isothermal processes T' = const of arbitrary large deformations contain only equilibrium
states, i.e. these are equilibrium processes. Simultaneously, the inequality (151) shows
that equilibrium states are states of minimum of the dissipation function. Consequently
the following condition must hold

0*D
0GIOG

i.e. the Hessian matrix of D is positive definite. This is the so-called stability condition
of equilibrium.

Vz Z-

Z >0, (153)

3.3 I-Shih Liu Theorem

The above results show how powerful is the entropy inequality. However, we can essentially
improve the method of derivation of these results. Instead of directly eliminating some
derivatives by means of field equations we can use the I-Shih Liu Theorem on the existence
of Lagrange multipliers which helps to eliminate the constraints imposed by field equations
on the entropy inequality.

Inspection of the above derivation shows that we are solving an algebraic problem.
Constitutive relations and the chain rule of differentiation yield the entropy inequality
whose part is a linear function of some derivatives, in our example listed in (139) and
a nonlinear part which leads to the residual inequality. If we eliminate restrictions im-
posed by field equations we have to solve an inequality for arbitrary independent linear
contributions.

We formulate the general problem in the following abstract way [43], [44], [98].

We construct a continuous model for fields which form an n-dimensional vector
W= {ww}:=1 € V". The set of field equations for w is of the following form

aFo aFK A n n n n S n
# 37; =fy {Fo o, €V {Fry}_, €V, K =123, feV", (154
where the following differentiable constitutive relations are fulfilled
Foy = Foy (0),  Fiy = Fiy (0), f, = f,(0), weV". (155)

The choice of constitutive variables to defines the class of materials to be described. The
constitutive relations (155) must be such that solutions of field equations identically satisfy
the entropy inequality

—_ —_— = 10) Hy = .
Po ot | 0Xp - 0, n=mn(w), Kk = Hg (10) (156)

Obviously the constitutive variables tv may contain both fields w as well as their
various temporal and spatial derivatives.
Let us introduce the following notation

o on OH,  OHj
a= pOamla"'apOamNa amla"w amN

} c R, (157)
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Ow;  Owy Oy ooy )" AN
= 1
* {at’ ot 09X, ’axg} €%, (158)

where tv,,a = 1,..., N are components of the vector tv. Then the field equations can be
written in the form

~ ~ A n
Ax —f=o0, fz{fw} (159)
=1
where

OFy  9Fgy O

Oy oo o N

OFgp  OFga OF32

E] D

A= | oo Ow IoN e B ox RV (160)

OFgy  OFoy ... OFay

o oo o N

Then we can formulate the following Theorem:
Theorem (I-Shih Liu: on the existence of Lagrange multipliers, [43]). Let A be given
by (160) and X by (158), and

sz{aeeafe4N}Aae—f:o}7é@. (161)
Then, the following conditions are equivalent:
i/ VXeS: a-X2>0, (162)

where a is given by (157),

i/ JIAeR"A£0 VXeRY™Y: . X-A

/N

AX — f) >0, (163)

iii/) JAE€R,A#0: a—ATA=0, A-f>0 (164)

We prove the following implications
i/ «=ii/ <= iii/ <1i/. (165)

1. The implication ii/==-i/ is immediate.
2. We shall prove the equivalence of ii/ and iii/. The relation (163) can be written in
the form
vXeR™: (a—AT-A)X+A-f>0. (166)

Since this inequality holds for arbitrary X, it follows necessarily that
(a—A"-A)=0 = A-f>0. (167)

3. It remains to prove the implication i/==-iii/. With this aim, we define the following
sets:

H = {xeR"|a x>0},

{(xeR™W|a-x=0}, So={xeR"™|AX=0},

Hy {DeR™|VX eH : Y X =0}, (168)
So = {DeR|VXeS Y -Xx=0}.

I
S
|

41



To prove the assertion we show first that

Hy C Sy (169)
0 0

Let us first motivate the purpose of this relation. It is easy to see from definitions (168)
that the set of derivatives of the entropy and entropy flux with respect to the constitutive
variables 1, i.e. the vector a belongs to the subspace Hj because it is orthogonal to
all vectors belonging to Hy. Consequently, if we prove (169) we can claim that this
vector belong to Sy. Simultaneously, we can introduce a special representation of such
vectors based on the matrix A which has a physical bearing. Components of a in this
representation form the vector of Lagrange multipliers A.

It is easy to notice that Hy, Hy,Sg are subspaces of R4V, Simultaneously, i/ implies
that S C H; we obtain Sq C Hy.

Suppose that the above relation does not hold. Then

3@ € So : a- @ 7é 0.
However, Sy is the linear subspace of ##*V. Therefore
YaeR: adeSy = V3eS: 3+a €S

On the other hand
a(3+aP)=aa-YP+a-3.

Hence
dJaeR: aa-YP< —-a-3 = 3+aPY¢H,

which is a contradiction. Hence, Sqg C Hg.

We proceed to prove the implication i/==1iii/. By definition, we have a €Hy and con-
sequently, a €Sg. Let us construct, from the matrix A, the sequence of vectors {Ay, ..., A, }
whose coordinates coincide with the rows of A. Then

Vi<y<n: A €S;. (170)
On the other hand, we have
dim Sy = rank A, (171)

and, consequently, the vectors {Aw}::1 span the space Sy. It follows that

JAER,A#0: a=) AN =ATA (172)
y=1
Finally, A
VXeS: a-X=(A"A) - X=A-(AX) =A-f; (173)

since S C H, i.e. a-X > 0, we obtain
A - >0, (174)

which completes the proof.
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For the example of thermoelastic materials the objects appearing in the above theorem
have the following form
w={v,F T} e V¥ n=13,

w:={v,FT,G} e V' N =16,
{FO’Y}'lygzl = {pO'Uka FkKapog} € V13> (175)
{Fio 322 = {Pix vk, Qry, K =1,23,

{ﬁ}il _ {O’O’P’“aa;;}'

The Lagrange multipliers have been shown to be

e (176)

where A.x has not been derived in the explicit form because the constraint due to the
condition (134); has been eliminated by substitution. The multipliers of momentum
equations are zero because these equations contain a linear contribution of the acceler-
ation. Further we show various generalizations of this model and demonstrate the full
exploitation of the Liu Theorem.

4 Isotropy, material objectivity

4.1 Example - rigid heat conductor

Before we present technical tools for the exploitation of thermodynamical identities we
discuss briefly a very simple classical problem of the heat conduction in a rigid heat
conductor. This example demonstrates all basic features of the exploitation of the second
law of thermodynamics without many technical details.

We consider the problem defined by a single scalar field of the absolute temperature T'
on the domain By of the rigid heat conductor (undeformable body). The function T (X, ¢)
is assumed to follow from the energy conservation law

)
poa—i +DivQ =0, (177)

where p, is the constant mass density, and we have left out the energy radiation r. The
latter contribution is immaterial for the exploitation of the second law. We assume that
the internal energy density € and the heat flux Q satisfy the constitutive relations

e=¢(T,G), Q=Q(T,G), G =GradT, (178)

which are sufficiently smooth functions of both variables.
The second law of thermodynamics is given in the form of entropy inequality

WSl 4DVH >0, n=n(T,G), H=H(T,G), (179)
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which must hold for all thermodynamical processes, i.e. for all solutions of the field
equation which follows from (177).

According to Liu’s Theorem there exists a Lagrange multiplier A® (7', G) which allows
to write the above inequality in the following modified form

(977 Oe
— e p— ' >
ey +DivH - A (,00 T + Div Q) >0, (180)

and this inequality must hold for all fields 7" and not only for the solutions of field
equations. Chain rule of differentiation yields the explicit form of this inequality

(an A ag) 8T+p0(877 e 85)_8G+

or ~ " or) B 9G " aG) ol
oH .0Q OHyx ..0Qx\ 0T
e A AS > 0. 181
* (aT aT) G (aGL - aGL) oXpx (181)

The last contribution has been written in coordinates in order to reveal the symmetry.
The above inequality is linear with respect to the following derivatives
P or oG  0*T
Tl ot ot OXk XL

(182)

Obviously, the fourth contribution proportional to G is nonlinear. Hence, Liu’s Theorem
implies

(977 e an Oe

o NE 0 e NE O
OH (k 0Qk
A° =0. 1
9C1) + 9, 0 (183)
There remains the residual inequality
OH 0Q
— — € . >
D (aT A aT) G >0, (184)

which defines the dissipation D (T, G) in the rigid heat conductor.
We begin the exploitation of the above identities from (183);. In the case of isotropic
heat conductors the vector functions Q, H must have the following form

Q=Q(T,G*)G, H=H(T,G*)G, (185)

where (), H are arbitrary scalar functions of 7" and of the wnvariant of G, i.e. its length
=1/ G - G. For convenience we use the square of this variable. Then the identity (183)
has the form

oH 00 )
2(@—/\ (9G2) GKGL—I-(H—A Q)(SKL =0. (186)

Taking the deviatoric part of this identity

2 (8H —A° 8@) (GKGL—%G%KL) =0,

0G? 0G?
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we obtain that the first contribution should be zero, and, consequently, the second con-
tribution must vanish as well

OH ..0Q o
s Nog =0 H-AQ=0 (187)

Hence the substitution of the second identity in the first one gives the following result
H=AQ, A =A(T). (188)

There are only few results of this type for anisotropic materials. In the case of the rigid
heat conductor which is linear with respect to the temperature gradient we can prove it
easily. Namely, if we assume

or
0Xyp’

or
0Xr’

Hyg =Hgyp Qrx = QkrL Hixr =Hir (T), Qxr=Qrr(T), (189)

where Hy 1, Qg are conductivity matrices, then the identity (183)3 has the form

Hikr) — AQxr) = 0. (190)

The skew symmetric parts of matrices Hg, Qx are not restricted. If we assume that they
are identically zero then we obtain again the result (188). For these matrices dependent
on the temperature gradient there are no general results (however, compare [48] for some
implications in general cases).

The question is if the result (188) is characteristic only for materials of a single vectorial
constitutive variable. We shall see that differential identities of the form (183); give rise
to the similar result also for much more general cases of materials. This is the subject of
the next Liu Theorem.

We use now the assumption on the existence of ideal walls. According to jump condi-
tions on such walls we have

[H]]-N=0, [[Q]-N=0 = [A(D)]]=0. (191)

There exists one system for which we can calculate the relation between the heat flux Q
and the entropy flux H from a microscopic model (kinetic theory). This is the ideal gas.
For this material the relation has the form H = %Q, where T is the absolute temperature’.
We return frequently to this relation further in this course. Consequently, if we bring the
rigid heat conductor to the contact with the ideal gas through the ideal wall we obtain

A (T) ==. (192)
This relation holds true in all points of By and not only on the contact surface because the

multiplier A® does not depend on X in the explicit manner. Hence, the relation between
fluxes has for isotropic rigid heat conductors the classical form

H :%Q. (193)

6This relation follows also from the macroscopic thermodynamics of homogeneous systems based on
the so-called Caratheodory principle. We show some results of this approach in the next Section.
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It is appropriate to make a comment on this relation. In many works on continuum
thermodynamics this relation is assumed from the beginning and then the bulk entropy
inequality has the following form

N
4 pndV’ —I—% Q—dS — / psdV > 0. (194)
dt Jp op T P

This is the so-called Clausius-Duhem inequality. It has been very extensively used in works
of Coleman, Eringen, Noll, Serrin, Silhavy, Williams, Truesdell and many others. This
form of the entropy inequality follows indeed in many cases of single component materials
from the more general inequality used in these notes. However, multicomponent systems
which we consider further are an example that the Calusius-Duhem inequality is too
restrictive.

We return to the remaining identities (183); 2. They can be written in the form

1 09 o
= ——— = —T— =e—-T =y (T 195
where 1) is the trivial example of the Helmholtz free energy. Consequently, neither the
free energy 1) nor the internal energy ¢, nor the entropy 7 can depend on the temperature
gradient.

Finally, bearing the relation (193) in mind we obtain the residual inequality
Q-G <0 (196)

This is the classical statement of the second law of thermodynamics which says that the
heat flux has the orientation opposite to the temperature gradient, i.e. the energy flows
from hot to cold regions. This inequality can be written for isotropic heat conductors as
follows

K>0, K=-Q. (197)

Substitution of all above results in the energy conservation equation (177) yields the
classical heat conduction equation

Oe

orT’
where ¢, is the specific heat under the constant volume. This quantity is positive and
this follows from the stability condition of thermodynamical equilibrium. We discuss this
problem in the next Section. The thermodynamical equilibrium is defined as a state

in which the dissipation vanishes. For the rigid heat conductors it is the case when the
distribution of temperature is homogeneous in space: GradT = 0.

T
pocv% = Div (K GradT), ¢, := (198)

4.2 Isotropy

We return now to certain general properties of constitutive relations which are helpful in
the evaluation of identities following from the second law of thermodynamics.

As indicated above in the majority of cases we have to assume the isotropy of materi-
als. For anisotropic materials results are scarce and usually extensions from isotropic to
anisotropic properties are made ad hoc.
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Isotropy of materials is one of the properties related to the behavior of models under
the transformation of frames. However, we can perform such a transformation either on
the reference configuration or in the current configuration. In the first case invariance
properties specify the symmetry of the material and the corresponding group of trans-
formations is the so-called symmetry group of the material. In the particular case when
the group is the full orthogonal group the material is called isotropic. In the second case
the transformation is specified by the isometry of the space of motions which we have dis-
cussed before. This yields the principle of frame of indifference or the principle of material
objectivity. It plays an important role in the continuum mechanics and thermodynamics
by delivering general restrictions of the formulation of constitutive functions of material
bodies. It reflects the idea that material properties should be independent of observations
made by different observers. Obviously, different observers, as we pointed out in Section
1, are related by time-dependent Euclidean transformation of frames. For this reason ma-
terial frame-indifference is sometimes interpreted as invariance under superimposed rigid
body motions.

We present further many examples of invariance properties related to both transfor-
mations. In order to investigate such invariance properties we have to introduce the
mathematical description of isotropic functions. We proceed to do so. Many technical
details and references can be found in the classical reference book of C. Truesdell and W.
Noll [88].

BTechnical part concerning isotropic functions

We limit our attention to the full orthogonal group which consists of orthogonal tensors
O, det O = +1. We consider a scalar ¢, a vector h, and a symmetric tensor T which
transform in the following (objective) way

¢*=¢, h*=0h, T*=0TO". (199)

In the particular case of the single vector variable which transforms according to the
rule w* = Ow, where O is orthogonal, w is an arbitrary vector and w* is its transfor-
mation, arbitrary scalar function ¢ (w), vector function h (w), second order symmetric
tensor function T (w) of a single vector variable w are said to be isotropic if for an
arbitrary orthogonal tensor O the following conditions are satisfied

o(w)=p(w), h(w")=O0Oh(w), T(w*)=O0T(w)O". (200)

It is essential in these relations that functions ¢ (...),h(...), T (...) remain the same and
only their coordinates change in the new reference.

For the scalar function the representation result is immediate. As the orthogonal
transformation changes only the direction but not the length of an arbitrary vector, a
scalar function may satisfy the condition (200); only if it depends only on the length of
the vector, i.e.

e(w)=pW), w=w=vw-w, w' =uw. (201)

The representation for the vector function has the following form
h(w)=h(w)w. (202)
This relation has been used in the previous considerations. We proceed to prove it.
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For w = 0 we have
VO: h(0)=0Oh(0) = h(0)=0, (203)
and (202) is satisfied. Let us assume that w # 0. Then

hw) = [ b s ) = (o)) w). (204)

w? w2

Obviously, the second vector on the right-hand side is orthogonal to w. After the trans-
formation this relation has the following form

h(w") = %Ow- (h(Ow))] Ow-+ {h (Ow) — (—Ow- (h(Ow))) ow] -

= %Ow-Oh (w)} Ow+ {Oh (w) — (wiow . Oh (w)) Ow] -

= | v nw ow 0w - (Fwnem )W,

| w? w

Let us consider a particular case of the transformation which is the rotation by 180°
about the vector w, i.e. w = Ow. In this case the second contribution perpendicular to
w changes the sign

hw) = [z b ()| w [ ) = (e ) w). (205)

w? w
Comparison of (204) and (205) shows that the second term must vanish, i.e.

hw) = [Zzw b () w. (206)

w?

The coefficient is obviously an objective scalar. This completes the proof.
For the symmetric tensor we find the representation by investigation of the following
auxiliary function

h(w) =T (w)w. (207)

This function is isotropic. Namely
h (Ow) = T (Ow) Ow = OT (w) O’ Ow = Oh (w).
Therefore, there exists a scalar function A (w) such that
h(w)=h(w)w = [T(w)—h(w)l]w=0. (208)

Hence, w is the eigenvector of T. Since the tensor T is symmetric we have the following
spectral representation

T (w) = oV (w)w @ w+a® (w) uYeu® + o® (w)u?Peu®, (209)
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where u, u® are the remaining unit eigenvectors of T. Now let us choose a rotation

about the vector w which satisfies the conditions’
Ow=w, Ou=u® O0u® =u®. (210)
Then it follows from the spectral decomposition
T (w) = ) (W)W ® wa® (W) uPou® + 3@ (w) uPeu?,

which yields
a? (w) = a® (w).

Therefore the spectral representation of T reduces to the following form

D (w) — ia@) (W) . (211)

T(w)=7o() 1+ 7 (W)wew, 7 (w)=al o

This relation specifies the representation of the isotropic symmetric tensor function of one
vector variable.

Due to its practical importance we present in some details another special case of
isotropic functions of a single symmetric second rank tensors. Then we have

Representation Theorem (Rivlin, Ericksen).

Let ¢, h, T be isotropic scalar-, vector-, and symmetric tensor-valued functions of a
symmetric tensor variable A. Then it is necessary and sufficient that they have the
following representations

p(A) = ¢ (P a®aY), (212)
. h(A) = 0,
3. T(A = ’7'01—|—’7'1A—|—’7'2A2,

where o, 7, 71, T2 are scalar functions of the three eigenvalues a(V,a®,a® of A.
Proof. The sufficiency is trivial. We prove the necessity. For the vector function we

have
h (OAOT) =Oh(A),

and, choosing O = —1, we obtain h (A) = —h (A), which proves the Theorem.
For the scalar function, we have to show that whenever two tensors A and B have the
same eigenvalues, say {a(i) }?:1 then ¢ (A) = ¢ (B). Using the spectral representation we

obtain
3 3

A = Z aPu® & u(i)’ B = Z aDv® & V(i)’ (213)
i=1 i=1
where u®”, v(® are unit eigenvectors of A and B, respectively. Let us choose the trans-

formation O in such a way that ’ ’
u® = ov(®. (214)

o = O
S O

"i.e. in the basis {u u® w} O (det O = —1) is given by the matrix (

— o o
\/
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then the spectral representations (213) yield
A = OBO". (215)

Hence
¢(A) = (0OBO"), (216)

and the definition of isotropy: ¢ (OBOT) = ¢ (B) yields the Theorem.

It remains to prove the representation for the tensor function T. We prove it in two
steps. First of all, let us show that any eigenvector of A is also an eigenvector of T (A).
Let us choose O to be the rotation by 180° about the eigenvector u® of A. Then

OuV=u"", Oou®=-u?, O0ou?=-u® — 0AO0"=A (217)
Since T (A) is isotropic, we have for this O
OT(A)O" =T (OAO") = OT(A)=T(A)O. (218)

Hence
OT (A)u =T (A)OuY =T (A)u?, (219)

and, for our choice of O it means that T (A) u® must be parallel to u™). Therefore u® is
the eigenvector of T. For the remaining eigenvectors the proof is identical. Consequently,
we can write the tensor T in the following form

T (A)=) tPuPgu?, (220)

where b are functions of A.

In the second step we show that this result implies the representation for tensors. Let
us first consider the case of distinct eigenvalues a” of the tensor A. We consider the set
of the following three equations for 7q, 71, 72

7o+ a7 + () s =00, i=1,23 (221)

Since the determinant

a (aa))?
a® (a(2))2 = (a(l) — a(2)) (a(2) — a(3)) (a(3) — a(l)) (222)
a® (a<3>)2

does not vanish we can solve (221) with respect to 7o, 71,72. Substitution of (221) in
(220) yields

T((A) = TOZU @ul —I—lea Doul —|—7'32 ou® = (223)
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According to the Cayley-Hamilton Theorem for tensors generated by a three-dimensional
vector space we have

A? —TA* + ITIA —III1 =0, (224)

3
’ 1
I =t D ] =2t (12— trA2) = aMa® 4 0@ 4 oWag® (995
r;a, 21"( rA%) =aa® 4+ a®a® +aMa® (225)
[T = detA = aMa®e®,

where I, 11,111 are the principal invariants of A. It means that the set {1, A, A2} is
the basis of three linearly independent second order tensors for the space of all symmet-
ric second order tensors. It means that (223) is the representation of T in this basis.
Consequently, isotropy of T implies the isotropy of coefficients 7¢, 71, 72. This proves the
Theorem for three distinct eigenvalues.

For two distinct eigenvalues the proof is similar and it yields 79 = 0. Finally, for three
identical eigenvalues every vector is the eigenvector of A and, according to (220), this
yields 71 = 79 = 0. This completes the proof.l

The above considerations demonstrate problems which arise in proofs of theorems
on the representation of isotropic functions. We shall not go into any details of this
painstaking tedious analysis (see original works of R. Rivlin, J. M. Spencer [74], [75],
[76], [77], G. F. Smith [69], [70], C.-C. Wang [90], etc.) and present Tables 5 to 7 with
final results. We skip here the problem of a maximum set of invariants needed for the
representation of a given scalar-, vector- or tensor-valued function. This is related to the
question of functional independence of invariants which we do not discuss in this course.
We refer to the original literature and to the book of I-Shih Liu [44] where some of these
questions, also for anisotropic materials, are presented in details.

Let us demonstrate on a simple example how to use the Tables. Let us say that
the symmetric tensor T is an isotropic function of two symmetric tensors A, B. Then,
according to Table 6, it must have the form

T = ol + a1 A + axA? + 3,B+ 3,B* + v, (AB + BA) + 7,ABA+7,BAB, (226)
where scalar coefficients oy, a1, g, 81, Ba, 71, V2, V3 are functions of the scalar invariants

trA, trA? trA® B, trB? trB? (227)
trAB, trAB? trA’B, trA’B?

which follow from the Table 5 (top).

4.3 Material objectivity

We can now investigate the invariance properties of the example of thermoelastic model
which we have discussed in Section 2. The constitutive relations (120) were assumed to
have the following form

P = P(v,F,T.G), e=¢(v,F.T,G), (228)
Q = QVv,F,T'G), G:=GradT,
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Quantities appearing in these relations transform under the Euclidean time dependent
transformation of frames in the configuration space in the following way

P* = OP, ¢f=¢, Q'=Q, v*=0v+0x+e¢, (229)
F* = OF, T"=T, G*=G.

The principle of material objectivity (frame-indifference) requires that constitutive func-
tions in (228) remain unaffected by this transformation, i.e. in the new frame

P* = P (V. F" TG, e =c(v, F. TG, (230)
Q* - Q(V*?F*?T*?G*)?

where functions P (...),e(...),Q(...) are the same in both frames. Consequently, the
combination of these relations yields

OP (v,F,T,G) = P (ov+ ()x+(‘:,0F,T,G) ,
c(v,F,T,G) = ¢ (0v +Ox + & OF, T, G) , (231)

Q(v,F,T,G) = Q(Ov+()x+é,0F,T,G),

for all orthogonal O (¢) and for all vectors c ().

Clearly, for O = 1 the above relations indicate that constitutive functions cannot be
dependent on the velocity v as we have indicated in Section 2.

It remains to investigate the relations

OP (F,T,G) = P(OF,T,G), &(F,T,G)=¢c(OF,T,G), (232)
Q(F.,7,G) = Q(OF,T,G).

The polar decomposition yields the relation F = RU, where R is orthogonal. Conse-
quently, if we choose O = R , we obtain for the scalar function

£(F,T,G)=¢<(U,T,G), (233)

which shows that constitutive functions cannot contain a dependence on R and they may
be dependent only on U or, equivalently, on C = U?. Hence, bearing relations (148),
(149) in mind, the result of the material objectivity is as follows

e = e(CT,G), v=¢(CT,G), n=n(CT G), (234)

F% (CT,G), Q=Q(CT,G).

0C

Hence the dependence on R appears in the explicit manner in the relation for Piola-

Kirchhoff stress tensor and this is the result of the rule of transformation for this tensor
which behaves from the left as a vector in the current configuration (Eulerian).
In general, we can formulate the principle of material objectivity as follows

P = 2p

The constitutive function of an objective quantity must be independent of the
frame in the space of configurations.
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On the other hand, the orthogonal transformation of frames in the reference configu-
ration requires

P(C, T,G)O" = P (OCOT,T, OG) ,
e(C,T,G) = £(0CO",T,0G), (235)

0Q(C,T'G) = Q (OCOT,T, OG) ,
the first transformation characteristic for three vectors P.xex, k = 1,2,3, the second
one for the scalar, and the last one again for the vector ()xerx. These isotropic functions
depend on one vector and one symmetric tensor. The dependence on the scalar T is

immaterial for transformation properties. Bearing the results presented in Table 5 in
mind we obtain for the internal energy e

e=e(T,1,II,III|G|,IV,V), (236)
where the scalar invariants are defined as follows
1
I = uwC, IT=5 (I?+txrC?), III=detC, (237)
IV = G-CG, V=G-CG.

This general result simplifies considerably when we account for the thermodynamical
admissibility which we investigated before. Then the dependence on |G|, IV,V cannot
appear, i.e.

Y = Y(T,1,I1IIT), (238)
P = P(T,I,II,III).

Hence, according to (234) we obtain the following relation for the Piola-Kirchhoff stress
tensor

_ oY, O oY 1| _
P = 2pF { 571t UL = C) 4+ 5o IICT = (239)
= VIIT[Ne1+NB+RX ;B F",
where - - o0 -
Ry = 2p (HaH + HIaHI) o Re=2pr, Ny =TI, (240)

are the so-called elasticities depending on invariants I, I1, 1] and the temperature 7T,
and the constitutive relation (239) describes the compressible Mooney- Rivlin material. In
this derivation we have used the mass balance (105), the Caley-Hamilton Theorem and
the fact that invariants for the Cauchy-Green deformation tensors C and B are identical.
Mooney-Rivlin material is one of the most frequently used models of the nonlinear elastic
behavior of materials such as rubber (comp. [33], [88], [91], [58], [56]).
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Table 5: Isotropic scalar invariants (top) and Isotropic vector invariants (bottom)

Invariant elements

One variable:

v V-V
A=A": tr A, tr A® tr A3
W=-W"': tr W2
two variables:
Vi,Va ! Vi -+ Vo
v,A: v-Av,v-A%v
v, W v W2y
A A, tr Aj Ao, tr AJAZ tr ATA, tr AZAZ
Wi, W, tr W W,
three variables:
Vi, Vo, A vi - Avy, vy - A?vy
vi, Vo, W : vi - Wvy, vy - W2y,
v,A, Ay v-AAyv,y
_ v-W;Wyv,v- W, Wov,
v, Wl, W2 . V- WQW%V
v,A,W: v-WAv,v - WA®v, v- WAW?v
Al,AQ,Ag . tr A1A2A3
Wi, W, W3 tr Wi W,y W,

tr AlAQW, tr AlA%W,

A1, A2, W tr AyA2W, tr A; WA, W2
_ tr AW, W, tr AW, W3,
A Wi, Wa tr AW, W7
four variables:
Vi, Vo, A, Ay vi-A1Aovo, v - AsAvy
Vi, Va, Wl, W2 : Vi W1W2V2, A2 W2W1V2
v, vy, A, W : vi - AWvy, v - WAv,
Generator elements
one variable:
vV v
A or W 0
two variables:
v,A: Av, A*v
v,W: Wv, W2y
three variables:
v,A; Ay 2;2?:’
v, W, W, : %gg’
v,A,W: AWv, WAv
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Table 6: Isotropic symmetric tensor invariants

Generator elements
no variable:
0: 1
one variable:
vV VRV
A A, A?
W : wW?
two variables:
Vi,Va ! Vi®V+vy®Vy
v,A: VRAV+AVRV,Av® Av
v W vIWv+Wyvev, Wy Wy,
’ ' Wv @ W?2v + W2v @ Wv
A A, AA; + AbA LA AALLAA A,
W, W, - W, W, + WoW, W, W3 - W:W,,
b2 W2W, — W, W?2
AW AW — WA, WAW , A*W — WA?
T WAW? — W2 AW

Table 7: Isotropic skew symmetric tensor invariants

Generator elements

one variable:

vorA: 0
W W
two variables:
Vi,V Vi ® Vg — Vo ® Vg

v A - VRIAV-—AVRV, VR A’V - A*vQV,
T Av® A’v — A’v® Av

v,W: VAWV -WvRVv,vd Wv—-—WvRvV

A1A2 - A2A1> 5 AIA% - A%Ala A%AQ - A2A?>

Ar Az AJAZA — A2ALA L AbA A — AZA A,
Wl, W2 . W1W2 — W2W1
AW : AW + WA, AW~ — W?A
three variables:
Vi, Va, A ViR AV, — AV ® Vo, Vo ® Avy — Av; ® vy
Vi, Vo, W : vi @ Wvy — Wv; ® vy, vo @ Wyv; — Wv; ® vy
A1V & A.2V — A.2V & A1V, A1A2V RXKV-—-—VEX AlAQV,
v,A, Ay
A2A1V RXKV—-—VEX A2A1V
Ay Ay A, A1A A3 — A3ARA A AAL — A1 AsA,

AsA1A—AsA A
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In many cases it is simplified even further by the assumption of incompressibility.
Then there are only two scalar elasticity coefficients and they are independent of 177
which is equal to one for incompressible materials.

For the heat flux, we can use the result reported in Table 5 (bottom) and obtain

Q = QG + Q,CG + Q3C*G, (241)

where (1, Q2, Q3 are functions of T I, 11,111, |G|,IV,V. We rest at this result the
presentation of the example.

We are now in the position to formulate Theorem which enable the exploitation of
some identities following from the entropy inequality.

The main Theorem proved by I-Shih Liu [48] has the following form:

Proportionaliy Theorem: Let H and Q be isotropic vector functions, and A be an
isotropic scalar function, of an arbitrary number of vector and tensor variables. Assume
that

i/ for N vector variables v*,n =1, ..., N,

(aHK 4 aHL) A (aQ_K +%) =0, (242)

n n n n
oy Ouvl oy ovl

ii/ for every other vector variable u,

OHix _\ 0Qx _

0 243
au L au L ’ ( )
iii/ for every tensor variable A,

OH[ 0Qx
— A =0. 244
DAty PAny (249

Then A is constant and

H=AQ (245)

holds, for N = 1 and N = 2 with the assumption that Q and v! x v? be functionally
independent (i.e. Q does not contain contributions proportional to v x v?).
Corollary.
The above Theorem remains valid
i/ if for any symmetric tensor variable A, the condition (244) is replaced by

8HK 8HM aQK aQM
_A —0:
(aALM * aALK) (aALM Toa ) =Y (246)
ii/ if for any skew symmetric tensor variable W, the condition (244) is replaced by
8HK 8HM aQK aQM
- — A - =0.
(aWLM aWLK) (aWLM W)~ (247)

These results can be generalized to cases in which the right-hand side of differential
identities is different from zero.

We skip very technical proofs and use these results further in the exploitation of the
entropy inequality for systems more complex than thermoelastic materials.
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5 Equilibrium thermodynamics of J. W. Gibbs

5.1 Preliminaries

Classical works on thermodynamics were done primarily in relation to engineering ap-
plications. One of the first who worked on the second law of thermodynamics was Sadi
Carnot [Nicolas Léonard Sadi (a name given after a medieval Persian poet and philoso-
pher Sadi of Shiraz) Carnot, 1796-1832; he died during the cholera epidemic in Paris].
The description of his work on heat engines (Pierre R. Roberge, see [51]) indicates what
kind of thermodynamics was developed at this time: ”Carnot devised an ideal engine
in which a gas is allowed to expand to do work, absorbing heat in the process, and is
expanded again without transfer of heat but with a temperature drop. The gas is then
compressed, heat being given off, and finally it is returned to its original condition by
another compression, accompanied by a rise of temperature. This series of operations,
known as Carnot’s cycle, shows that even under ideal conditions a heat engine cannot
convert into mechanical energy all the heat energy supplied to it; some of the heat energy
must be rejected.”

The above description indicates that thermodynamics of these times was concerned
with collections of homogeneous systems which were transferred between different equilib-
rium states. Neither temporal nor spatial variables were appearing in these considerations.
In spite of these flaws, the classical thermodynamics has solid theoretical foundations [24]
and finds numerous practical applications in many brunches of modern science and tech-
nology.

In this Section, we present some basic notions which arise in such a formulation. We
limit the attention to the simplest substance modelled by thermodynamics of equilibria
(thermostatics) — an ideal gas. There are numerous textbooks on this subject beginning
with the classical works of Gibbs [30] and Planck [60], through well-known reference
books of Elwell and Pointon [23] or [6], to modern presentations imbedded in the frame
of statistical mechanics [36], [71], [63] as well as [61]. In principle, we follow the way of
argumentation of J. W. Gibbs.

5.2 Thermostatics of ideal gases

We assume that a one-component system undergoes homogeneous and quasistatic processes
which are described by changes of the volume V' (units: [m?®]), and of the energy E (units:
joul [J] = [kg -m?/ SQ] ). The latter is identical with the potential energy because the ki-
netic energy is negligible in quasistatic processes. Each combination of these two variables
(E,V) is called the state of the system and processes in this model are identified by their
initial and final states and, additionally, by some quantities not belonging to the space of
states.

The volume V' is frequently replaced by some other equivalent variables describing the
configuration of the system. One of them is the number of moles, n, of the substance
contained in the system. One mole is defined as the mass of the system consisting of
A = 6.0237 - 10?3 molecules of the gas. The number A is called the Avogadro number.
Below we quote masses corresponding to one mole of different substances. We use in these
relations the notion of the relative molecular mass M, = u/u,, where p is the molecular
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mass of a gas, and i, is either the atomic mass of the hydrogen py, = 1.67329 - 10~2* g,
or, in more recent formulations, 1/12 of the atomic mass of carbon j, = 1.66011-1072 g.
In practical applications, the difference between these two definitions is usually ignored.

molecular hydrogen Hy | M, =2 | 1mol =AM, -y = 2.015879394 g
molecular oxygen Oq M, =32 1mol =AM, - puy =32.25407030 g
molecular nitrogen Ny | M, =28 | 1 mol = A - M, - p; = 28.22231152 g
carbon C' M, =12 1mol = A- M, - uyg = 12.09527636 g
argon Ar M, =40 1mol = A- M, - uy = 40.31758788 g
chlor C1 M,=35|1mol =AM, puy =40.31758788 g
natrium Na M, =23|1mol=A-M, - puy; =23.18261303 g

Then the following combinations of variables are frequently used

m = nu = const [kg] — total mass of the system,
p=m/V [kg/ m3} — mass density,

v=1/p [m*/kg] — specific volume,
e=FE/m [J/kg] — specific energy.

In contrast to densities which we were using before these are not fields. They are not
related to the space variable x. As systems are homogeneous they may be considered to
be fields constant in space.

The number of moles is a very useful variable when we consider mixtures of many gases.
Then the number of moles of a chosen component of the mixture gives a contribution of
this component to the whole mixture. We discuss such mixtures in the second part of the
Section.

Let us first consider balance equations which we have investigated in previous Sections
in the particular case of homogeneous systems.

As the motion is not considered the momentum balance equation is trivially satisfied.
Only boundary conditions for the body B (mechanical equilibrium with the external world)
must be verified.

We consider first the conservation of energy for processes without exchange of heat.
Then the energy balance equation reduces to the form

E
d—:—% pv-nds—l—/pb-v, T = —pl. (248)
dt oB B

The time does not appear in classical thermostatics and, consequently, the above relations
must be written in the form of increments

dE = d'W, (249)

dW = (/pb-v—% pv-nds) dt. (250)
B oB

This relation indicates that both approaches to thermodynamics — the field model and
the model of homogeneous systems may coincide only if relaxation processes to thermo-
dynamical equilibrium are sufficiently fast (i.e. the characteristic relaxation times are

where
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much shorter than characteristic times of macroscopic observations) and, simultaneously,
sufficiently slow in order to consider them to be quasistatic.

Bearing homogeneity assumption in mind (p = const), according to the mass balance
we obtain

% v-ndS = /divvdV@d—V, V = vol B. (251)
o8B B dt

Hence, when we neglect the influence of body forces,
dE +pdV =0, where p=p(E, V). (252)

The contribution d'W = —pdV is called the mechanical power. The notation d'W means
that, in contrast to dE the mechanical power is usually not a full differential of any
function.

The relation for p is the constitutive law, characteristic for the ideal gas. We transform
it later to the form which is called the caloric state equation. The above form of the energy
conservation law is characteristic for systems in adiabatic isolation.

It is easy to construct examples of systems in which the volume remains constant but
the energy of the system changes: dV = 0,dE # 0. In such cases, relation (249) cannot
be satisfied and we have to add the contribution describing the exchange of energy with
the external world which undergoes by a constant volume. We denote this contribution
by d'Q) and call it the heat exchange. Such systems are said to be in diathermal isolation.
Comparison with the energy conservation which we were discussing for the field model

yields
dQ = (/ prdV —% q-ndS) dt. (253)
B oB

If the system is neither in adiabatic nor in diathermal isolation both changes are
possible and the energy conservation law has the form

dE = dW +dQ. (254)

In the classical thermostatics this relation is called the first law of thermodynamics.

It was Julius Robert Mayer (1814-1878) who discovered the law [49]. Asimov writes
[3]: "In 1842 he not only presented a figure for the mechanical equivalent of heat but also
clearly presented his belief in the conservation of energy. He had some difficulty getting
his paper on the subject published but Liebig finally accepted it for the important journal
he edited. Though Mayer was five years ahead of Joule his paper aroused no interest, and
in the end it was Joule, with his imposing experimental background, who received credit
for working out the mechanical equivalent of heat. And it was Helmholtz who received
credit for announcing the law of conservation of energy because he announced it so much
more systematically. Yet Mayer went further than either of the other two, for he included
living phenomena in the realm of energy conservation...Mayer’s failer to be appreciated
and the fact that he was on the losing side in controversies as to priority affected him
strongly. He tried to commit suicide in 1849 by jumping from a second-story window and
failed in that too."

Now we consider two systems A and B in the adiabatic isolation. Their states are given
by (E4,Va) and (Eg, V), respectively. The corresponding pressures are ps = p (F4, Va)
and pg = p(Ep, V). We create the following process. Without violating the adiabatic
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isolation from the external world, we bring the two systems to a contact through an
diathermal wall. There appears an exchange of energy between the systems and, according
to the first law of thermodynamics we have

dE, =d'Qa, dEp=dQp. (255)

As we did already in the field theory we assume that the energy is an additive function.
Then, for the system which consists of .4 and B

dE:dEA—I—dEB =0 = d,QA—I—d,QB :0, (256)

due to the adiabatic isolation of both systems from the external world.

The assumption on additivity implies, as before that there are no long-range interac-
tions between systems and that the energy does not concentrate on the wall of contact
between both systems. Such walls or interfaces are called ideal.

The process created in the above described manner yields new states of equilibrium
(E'y,Va),(E%y, Vp) in which the exchange of energy between both systems ceases. As the
full energy of the system does not change only one of the quantities £y, E'; is independent.
Consequently, for these two systems one can introduce a function 645 which determines
the states of equilibrium

Oap (E'y, Vi) =04 (Ey, V). (257)

Properties of this function are determined by the so-called zeroth law of thermodynamics.
It says that the equilibrium states of systems are transitive, i.e. for three arbitrary systems
A, B, C, the equilibrium between two arbitrary pairs, say, (A4,B8) and (A,C) implies the
equilibrium of the remaining pair (C,B). In terms of the function € this condition has the
form

Oap (Ea,Va) = 0Oap(Ep,Vg) and 0ac (Ea,Va) =04c (Ec,Ve) = (258)
—  Opc(EB,Vs)="0pc (Fc, Vo).

It means that there exists a function 6 (£, V) which determines whether two systems in
contact through a diathermal wall are in equilibrium or not. This function is called the
empirical temperature.

We assume additionally that the empirical temperature is invertible with respect to
the first argument, i.e. we can write F (f,V') and the state of the system is described by
the pair (0,V).

We proceed to formulate the second law of thermodynamics for homogeneous systems
considered in this Section. It consists of two parts. First of all, let us consider a state
(6, V) and some vicinity of this state. Some of the states of this vicinity are attainable from
(6,V) by purely mechanical (adiabatic) processes, some other not. For latter, some heat
must be exchanged with the external world. This assumption has been already made by
Sadi Carnot in his work on efficiency of heat engines. As a mathematical statement it has
been introduced to thermodynamics by C. Carathéodory in 1909 [16] : in any neighborhood
of an arbitrary state there exist states which are not attainable on an adiabatic path (a
process in which d'Q) =0).

In the simple case which we consider in this Section it means that, for such states
dE — d'W # 0. Carathéodory proved that his assumption yields the integrability of this
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1-form, i.e. the existence of functions S and A such that
dS =A(dE —dW). (259)

This statement is trivial in the case of two variables 6, V' — the 1-form of two variables
is always integrable. However the statement is not trivial in cases of systems described
by more variables. We consider some of them further in this Section.

The state function S is called the entropy of the system. We proceed to prove some
properties of this function. However, it should be stressed that, in contrast to claims in
some books on the classical thermostatics, the above relation is only a part of the second
law. We return later to this point.

Let us begin with the investigation of the multiplier A. We consider two systems A, B
in thermodynamical equilibrium and possessing states (6,V4), (6, Vz). Bearing (259) in
mind we have

dSs = A4 (dEA —I—pAdVA) , dSp = Ap (dEB —I—deVB) , (260)

for an infinitesimal change of these states. Simultaneously, the state of the system which
consists of A and B in the diathermal contact is described by the parameters (0, V4, V)
and its changes of energy E and entropy S are as follows

dE = dEs+dEg=— (pAdVA —I—deVB) = (261)
= dS:A(dEA—I-dEB + padVy —I—deVB).

where the additivity of the energy was used.
Let us transform the variables

(Q, VA) i (Q, SA) 5 (Q, VB) i (Q, SB) . (262)

Bearing (260) in mind we obtain

oS oS oS dSy dSp
dS = —df + —dSp+—dSp=A|—+— ).
26" T 95,04 T 55,10 (AA+AB)
Honee o3 05 A0S A
— =0, —=— === 263
00 ’ 85A AA’ 853 AB ( )
These relations imply the following integrability conditions
0?8 %S o (A
= — | —) = 264
0005, _ 05,00 0 (AA) 0 (264)
0?8 0?8 o (A
= = = |—]=0.
000Sp 0Sp0d 00 \ Ap
They can be written in the form
1 0A 1 0A4 1 OAp
— ——— T S ee——— T Sa——" ee—— 2
N0 hao0 Ay MO (265)
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where p (6) is an arbitrary function of the empirical temperature 6. Integration of these
relations yields the following multiplicative representation of multipliers

Aa(8.52) = v(Sa)exp ( / uw)de),
As(0,S5) = v(Sp)exp ( / uw)de), (266)
A6, S4,S5) = v(Sa,Ss)exp (/,u(@)d@).

Let us introduce the notation

T(9) = {C’exp ( / 1 (0) d@)r, (267)

where C' is an arbitrary positive constant. The quantity T is called the absolute temper-
ature. It is clear from the above construction that it is a universal function, i.e. it is the
same for all systems described by the above model.

Substitution of results (266), (267) in (260) yields

1 as

s’y = (dEA+padVy), Sy== / —2 4 const. (268)
T (9)

This new function S’ is also called the entropy. The above relation is quite general and

we use it in the form

S = = (dE — d'W). (269)

1
T
It is called the Gibbs equation.

Gibbs equation describes only reversible changes of the entropy. We have seen that the
second law of thermodynamics in the field approach defines as well the so-called dissipation
function. In order to introduce a similar notion within the frame of thermostatics, we
have to make a rather artificial extension of the notion of changes of entropy. Namely,
we have to assume that the increment of entropy d'S consists of two contributions: a
reversible part which appears in the Gibbs equation and is related to the heat exchange
dSrey = d'Q/T and from the irreversible part d'S;,, which is nonnegatlve For changes
of the total entropy we have then d'S = dS,., + d'Si.r = d'Sirr + ﬁ and the following
inequality is assumed to hold

d aQ
T
where we have used the first law of thermodynamics. Gibbs equation and the above
inequality form together the second law of thermodynamics in the form presented in this

Section.
The above inequality can be written in the form

1
d'S ——==d'S — = (dE +pdV) > 0, (270)

d(E —TS) < —SdT — pdV, (271)

8In the general case, one cannot even assume that d’S;,.., and consequently d'S, are full differentials
of some functions. In this sense, the nonequilibrium entropy S;,. and the total entropy S may not exist
within this approach.
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provided we assume the existence of the entropy function beyond reversible processes.
This inequality forms the basis for analysis of stability of equilibrium states. It says that
the Helmholtz free energy ¥ = E — T'S possesses a minimum in the state of equilibrium
reached on the isothermal (d7" = 0) and isochoric (dV = 0) ways. Further we show such
an analysis for systems in adiabatic isolation.

5.3 Legendre transformations

Now we present a few simple conclusions from Gibbs equation. Let us assume that states
are described by variables: absolute temperature 7" and volume V. Then we have

S 9S 1 (OF OF
dS = —dT + ==dV = = (a—TdT + (W + p) dV) . (272)

Since dT" and dV are arbitrary it follows immediately

OB . 9S p__(aE 35)

a7 =~ o v oy (273)

These important relations couple constitutive relations for E/, .S and p. They can be written
in a simpler form by means of the Helmholtz free energy, U,

v = E-TS=V(T,V) = (274)
oV oV ov
> Y=y BV In pey

Hence, it follows from the Gibbs equation that we have to know only one constitutive
function for the Helmholtz free energy, the remaining relations for internal energy, entropy
and pressure following by differentiation. We say that the Helmholtz free energy is a
thermodynamical potential for this choice of state variables.

Let us transform the state variables in the following way

(T,V) = (T'.p). (275)
Then the Gibbs equation can be written in the form
dG = —-SdT +Vdp, G=FE-TS+pV =G(T,p). (276)

Similarly as before we obtain by differentiation

oG oG oG oG

Therefore for this choice of state variables the function G is the thermodynamical poten-
tial. It is called the Gibbs free energy.
Finally for the transformation of variables

(T,V) — (S,p), (278)

we have

dH = TdS +Vdp, H=E+pV =H(S,p), (279)

63



and OH OH OH

The potential H is called the enthalpy.

state variables thermodynamical potential

(E,V) — entropy S

(T,V) — Helmholtz free energy ¥ = F —T'S

(T, p) — Gibbs free energy (free enthalpy) G = F — TS 4+ pV
(S,p) —enthalpy H = E + pV/

The above presented transformations of variables illustrate the so-called Legendre
transformation, in which the transformation of variables yields a corresponding trans-
formation of the potential. A particular choice of variables depends only on a particular
application of the model especially related to possibilities of control of variables in ex-
periments. For instance, in a simple mechanical experiment of extension of the rod we
can control either the force applied to the rod (soft loading device), or its extension (hard
loading device). In thermodynamics it is sometimes easier to control the temperature and
sometimes (e.g. for shock waves) the entropy.

Apart from the above direct consequences of the Gibbs equation constitutive relations
lead to the so-called integrability conditions. We show here only one example.

Relation (272) contains on the left hand side the full differential. This yields the
symmetry of the second mixed derivative with respect to T, V. Hence, we have

0 (10F 0 |1 (0F
B (?a—T) =37 {? (_av + p)} ’ (281)
or, after simplifications, 9 9
E __p
oV T oT (282)

This is an example of the Maxwell relation. The above relation is called Clausius-
Clapeyron equation. Such relations appear in thermodynamics of more complex systems
and form the basis of chemical thermodynamics. They play, for example, a very im-
portant role in experimental verification of thermodynamical potentials. Relation (282)
means that the derivative of internal energy does not have to be estimated from difficult
calorimetric experiments but it follows from the so-called thermal state equation

p=p(T,V). (283)

However, some calorimetric experiment is necessary for the estimation of internal energy.
Namely, from the first law of thermodynamics we have

, OF 1 OF
d Q) = me,dT + (W + p) av, c,= Ea—T, (284)

where ¢, is specific heat under constant volume. Bearing (282) in mind, we obtain

dcy 0*p 0 o2
Mo _TW = mcv—mcv%—TW/pdV. (285)
Vo
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This relation shows that the specific heat follows from the thermal state equation (283) up
to a function of temperature c? (T'). This function must be found in a single calorimetric
experiment for which V' = V.

Relations (282) and (285) determine both derivatives of the energy and their integra-
tion yields up to a constant the following caloric state equation

E=E(T,V). (286)

In many cases it is more convenient to control pressure rather than volume. From the
first law of thermodynamics it follows for the state variables (7', p)

0(FE+pV)

1Q = (B +pV) — Vip = ==L ar + {

0(FE+pV)

5T — V] dp. (287)

It should be stresses that E + pV is here not the enthalpy H which is the potential for
variables (S, p). The quantity

19(E+pV)
m oT ’

Cp = E:E(T,p), V:V(T>p)>
is called the specific heat under constant pressure.
The above transformation of variables leads also to the following relation

1 E
Cp—Cy = (8 + p) o (288)

m \ OV or’
(T
Cy OV ) —omst. oT \ T
where the coefficient v is the so-called adiabatic exponent frequently appearing in gas
dynamics.

Apart from the above discussed laws (principles) of thermodynamics it is assumed that
the state of thermodynamical equilibrium is stable. Let us investigate this assumption.
The condition of stability for systems in adiabatic isolation (i.e. for d'Q = 0,dS = 0)
requires that entropy should have a maximum in this state. In some practical applications
this condition may not be satisfied. It concerns, in particular, the so-called metastable
equilibrium states which appear in the description of phase transformations. They are
sometimes called frozen equilibria because systems may appear in these states only for a
finite time duration. We shall not discuss such problems in this course.

Let us consider two identical thermodynamical systems each of them having the energy
E and the volume V. We connect these systems and assume that the joined system is in
adiabatic isolation. Let us assume that the initial equilibrium state has been disturbed
in such a way that the initial state of the first system becomes (E + dFE,V + V') while
the initial state of the second system becomes (E — 6 E,V — V). The system develops
to a new equilibrium state in which the entropy reaches its maximum. As the entropy is
an additive function we have

ie.
-1

, (289)

V=const

S(2E,2V) > S(E+6E,V +6V)+S(E — 6B,V —6V). (290)
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Let us expand this relation into the Taylor series. We obtain (% =0, % =0)
P8 52+ 025 sy + E3 sv <0 (291)
OE? OEOV ov?2 '

It means that Hessian (the matrix of second derivatives) has to be negative definite. For
chosen variables Gibbs equation indicates as well

0s 1 oS p

9F T W T (292)
Changing the variables (£, V) — (T, V) we obtain immediately
mce, 2 1 0p 2
T (0T) Ty (0V)" > 0. (293)

This inequality indicates the following stability conditions of the thermodynamical
equilibrium

>0, k>0, kKpr= —Vg—@, (294)

where the coefficient k1 is called isothermal compressibility modulus.
We complete this review of classical thermostatics of single component systems with
the presentation of the simplest example of the thermodynamical model of ideal gases.
Real gases of small densities behave in high temperatures almost like ideal gases, i.e.

substances whose thermal state equation p = p (p, T') has the form

R J W
= T wh =8.3153-10° ——, M, =—. 2
P er where R =8.3153-10 2 K m (295)

Depending on applications the thermal state equation is written in different forms.
Most frequently used relations are collected below.

R
vV = T

p mMT )
R 1V

pr = T where v=-==—, orapplying m=Nu, M, = £ (296)
M, p m Ho

pV = NkT where k= Rpu,=1.38044-10"**% — Boltzmann constant,
kT kT
o p

R is the universal gas constant. Thermal state equation implies for normal conditions:
p=1atm., T =273.15 K (0° C), N = A (Avogadro number)

NET
Vinol = —— = 22.4207 liter.

p

The air is the mixture of gases

78.08% nitrogen N,, 20.95% oxygen O,, 0.94% argon Ar, 0.03% carbon
dioxide C'O,.
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Hence the molecular mass of the air is as follows

fair = 0.78081y, + 0.2095/10, + 0.009,, + 0000300, —>
= Mo =EL — 2896
Ho

In contrast to the thermal state equation, specifying the constitutive relation for pres-
sure, caloric state equation specifies the constitutive relation for the specific internal energy
e(p,T). For ideal gases

R
T+ o, (297)

E=2z
M,

where z is a constant: .
2 for monatomic gases,

z =< 2 for two-atomic gases, (298)
3 dla poliatomic gases.

The constant « is different for different gases and it has a bearing in description of chemical
reactions. It is important to notice that the internal energy of ideal gases is independent
of pressure.

5.4 Thermostatics of mixtures of ideal gases

We proceed to present some elements of the thermostatic mixture theory. This is the most
important part of the classical thermostatics. We consider a thermodynamical system
which is the homogeneous mixture of A distinguishable components. In thermostatics we
are not interested in a relative motion of these components (diffusion processes). This
will be the subject of further Sections. Thermostatics of homogeneous multicomponent
systems (mixtures) was constructed by Gibbs [30].

The following notions are characteristic for a mixture of A components

Mg — mass of the component a, a =1,..., A

p, =m,/V — partial mass density of the component a

v, = V/m, — partial specific volume (V' - volume under pressure p and temperature 7"
A

Ca = Mg/m — concentration of the component a (m = Z m, - total mass)
b=1

N, — particle number of the component a

v, = N,/A — mol number (A — Avogadro number: 6.0221367 x 10?3 mol ')

n, = N,/V — particle density

A
X, =v,/v — mol fraction (v = Z v, — total number of moles)

a=1
VoV — volume fraction (V,, — volume of the pure substance a under p and T')

Pa/D — pressure fraction

where p, is the so-called partial pressure, and the total (bulk) pressure p, the total mass
density p, the total (bulk) specific internal energy ¢ and the total (bulk) specific entropy
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7 are given by the relations

A A A A
P= Pas P=D Par PE= Pafar PI= D Pulla (299)
a=1 a=1 a=1 a=1

As the system is homogeneous the total energy, entropy, etc. follow by the multiplication
with the total mass m, e.g. £ = me, S = mn, etc.

The most important thermodynamical potential for an arbitrary component a of the
mixture is the so-called chemical potential y,. Its importance follows from the fact that,
in contrast to the partial pressure, p,, it is continuous across semipermeable membranes.
Semipermeable membranes are walls (interfaces) between systems which are permeable
only for some components of these systems. We proceed to present some details.

Fig. 8: Semipermeable membrane B between two mixtures containing the component a.

Let us consider a system at a given constant temperature 7' schematically shown in
Fig. 8. On both sides of the membrane B permeable for the component a (i.e. the
membrane is material with respect to all components except of a which may flow through
the membrane) there is a mixture in which the schematically indicated pistons sustain
constant total pressures p! and p’!. According to the stability condition (271) we have
for this system

d(E —TS)

—8dT — plavt — pltavit = (300)
d(E—-TS+p' V' +p"v) =0.

<
< —SdT + Vidp' + Vdp!!
Hence the quantity G = (E] - TS5 + p]V]) + (EH — TS 4+ pHVH) reaches minimum
in the equilibrium state (in an arbitrary process approaching equilibrium it must decay).
This quantity is called the free enthalpy of the whole system and it is the sum of free
enthalpies of both subsystems. Due to the fact that mixtures on both sides of the mem-
brane may be different these free enthalpies may be functions of different variables. Of
course, they must be functions of temperature and total pressure but they may depend
on mass contributions of components as well. For the total free enthalpy GG, we have then
G=0¢" (T,pl,m{, yml ...,mi;) +GH (T,pH,m{], ,mi ...,mﬁfn) . (301)

a
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Due to the fact that the membrane B is permeable only for the component a, all variables
except of m%, ml! are in this relation constant and, additionally, the sum m, = m} +m!!

must be constant as well. Consequently, the minimum condition has the form

oG 0 = oGt oG
oml omL — Omil’

(302)

It means that the derivative of the free enthalpy with respect to the mass contribution of
the component a is continuous across the semipermeable membrane. For this reason, we
define the chemical potential in the following way

oG
= . 303
Ha = 5" (303)
Then the equilibrium condition has the form
:ué (T> p]> m{> ceey mIAI) = :uél (T> p]]> m{]> ceey mIA]H) . (304)
Definition (303) yields immediately the following integrability condition
Opta Oty
—t = — 305
omy,  Om, (305)
Additionally, additivity of the free enthalpy G leads to the relation
A
G=> ltgma. (306)
a=1

Namely, let us consider a z-tuple enlargement of the system. We have then
G (T,p,zmq,....,z2mu) = zG (T, p,myq,...,myu) .

Differentiating with respect to z we obtain

A A

oG (T,p,zmq,...,zma) 0G (T, p,my,...,Mma)
Z d (zmy) Ma = Z om,

me =G (T, p,my,....,mu) .

a=1 a=1

Bearing (303) in mind we obtain (306).
This means as well that additivity of GG yields the invariance of the chemical potential
with respect to the enlargement of the system, i.e.

o, (T,p,zmy, oo, zma) = p, (T, p,ma, ... ,my) .

This is possible only if the chemical potential 11, does not depend directly on the mass
of components but on their fractions such as concentrations c,, or mol fractions Xp,

A—-1
b=1,..,A-1(Xa=-> X,
a=1

Mo = Mg (T>p>X1>--->XA—1)- (307)
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This property of the chemical potential shows that for a one-component system the
chemical potential and the density of the free enthalpy g = G/m are identical.
Differentiation of the relation (306) with respect to my, yields

oG A ou A ou
—_ a “ = —_—a o= 0’
amb Ho * ; ambm 1 ambm

and, accounting for the integrability condition (305),

A

3 Oy ), (308)

om,
a=1

This relation is called the Gibbs-Duhem relation.
It remains to formulate the Gibbs equation for mixtures. According to the definition
of the chemical potential (303) we obtain

A
dG = —SdT + Vdp+ Y _ ptudm,. (309)

a=1
The following Maxwell relations (integrability conditions) result from this Gibbs equa-
tion
oS ou, ov  0Ou,
= — and = .
om, ar om, dp

This completes the review of thermostatics.

(310)

6 Extended thermodynamics — general structure

There are many ways of constructing macroscopic thermodynamical models describing
processes far from thermodynamical equilibrium. One of them relies on the extention
of the set of constitutive variables by including higher spatial gradients and higher time
derivatives (e.g. Rivlin-Ericksen fluids, Burnett’s model of gases, etc.). Another way
relies on the extention of the number of fields. By an appropriate transformation these
additional fields vanish in thermodynamical equilibrium, i.e. they form a sort of measure
of deviation from equilibrium. Such extentions are suggested by kinetic theories.

We present a strategy of constructing thermodynamical models within the second class.
This set of fields goes beyond this of ordinary continuum thermodynamics i.e. beyond
the set of densities of mass, momentum and energy. Typical extensions would be fluxes
of momentum (i.e. stress tensor) and energy (i.e. heat flux).

Thermodynamical modeling for an extended set of fields should possess the following
essential ingredients

— fundamental equations are of balance type; this yields mathematically a
possibility of weak solutions and shock waves,

— constitutive relations (closure problem for balance equations) are local in
space and time which yields sets of quasilinear field equations of the first
order,
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— second law of thermodynamics consists of the entropy inequality and condi-
tions on ideal walls in which the entropy density is concave and this, in turn,
yields symmetric hyperbolic field equations (well-posed Cauchy initial value
problems).

This strategy is called the extended thermodynamics (see: [45], [55], [98]).

In this Section we first demonstrate a general structure of such a modeling procedure.
In the next Section we show its application in modeling viscoelastic materials.

Let us begin with an analysis of a general thermodynamical model which describes
n-dimensional vector field w € V" as a function of spatial and temporal variables (x,1).
This field is assumed to satisfy balance equations

aFo aFk

= . Fo,F,,Fy,Fs.f eV, 311
% T o 0, F1,Fy, F3 (311)

where densities Fo, fluzes Fy, k = 1,2, 3, and productions f are assumed to be only func-
tions of fields w. This is a particular case of the structure investigated in Section 3, where
constitutive variables to € VY were assumed to contain not only fields w but also some
derivatives of fields. The constitutive dependence on fields alone is the first characteristic
feature of the extended thermodynamics and this feature was already discovered in kinetic
models. Hence, field equations of extended thermodynamics are provided by constitutive
relations of the form

Fo=F,(w), F,=F,(w), k=123 f=Ff(w). (312)

For this reason, we say that constitutive relations of extended thermodynamics are local
in space and time: they depend on fields in the same space-time point as the constitutive
quantities without any constitutive influence of gradients or time derivatives of fields. Let
us mention in passing that there exists also another version of extended thermodynamics
in which constitutive variables contain gradients and time derivatives of fields as well (e.g.
41)).

All solutions of field equations which follow by the above closure are called thermody-
namical processes.

According to procedures which we were already discussing in this course there are
some principles which restrict the class of thermodynamical processes. The main of them
are as follows

— the entropy inequality,
— the convexity,
— the principle of relativity.
The combination of the first two principles is called the entropy principle and it is the
most essential part of the second law of thermodynamics.

As we know already thermodynamical processes are admissible if the following in-
equality is fulfilled

0 0
L 2Pk >0, pp=pn(w), @ =g (W), (313)
at al‘k
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The principle of convexity has then the form

n 9 pn
Vz V" : z- (awawz) < 0. (314)

Finally, the principle of relativity within the frame of nonrelativistic models means
that field equations and the entropy inequality have the same form in all Galilean frames.
Let us investigate the condition of thermodynamical admissibility. According to Liu’s
Theorem we can introduce the Lagrange multipliers A (w) € V" such that the inequality

dpn  Opy oF, OF, 4
kA 2 >
oL + Dy A 5 + . f]>0, (315)

holds for all fields and not only for solutions of field equations. The solution of this
inequality is as follows

apn OFo\ " 0y OF\ " A
—_— | — — | — 1>
5 (8 ) A, 5 5 A, A-f>0. (316)

The first two conditions can be also written in the form
d(pn) = A-dFy, dyp, = A-dFy. (317)

Hence the multipliers are independent of the choice of the fields w. In particular, assuming
that Fy is not degenerate we can choose

Opn _n . OA_ Pp (318)

w=F = ow ow  OwoOw’

Consequently, the derivatives g—vAv form the symmetric and negative definite (principle of
convexity!) matrix. This means that the map w — A is globally invertible. By doing
such a change of variables we obtain the following transformed constitutive relations

Fo = Fo(A), F,=F,(A), k=1,23 f=Ff(A). (319)
pno= pn(A), ¢ = ¢ (A).
Then relations (317) can be written in the following form
d(pn—A-Fo) =—-F¢-dA, d(p,—A-F)=—-F;-dA. (320)
Hence, one can introduce the four-potential
h' (A) = {ho, b} = {pn — A-Fo, 0, — A-Fy}, (321)

which specifies the constitutive relations of contributions to the left-hand side of field
equations

~ Ohy Ol
Fo=——2 Fi=-—L (322)
Simultaneously
, Ohy , oh
p1(A) = hy = A=, @ (A) = hj — A=, (323)
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The residual inequality has the form
A-f(A)>0. (324)

The existence of the four-potential (321), (322) whose components are also known
as generators and the residual inequality (324) exhaust the consequences of the entropy
inequality.

Integrability conditions for h' (A) yield the symmetry of the matrices

aFO aFk
ON~  OA°
These conditions, extensions of Maxwell relations of ordinary thermodynamics, provide

severe restrictions on the functions Fy, F.
Substitution of (322) in field equations (311) yields

(325)

O2h), ON  OH, OA
T OAOA Ot  OAOA Oz, f, (326)

which means that the system is symmetric as the coefficients are Hessian matrices. This
symmetry is visible if we choose Lagrange multipliers A as fields. For this reason these
fields are called main fields. Together with the convexity assumption this yields the
conclusion that the system is symmetric hyperbolic.

Hyperbolicity of the set of field equations guarantees finite speeds of propagation of
disturbances. Moreover, it yields a desirable mathematical property of the well-posedness
of Cauchy problems which means local existence, uniqueness, and continuous dependence
of the solutions on the data (stability).

In order to see that disturbances propagate with finite speeds we investigate a wave
front of an acceleration wave. This is the surface on which fields, say A, are continuous
and which moves with the speed ¢ in the normal direction and carries a discontinuity of the
first derivatives of fields. Hadamard compatibility conditions which we have mentioned
in Section 1 (see: (94)) yield then

) [B)-n

where ny are components of the unit normal vector to the wave front, dA is the so-called
amplitude of the discontinuity. Calculating the limits of the equation (326) on both sides
of the front and subtracting we obtain

( o%h, O,

aAaAC_aAaA”k) 0N =0. (328)

Eigenvalues of this eigenvalue problem which follow from the dispersion relation

0*hy, O?hy,
det (aAaAC_aAaA”k) =0, (329)

are real and finite due to the symmetry of the real Hessian matrices and nonsingularity

of the matrix aa—jgé{. They determine speeds of propagation of weak disturbances, i.e.
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discontinuities of field derivatives with a simultaneous continuity of fields. Due to the
hyperbolicity the corresponding eigenvectors which specify the amplitudes are linearly
independent.

In order to explain the principle of relativity we have to recall some transformations
we have discussed in Section 1 (compare formulae (67), (68), (69)). The most restrictive
transformation is the Euclidean transformation (67) which follows from the isometry of
the space of motions of classical Newtonian mechanics. In the Table 8 we present three
transformations in the representation in Cartesian coordinates which are of interest in
this Section.

Table 8: Transformations of Newtonian continuum mechanics

transformation: rotation of coordinates | Galilean transformation | Euclidean transformation
¥ = Oijl'j ¥ = Oijl'j + dzt
i P x; =045 (t) zj+ ¢ (1)
Y *
t"=1
O;; — const O;;,d; — const
name of the . ..
o ) tensor Galilean tensor objective tensor
invariant object
velocity 'U;k = Oz’j'Uj 'U;k = Oij'Uj + dj 'U;k = Oij'Uj + Oijl'j + éj
ar = Oz a;+
acceleration al = Ojsa; al = O;sa; L 17 .
¢ K ? e —I—Oij’l}j + Oijl'j + Cj

An invariant object with respect to any of these transformations has the following
transformation rule
T*

trin = OingiOigja i ja- (330)

Inspection of the classical momentum balance equation which yields in continuum
mechanics the equation of motion shows that this equation is invariant with respect to
the Galilean transformation but not with respect to the Euclidean transformation (see:
(115)). The invariance follows from the property of acceleration which is the Galilean
vector. Euclidean transformation which yields the noninertial frames of reference produces
noninertial forces with which we were already dealing a few times in this course.

As extended thermodynamics contains additional balance equations replacing some
classical constitutive relations (for instance, for the heat flux) we expect that these equa-
tions will be also Galilean invariant. This is the essence of the principle of relativity for
such models.

The Eulerian description yields the natural velocity-dependent contribution to balance
equations. Namely, the fluxes have the following form

Fk = FO'Uk + Gk7 Pr = PNV + h’k7 (331)

where Gy, hy are nonconvective fluxes.
However, this does not mean that Fy, Gy, hy are independent of the velocity. Let us
write constitutive relations in the form

FO = Fo(V,U),
PN =

(332)



where the vector of field w has been split into (v, u). Galilean transformation to (v*,u*)
yields the following form of these constitutive relations

*

Fy = Fo(vi,u’), Gj=Gy(vi,u), f=FF"u), (333)
ot = pn(v (

>U*)> hzzhk(V*>U*)> f/*:f? v
which is similar to material objectivity except that Galilean transformation instead of

Euclidean transformation is used. The principle of relativity requires in addition that the
field equations and the entropy balance equation in the two frames are equivalent, i.e.

OFy(v,u)  O0[Fy(v,u)v, 4+ Gi(v,u)]
o + Dy = f(v,u), (334)
31077 (V> ll) 0 [1077 (V> ll) vy, + Ny, (V> ll)] oA
at + axk - /’7 (V> u) )
and
OF (v*,u*)  O[F (v*,u*)v; + G (v, u*)] Y
L - — Fvun), (335)
31077 (V*>U*) 3[1077 (V*>U*)'UI: + hk (V*>U*)] o * %

The exploitation of this condition yields the existence of an n X n nonsingular matrix
X (v) such that we have the representations
Fo(v,u) = X(v)py(u), Gi(v,u)=2x(v)p;(a), (336)
f(v,u) = X(v)S(u),
where p, (u), p, (u),S (u) are functions in the rest frame (i.e. for v.=0). These repre-

sentations as well as the form of the matrix X’ (v) have been found by T. Ruggeri in 1989
[66]. The latter is as follows

r 1
X(V)=err =1+ A", + EATAS’UT’US + ..., (337)
where A" are constant matrices dependent on the tensorial character of the corresponding
quantity and otherwise independent of the system.

The above decomposition for a symmetric tensor density of arbitrary rank A into
velocity-dependent and internal parts has the following form in Cartesian coordinates

A A
ElmiA = pil...iA + 1 p(il...iAfl,UiA) + ) p(il...iAfz,UiAfl,UiA) + .+ (338)
A
+ A_1 Piy Vig - Vig_1Viy) + PV Vi Viy,
and similarly for p, and S.
This completes the presentation of general properties of extended thermodynamics

which we need in this course.
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7 Thermodynamical model of viscoelastic materials

7.1 Fields of viscoelastic materials

As already mentioned the kinetic theories motivate the macroscopic modeling strategy
called extended thermodynamics. It has been intensively studied for ideal gases (e.g.
[45], [55]). However, this strategy of constructing macroscopic models can be extended
to materials for which the kinetic motivation is remote or even none at all. Viscoelastic
materials belong to this class. In the present Section, we discuss the thermodynamical
construction of the model whose behavior is solid-like and therefore the Lagrangian de-
scription is appropriate. We focus the attention on isotropic materials and investigate
their general model following from extended thermodynamics. In particular two special
cases will be considered: viscous fluids and linear viscoelastic solids. As the special case
of the model of viscoelastic solids we obtain the standard linear solid of viscoelasticity.
This construction of the model has been performed by I-Shih Liu in 1988 [46], [47].
We consider the construction of the model for the following 21 fields

— F;x — deformation gradient (9 components),

— v; — velocity (3 components),

— T — temperature (1 component),

— 1{;;y — viscous (Cauchy) stress deviator (5 components),
— ¢ = J'QgF;x — heat flux (3 components).

Both Lagrangian and Eulerian indices are referring to Cartesian coordinates.
Field equations follow from the set of balance equations

aEK (%,»
—u =0 339
ot 0X i ’ (339)
OF°  OPy
el Sl 7 S b; + 9 20, F9 340
It aXK po( ‘I‘ZZ)‘I' YRR ( )
OF° o, .
5 T an;f — Sy = 2F; (bj) + 1)) — 2 (Fjyow + Fy — Py Fix) - (341)
OF%. 90U, .
el a)éf = Sizj = 3F0; (bjy + i) — 3 (Fijyve + Fjyp + Ui Fux) - (342)

The first relation is, obviously, the integrability condition for the deformation gradi-
ent. The second one represents the momentum conservation in a noninertial frame with
the quantity F = pyv; representing momentum density. The remaining notation has
been modified in order to apply, whenever possible, the standard symbols of continuum
thermodynamics.

The trace of (341) represents the energy conservation law. Therefore we identify
%FS = P (5 + %112) as the total energy density and %\I/ij = Qk — Pjgv; as its flux.

76



Bearing Galilean invariance of balance laws in mind, we obtain on the basis of the
Ruggeri Theorem the following explicit dependence on the velocity

Fi‘} = PoViVj + Pijs E‘;’j = Pijj T 30a;v5) + poviv?,
‘I’z’jK = Rz’jK - 2Uin)K> ‘I’z'ij = Riij + 3'U(z'Rjj)K - 3U(z'Uij)K> (343)
Stj) = Sty Sig = Sijj T 385V5),

where p;;, pi;;, Rijric, Rijjrc, Pk, Siijy, Sijj are velocity-independent and Galilean invariant.
These relations yield the following identifications

1 1

E = =—p;; :JZF_IZ—R“ s 344

op i Qx = JaiFy; = 5 i (344)

where ¢ is the specific internal energy and (Qx denotes the material heat fluz, i.e. the heat

flux vector in the Lagrangian description. In addition, apart from the Piola-Kirchhoff

stress tensor P, we frequently apply the symmetric Cauchy stress tensor T}; = J ' P Fy
=T}

In order to construct field equations we have to close the system of balance laws

(339)-(342) by constitutive relations. We select the following set of constitutive variables

C' = {EKaTa t?zjﬁ%} ) (345)

where i) is supposed to represent the deviatoric viscous stress tensor which we identify
later. For technical reasons it is more convenient to choose the variables appearing in
(343) instead of the above physical variables. We shall do so and after the evaluation of
thermodynamical principles we return to this more suggestive choice. Hence, we choose
the following set

C= {Fz'K>pzj>pzjj} ) (346)
and assume that the following constitutive quantities
F ={Pix, Rijic, Rijixc, Stijy» Sijj } » (347)

are sufficiently smooth functions of constitutive variables
F=F(C). (348)

The velocity v; or, equivalently, the vector F? does not appear anymore among constitutive
variables which is the consequence of the Galilean invariance. Some other restrictions
following from this invariance shall be presented later. Simultaneously, the constitutive
dependence contains only fields (comp. (345)) or their transformations (346). There is
no dependence on gradients or time derivatives of fields. This is the characteristic feature
of the extended thermodynamics and, for this reason, we call constitutive relations (348)
local.

7.2 Extended thermodynamics of viscoelastic materials
As usual the constitutive relations must satisfy the condition of thermodynamical admis-
sibility which is formulated by means of the entropy inequality

— 4+ —>0 349
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where

n=n(C), Hx=Hg(C). (350)

It is obvious that the entropy flux in the Lagrangian description is independent of the
velocity. It contains only the nonconvective part which depends on constitutive variables
C.

Entropy inequality must hold for all thermodynamical processes, i.e. for all solutions
of field equations. As before this constraint is eliminated by Lagrange multipliers which
are also constitutive functions. Easy calculations yield then

podn = NikdFix + Aijdpy; + Nikedpy;, (351)
dHrx = —NdPig + NijdRijx + NikkdRijix,

where the multiplier of the momentum balance equation does not contribute to the above
relations and the remaining multipliers A;x, Aij, \ixi are velocity independent parts of
multipliers corresponding to constraints imposed by (339), (341) and (342), respectively.
It follows as well that the multiplier of the momentum balance equation contains the
velocity independent part given by the relation

Ai = _p_p(z’jAj)kka (352)

and the multiplier \;x has the form
Aik = —2Xi; Pj + 3N Rijy i - (353)
There remains the residual inequality of the following form
AijSiij)y + NijjSijit (354)

+ 2N (pi; — PixFix) + Xiu (prj; + Rije o) + 2N uRijic Frr ) Qar, > 0.

Since the inequality must hold for all frames it must be independent of the matrix of
angular velocities €2;;. Consequently, the following identity must be satisfied

12Xij (i — PixFixc) + N (prj; + Ryjr Frr) + 2MjuRijic Frxc ] €im = 0, (355)
where €;;,; is the permutation symbol. Simultaneously, the residual inequality becomes
D = Nijsgy + Nigjsijs 2 0, (356)

and this relation defines the dissipation D in the system.

As we know already it is convenient to change variables {E K5 Pij» Pij j} — {Fix, Nij, Nk }
which is possible due to the convexity assumption. Then we can define the conjugate four-
potential

o= NijPij + NikkPij; — Polls (357)
Hy = —NPi + NjRijr + MrRijjx — Hi,
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It follows

We proceed to analyze the thermodynamical equilibrium defined by the condition
D = 0 which corresponds to the requirement of vanishing productions s } 5 =0, 8ijlp =
0. As the inequality (356) is the condition for the minimum of the dissipation in the
equilibrium we conclude that the multipliers Ay, Aij; also vanish in equilibrium. This
makes the new choice of variables so attractive from the technical point of view.

Bearing (351); and (353) in mind, we obtain in equilibrium

2 1
d??E :—)\,’,’ (dEE—— PzK|EdEK) . (359)
3 Po
Therefore we can identify
2 1
_>\ZZ =
3 T (360)

where T is the absolute temperature. The relation (359) becomes Gibbs equation. Con-
sequently, we can introduce the equilibrium Helmholtz free energy v, = e — T'ny which

yields
g Vg
—. W, = p— 361
a E K’ 8T ) E pO T ) ( )
where relations +

50j; = Po€ and (360) have been used. In addition, the evaluation of the
identity (355) in equilibrium leads to the relation

Pixlg = po e =yp—T

,O(m}E Lo Tiij }E> T;; = J 'PigFjg = ﬁPzKFgK (362)
P Po
Further analysis will be limited to a few key results of an approximate theory. We
construct constitutive relations in the second order approrimation with respect to the
deviation from equilibrium which is measured by multipliers A(;; and A;j; vanishing in
equilibrium. Detailed structure, in particular symmetry properties of material parame-
ters in the nonlinear theory as well as the derivation of restrictions following from the
hyperbolicity condition (convexity assumption) are technically so involved that it would
be impossible to present them in the form of the single Section. We refer for details to
the publications of I-Shih Liu.
In this approximation we have

, 1
h = p (¢E + = > Tijy }E () + hzgkl>\ (i) A\(kly T Ekij)\ikk)\jll) +0(3),
HZI - J_IHKFz'K = (Xz'j + Xz’jkl)\(kl>) )\jmm + @ (3) ’ (363)

where the coefficients hyjki, kij, X5, Xijp as well as E and T }  are isotropic functions
of the Cauchy-Green deformation tensor B;; = F;xFx and of the temperature 7T". The
first coefficient, A}y, is, in addition, traceless symmetric in both pairs of indices and it is
symmetric with respect to these pairs. k;; is symmetric.
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The above relations for the four-potential yield constitutive relations for all constitutive
quantities of the model except of productions. They enable the exploitation of relations
(360) which are the generalization of the Gibbs equation to nonequilibrium processes with
multipliers as process variables. We proceed to exploit these relations.

In the second order approximation, the first equation (358) yields after easy calcula-
tions

720 Ty
E=€g— — ajjﬂ E)\<Z.7>_
T Ohiju I” Oy
— 5o w5 g A+ 0 (3),

1
Pujy = Po (; Ty 5 + hz’jkl)‘<kl>) +0(2),
Pij; = pokiiNju + O (2),

po g O(Tirlg FyL)

Aok = T OF - OF 5 )‘(U>_
14 3hzjlm ak‘z’j
5 (8FM< Afig) Aimy + aFkKA Aipp | £ 0 (3) (364)

Combination of these results yields the relation for the Helmholtz free energy
T T
¥ =g = Fhigaan Ay = ki AimmAjpp + O (3) - (365)
Inspection of (353) shows that up to second order terms we have

v 0%
tz'j:ﬂ'_TiﬂE:T(_ﬂﬂE"'pa L

mFJKFZL) A(kl) + 0 (2) . (366)

We have anticipated that R;;x is vanishing in equilibrium. We return later to this point.

Thus the stress is decomposed into an equilibrium part 7Tj;|, and a non-equilibrium
part ¢;;. The former is referred to as the elastic stress and the latter as the viscous stress.
One can introduce the following spatial elasticity tensors (first and second)

Aiing pﬂF'KﬂL (367)
! OF;x0F,;, ’

Cijm = Aijn — T31|E Oi-
Then
t;)j = TCijuApy + O (2). (368)

Now we are in the position to specify the second order approximation of the multiplier
Ai given by (352)

Ai = (rie + T ny) Nep + O (2) (369)
where ) }
10 2 10772 0 Tz 5
Tik = —?SE(Szk - ; T(zk)}E 5 T;jkl = ?7(‘9_’1—'5“ — 2h'ijkl- (370)

80



This completes the constitutive consequences of the first equation (358) in terms of
multipliers Ay, Arpp as variables describing the deviation of processes from the equilib-
rium.

These results make possible the exploitation of the second equation (358).

We easily obtain the following relations for quantities transformed to Eulerian descrip-
tion (e.g. R,’jk = J_lR,'jKFkK, R,’jjk = J_lRiijFkK)

¢ = (Kri + KAy Mepp + O (3), (371)
R(zgk) = Oéz’jkl>\lpp + O (2) s (372)
Rippt = Bry + B;jklA(iﬂ +0(2), (373)
where
a’l“k' aX .
;o= —T?| =T, ki
Oriji OXijhi ory,
Qijkl = T;jkp Tpl|E + X;jkb Bz’j = Tip Tpl|E + Xij> B;jkl = Qjjk1 + TTprpl(m-

By means of the above relations we can construct the viscous stress in an explicit form.
The result is

tfj =T (Oz’jkl>\(kl> + O{jkl)\kp,,)\lmm + O;;klmnA(kl>)\(mn>) +0(3), (375)
where the following abbreviations for the coefficients of the second order have been intro-

duced

ik = EEFJK + 20vi(ry; + Kk O 1y (376)

3
P ahklmn
z(;klmn - EWEK - 2T5i(k0lj>(mn>'

Finally, the comparison of results (357), (363) and (371) yields

1
We conclude that the classical Fourier relation Hy, = gi /T holds only in the first order.
It remains to eliminate the multipliers and return to the physical variables which we

have mentioned at the beginning of the Section. We obtain from (368) and (371)

1 v _
where . )
Cigytmm Clmmy ity = 5 (5ik5ﬂ +0udjk — §5z’j5kz) : (379)

The higher order terms can be also obtained by the iteration which we do not present
here.

81



In order to complete field equations of the approximate model we need constitutive
relations for productions s;; and s;;;. We know that they have to satisfy the inequality
(356) for the dissipation D. Zero value corresponding to equilibrium is the minimum of
this function. Consequently, the matrices

1 (95(@ 1 asikk
Oijii =— =——| » Ty =— 7| > (380)
’ Po a)\(kl> B ’ Po a)‘jmm E

are positive definite, i.e. for arbitrary matrices A; and arbitrary vectors B;
UijklA(ij>A(kl> > 0, TijBiBj > 0. (381)
Hence, for linear relations we obtain by means of relations (378)

P - v
S(ij) = ?Oo-ijklc<k}><mn>t<mn> +0(2), (382)

Sijj = pOTinJj_T}Lqm +0(2).

It is helpful to collect in the juxtaposition the material parameters of the second order
model for nonequilibrium variables \;;; and A;;. We do so in the following Table 9.

Table 9: Nonequilibrium material parameters for constitutive quantities of the second
order model in terms of variables \ij and Aj;

entropy oo Sk $hijii

entropy flux H | xy Xijkl

specific internal energy | e —T2/2 Ok;; /OT | —T?/2 Oh;j3,/OT
Helmholtz free energy | ¢ —T/2 k;; —T/2 hiji
viscous stress tensor 25} TCsj

heat flux qi Kij Kkl

stress source S(ij) Po0ijkl

heat flux source Siji | pPoTij

As shown before, they are not all independent.

7.3 Viscous fluids and linear viscoelastic solids

The above considerations complete the construction of the model. We do not show here
the final form of field equations as further results for this set are nonexistent in the
general case. Instead, we present two important particular cases: viscous fluids and linear
viscoelastic solids.

Let us begin with the viscous fluid. For this material, a constitutive dependence on
the deformation tensor B;; reduces to its determinant (volume changes) or, equivalently,
to the dependence on the current mass density p. Simultaneously, all constitutive tensors
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of the second order model become isotropic functions for which we know representations.
The resulting constitutive relations are as follows

v Op
Tijly = —pdij, Tij=—pdij +t;, p=ppT), o 0,
aSE
= T — >0,
€ SE (p7 )7 aT
Po T\
P ; ( +2p) wy 1=7T), 2p+y <0,
o 10 10
Piji = % (?2 B ?) G e=az(pT), =R <0, (383)
1 (0%} 2
Rije = 1 (Qi5jk + 40 — qu%’) , ar=an(p,T),
Ruy = By 4+ (= - Do 102 e, p=5(nT)
ikkj iJ 4pT 3 €E 0 (i5)> - P )
P v
Suj) = 2p_OTUt<”>’ o=o0(p,T)>0,
Sijj = %7%7 T=1(p,T) >0,
where 98 10 0
4
_ (28 19, 384
" (aT aT) (384

Hence, apart from the thermal equation of state p(p,T) and caloric equation of state
eg (p,T) the model requires the knowledge of 6 equilibrium material parameters: f, v,
a1, g, 0, T, the latter two related to the relaxation times 7, 7.

Bearing these constitutive relations in mind, we obtain from the balance equations the
following equations

4p°T [Ovy  2p+ Ovy; Ovy;
oo A {<+p v(v [tv> [J?M)Jr

W = po o 4p? @~ or . 0z
oy Oqy T [ v vy
T T — Qi | £ — Qe | iy | 5 385
* 4dpk acnj>] + po |:(aa’;k] k) Try T &ck] ik | Viik) (385)
k2 [T 17 10 . O
i = — ——= |2 — /R ; — —
! prT2 |0z, w2\ 7 3 " or K] o
T at?u@ 1 5 vy
"ok 0 | T or -3 - : 386
dpr Oy, - or \ 27 3%) \Bay k| (386)

Obviously, the underlined terms represent the Navier-Stokes relation and the Fourier
relation of the classical thermodynamics. The above generalization contains, in addition,
rate terms for iy and ¢;, the coupling of both relations and the contribution of noninertial
frame which makes the above relations material frame indifferent.

However, the model does not account properly for the so-called normal stress effects
(Weissenberg effects) which appear in the classical Maxwell model of viscoelastic fluids
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as well as in the so-called Rivlin-Ericksen fluids. This problem has been discussed sepa-
rately [54], [94]. Unfortunately, there is no uniform approach to this problem of extended

thermodynamics which would account for all properties of both classes of models.

We proceed to present the linear viscoelastic solid. We assume the initial configu-

ration to be stress-free and, for small deformations,
Bij ~ (5,'3' + 26,’j.
It follows

,I%' = )\skkézj + 2#6,'3' + tz()ijw i.e.
Cijii = Aijir = N0ijom + 1 (0i6 0 + 61041)

where A, 1 are Lamé moduli, €9 = ¢y (T") and

y
Puj) = 2HEq) + (1 +2—u)

_ (10 e dNT
Pag = 5 "7 \ar) )%
o (dB\ " 2
Ripe = ﬁ(d_T) (Qi5jk+Qj5ik—§Qk5ij)>

10 « 10 v
Rigry = Boy — ?50 ()\Skk5zj + 2M5ij) + (Tl — —50) t(m,

Ll

4T 3
14 v
_ o (BN
Sikk = T2\ T TG;-

(387)

(388)

(389)

All material parameters can be arbitrary functions of temperature and the following re-

strictions must be satisfied

dSo 2
— >0, A+=p>0 >0, 2 <0,
o >0 Atop>0, p>0, 2udty
10, ,d
a2+?T2d_£<0’ c>0, 7>0.

Now the balance equations for stresses and the heat flux yield

-1
. . (05} dﬁ aq 7
7Ly + Tig) — 2peqiy — 2(Te +v) €y = 2 (—) —,

a2 \dr) oz,

, T oK (dp\ " Ot
b K=t g=——— (=) =L, =T, 2ucy,
Tadi F ox; +a 4T (dT) 0x; (i7) J HE )

where

’ ar

2,2 2 2
v = el K:T—(ﬁ)
po pT

T 1
T = —— 2u+7), Tq:——(a2—|——T2—).
po pT
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The wiscosity coefficient v, the thermal conductivity K, the stress relaxation time 1;, and
the thermal relazation time T, are all non-negative.

The equation (391) describes the so-called standard linear solid in viscoelasticity [17],
[59]. For isothermal processes, this can be integrated and we obtain the following stress-
strain relation of the hereditary type (a linear material with fading memory)

t
14 14 _l=s
Tujy =2 (,u + —) E3ij) — 2—2/ gy (8) €75 ds. (394)
Tt Tt 0
Simultaneously, the equation (392) without the right-hand side is the Cattaneo equation.

In any case, the above models are hyperbolic which means that disturbances propagate
with finite speeds.

8 Thermodynamical theory of miscible mixtures

The main purpose of the theory of miscible mixtures is to describe the macroscopic behav-
ior of mixtures of fluids (in particular — gases). Such effects as heat conduction, diffusion,
chemical reactions, osmosis, etc. should be included. While viscous effects are often im-
portant in mixtures, they are left out of consideration here. They may be included but
yield technical problems of some extent.

8.1 Thermodynamic processes

It is convenient to describe mixtures of fluids, as we do in the fluid dynamics, in the
Eulerian reference. It means that the current configuration is the reference configuration
for the motion. All fields of the model are functions of the spacial variable x €B; and
the time variable ¢ € 7. The domain of the mixture B; depends on time and, in any
instant of time, each point of this domain is occupied simultaneously by particles of all
components of the mixture. Only under this assumption we can construct a continuous
model of mixtures. It will be even better visible in modeling of porous materials. Even
though already present in earlier works on mixtures it became clearly pronounced in the
works of C. Truesdell [84] (see as well: [86], [87], [53], [55], [62], [98]).

We distinguish the components by the index « running from 1 to A, where A is the
number of components.

In the case of thermomechanical systems considered in this Chapter the thermodynamic
process in the above system is assumed to be described by the following fields

{p*,v", T}, a=1,..,A, (395)

where p® are the current partial mass densities of components referring to the common
unit volume in the current configuration B;, v* are the velocity fields of components and T’
denotes the absolute temperature common for all components. The last quantity requires
an assumption that all components possess the same temperature. In many practical
applications this assumption is not satisfied (e.g. in plasma). However, the problem of
thermodynamic modeling of multicomponent systems with multiple temperatures is still
not fully solved. Some progress for mixtures of ideal gases has been recently made by
Ruggeri and Simi¢ on the basis of a kinetic approach [67].
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Field equations for the fields (395) follow from the partial balance equations of mass
and momentum and from the energy balance equation for the mixture. The partial balance
equations for a =1, ..., A have the form

d
Z | peav = / pedv, (396)
dt Jpg P
d (o7e ) (6% (6 INeY A
— pvdV:% TndS—l—/ (p“b* +p*)dV, (397)
dt Jpe P e
d (e (e 1.« a o «
—_— Pt (e + 3V v)dV = (T*v* — q”) - ndS+
dt Jpp P

—I—/ (p“b* - v + pr® 4 &%) dV, (398)
Py

where P;* C B; is a measurable subset of the current configuration which moves with the
kinematics of the a-component and 0P;* denotes its surface with the unit outward normal
vector n. The quantities with the hat are volume densities of sources and, according to
the fundamental assumption of Truesdell’s mixture theory they must satisfy the following

conservation laws
A A A
d =0, Y p*=0 Y & =0. (399)
a=1 a=1 a=1

The remaining quantities T%, b®, &%, q%,r* denote the symmetric partial Cauchy stress
tensor in the a-component, the body force per unit mass of the a-component, the par-
tial density of the internal energy of the a-component, the partial heat flux in the a-
component, and the density of energy radiation in the a-component, respectively.

In the case of the single temperature field the partial energy balance equations are not
used and we need only the energy conservation of the mixture. This must have, of course,
the classical form

d
= Ptp(s%—%v-v)dV:%

(Tv—q)-ndS—I—/ p(b-v+r)dV. (400)
Py

Pt

We obtain indeed this relation if we add equations (398) and introduce the definitions

A A A
p=>_p% pv=> pV pe=) p" (" +iuu”),
a=1 a=1 a=1
A A
T — Z (Ta _ paua®ua) . gq= Z (qa + pa (Sa + %ua_ua) u® — Taua) ’
a=1 a=1
A A
pr = Zpa (r*+b%-u%), u*=v"-—v, Z pfu” = 0. (401)
a=1 a=1

The presence of convective terms containing the diffusion velocities u® follows from the
fact that subsets P, of the current configuration B; possess the kinematics of the barycen-
tric velocity field v and it means that fluxes contain additional contributions — none of
these subsets is material with respect to any of the components.
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It can be easily checked that the above definitions yield as well the classical conserva-
tion of mass and momentum for the whole mixture

d d -
— [ pdV =0, — / pvdV = f TndS + / pbdV, pb =) p®b". 402
dt Jp, dt Jp, . s > (402)

a=1

Let us remark that the presence of diffusion yields a macroscopic heat flux q even in
the case when the partial heat conduction contributions q® are absent. This property is
essential for a peculiar form of the second law of thermodynamics of mixtures which we
discuss further.

The above global balance equations yield in a standard way local laws. They have
different form in regular points in which fields are continuous and in singular points on
surfaces on which fields may suffer jumps. Namely

& 1 div (v = 77
apava : o (0% (o7 (6 INeY A
Y +div (p*v* @ v* = T%) = p*b* + p°,
Ope )
N + div (pev + q) = T-grad v + pr, (403)

in regular points. The last equation, the so called balance of internal energy, follows
by elimination of the contribution of kinetic energy by means of mass and momentum
conservation laws.

In singular points the balance equations have the form of jump conditions across the
surface. We use them here only for bulk mass of the mixture and the bulk energy of the
mixture but, of course, they may be easily derived for all other equations as well. We
have for these two quantities

lp(v-n—ol)=0, [[.]J=()"=()",

la-n)] =[T(v—en)]-n-[[c+3(v—en)-(v—em)]]p(v-n—c),  (404)

where ¢ denotes the speed of the surface and n is the unit normal vector to this surface.
As indicated the double parenthesis denotes the difference of limits on both sides of the
singular surface.

8.2 General constitutive relations for fluid mixtures

Let us begin with the specification of mass sources for chemical reactions. Components
of the mixture are then not the most fundamental ingredients of the macroscopic picture.
These are rather molecules (constituents) which satisfy laws of mass conservation. To see
this structure let us consider the simplest example of formation of water from hydrogen
H and oxygen O. These two are molecules (constituents) while the mixture consists of
the following components: H,O, Hy,O2, OH, H,O. They are participating in chemical
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reactions which can be symbolically written in the form

Hy —2H =

O, —20 =
H+0O-0H =
H+OH—-H,O =
2Hy + 0Oy —2H,O =

(405)

o oo oo

The matrix of coefficients 7/, = 1,...,6,7 = 1,...,5 in this set of relations is called the
stoichiometric matrixz. Its rank determines the number of independent reactions. In our
example this rank is equal to 4. The conservation of mass for molecules (constituents) in
each reaction can be written in the form

A
> ViMapy =0, r=1,..,R, (406)
a=1

where M, denotes the molecular weight of the component «, iy is the mass of a hydrogen
atom and R is the number of reactions.

Further we consider only the set of independent chemical reactions and we denote
their number by v. The contribution of each reaction to the production of components
depends also on the rate of reaction which we denote by \",r = 1,...,v. Then the mass
source in partial mass balance equations can be written in the form

PY= Ao Mg\ (407)
r=1

It is clear that the conservation relations (406) imply (399);.

We proceed to transform the balance equations (403) into field equations for the fields
(395). We use the strategy of continuum thermodynamics and assume that the constitutive
quantities

F={\",TYp%e,q}, (408)

are sufficiently smooth functions of constitutive variables. The choice of the constitutive
variables specifies the class of substances admissible in the model under construction. We
follow here the case considered by I. Miiller [53] and consider inviscid fluids. We include
among constitutive variables the gradients of partial mass densities. It has been shown by
I. Miiller that this yields a desirable structure of interactions of components. We return
later to this point. The chosen set of constitutive variables is as follows

C ={p* grad p®, v*, T ,grad T} . (409)
Hence the closure of the set of balance equations has the form
F=F(C). (410)

These relations must satisfy the conservation restrictions (399),.

In order to describe viscous fluids we would have to add a dependence on gradients of
velocity to the set of constitutive variables. This can be easily done but the results are
not so transparent as in the present case.
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8.3 Material objectivity

As we already know the principle of material objectivity (material frame indifference)
concerns the behavior of field equations under the Euclidean transformation.

In the case of mixtures we face the usual questions following from this transformation
which we have presented earlier in these notes but, additionally, there appears a problem
related to the contribution of mass sources to the momentum balance equations. It
becomes clear when we use the chain rule of differentiation on the left hand side of (403),
and substitute mass balance equations (403);. Then the above described structure remains
unchanged if we assume that the following vector

P — Ve, (411)

is objective rather than the momentum source itself. We do so in further considerations.
The principle of material objectivity (material frame indifference) requires that func-
tions

Fo={N,T%p" = p"v,e,q} = %, (C), (412)

remain unchanged under an arbitrary Euclidean transformation, i.e.
Fr=F,(C"). (413)

Note that the constitutive function F, (.) is the same in (412) and (413).

An immediate consequence of the above principle is the elimination of one of veloci-
ties among constitutive variables. Instead of partial velocities this set may contain only
relative velocities which are objective. These may be diffusion velocities u®, or, as they
are only A — 1 independent variables of this art, relative velocities

w® = v* — v, (414)

which are more convenient in the calculations.

The full representation of constitutive functions in their objective form is a rather
complicated task and we shall not do so in these notes. We limit our attention to con-
stitutive functions which are linear in grad p®, w®, grad T". In this case the most general
form of the constitutive equations compatible with the material objectivity is as follows

o= N (00T,

T = _pa (pB>T) 17
A A-1
P — v = > MPgradp’ + > MPw’ + Mg grad T, (415)
B=1 B=1
A A-1
a = Y qigradp’ +> giw’ + greradT,
B=1 B=1

€1 = €r (pﬁaT)>
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where the index I denotes the so-called intrinsic part of the quantity

A A A
@ = q-» " (u an+z ) u?, (416)
azl p B apl

The coefficients appearing in relations (415) may be dependent on p® and T'. However,
they are not independent due to the previously discussed restrictions on sources. Namely
we have

A

DM =0, B=1,..,4, (417)
a=1
A
M4’ =0, pB=1,..,A-1,
a=1
A
> My = o
a=1

In spite of the above assumed linearity the whole model remains nonlinear due to
various nonlinear explicit contributions.

8.4 Second law of thermodynamics
8.4.1 Evaluation of the entropy inequality

The strategy of continuum thermodynamics in construction of macroscopic models relies
on the assumption that solutions of the field equations identically satisfy the second law
of thermodynamics called also the entropy principle. This law consists of four parts:

i/ There exist a nontrivial entropy density function 7 and the entropy flux h which
are both constitutive. In the case of miscible mixtures, considered in this Section, they
must have the following general form

A1
n=np"T), h= Zhagradp +Zhaw + hpgrad T, (418)
a=1 a=1

where A7, by, and hy may be functions of P T.
ii/ The entropy density satisfies the balance equation whose form in regular points is

as follows

aait +div(pnv +h) =0, (419)

where o denotes the entropy source.
iii/ The entropy source is nonnegative for all solutions of field equations, i.e. for all
thermodynamic processes. Consequently, the following inequality holds

T 1 div (pnv + 1) > 0. (420)

vall thermodynamic processes )

t
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iv/ There exist ideal walls on which there is no entropy production and the temperature
is continuous across it, i.e.

[h-nj]+ ]l p(v - mn—c)=0, [[T]]=0. (421)

Bearing I-Shih Liu Theorem in mind, instead of this inequality restricting the solutions
of field equations we consider solutions of an extended inequality which should hold for
all fields. This can be done if we consider field equations as constraints on solutions of the
entropy inequality. Such constraints can be eliminated by multipliers and the extended
form of the inequality is as follows

a . a & a N 3 (o6 . T T
Yan ﬁclds§ + div (ppv + h) — ZAP <% + div (p*v®) — ZWQMQMH)\ ) _
r=1

a=1
a op*ve
— ZA”a : ( 'Oat +div (p*v* @ v — T%) — f)a) — (422)
a=1
dpe )
—A° o +div (pev +q) — T-gradv | > 0.

The Lagrange multipliers A?", A", A® are functions of constitutive variables p°, grad p°,
vP, T, gradT. After the exploitation of the above inequality these multipliers must be
eliminated as auxiliary quantities.

Insertion of constitutive relations into the inequality (422) leads to an inequality which
is explicitly linear in the derivatives

&) B
{%, grad ® grad T, a(?it’ grad ® grad p”, aait’ grad vﬁ} . (423)

Since the inequality (422) must hold for arbitrary fields these derivatives can be chosen
arbitrarily. Consequently, the inequality can be violated if these contributions do not van-
ish identically. This yields a series of identities which, on the one hand side, determine
multipliers and, on the other hand, restrict constitutive relations. In addition, there re-
mains a nonlinear residual part of the inequality which determines the dissipation density
of processes.

We quote only one of the consequences of these identities

A A
AN ==Y AT (- Nep), (424)
a=1 a=1
where 1
A = A7 - = (vVou’ —du ) = AT (). (425)

For further details we refer the reader to the following Appendix and to the book of
Ingo Miiller [53].
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8.4.2 Appendix: identities following from the entropy inequality

on .0s
ar a0
oh Jq
— —AN— = = T
g Jg 0, g=gradT,
on de 1 1.os 1 8
— - AF— —A%e) — =A" — =vP LAY =
ah e oq
0 grad p? dgradpf
On o0 pPhe _
awﬁ_Aawﬁ_pA =0, f=1,.,A-1,
A A
_Z( 86)—'0—AUA:0,
— ows T owP P
an Oe 1 Jh oq 1, .8
— —A° 1— — A -A" @u* — =AT =
(ap“ apa) ppe (awa awa) TR e T "

B=1
A
—ZA” aL—I—AE—TuB grad p°+
a=1 apﬁ
oh o Op° A A
——A€ A? : AP A > 0.
+(8T Z ) g+; P +; P >0

8.4.3 Results for a single fluid

For a single fluid the results follow from the above considerations by setting A = 1. We
obtain

A’ = 0,
IS p
dn = A (ds — ?dp) ,
h = A-q, (426)
0N OA®
. . > 0.
o q-grad p + aTq gradT > 0
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We use now the part iv/ of the second law of thermodynamics. Let us consider an
impermeable ideal wall which separates two different single fluids I and II. Such a wall
moves with the speed ¢ = v - n. The jump condition (421) yields then

[[h]] ' n=0 and [[T]] =0. (427)
Bearing (404) and (426)3 in mind, we obtain
A7 (prs T) = Agy (prps 1) - (428)

This relation must hold for an arbitrary independent choice of p; and p;;. Hence it can
be satisfied only if it is independent of mass densities at all. We conclude

A7 (T) = A%, (T). (429)

Consequently, the function A® (T") is the same for all ideal fluids and, for this reason, we
call it universal.

In order to determine this function it is sufficient to inspect (426), for the case of ideal
gases. Then it is identical with 1/7". Hence it follows in general

R 1
A= (430)

Relations (426) become

1 P 1
CMZ?Qk—;@),hZ?% q-grad T < 0. (431)

These are the results identical with those of the classical thermodynamics. The first
relation, obviously, the Gibbs equation.

8.4.4 Ideal walls in mixture

If we consider an impermeable wall separating a mixture I from a single fluid II and
account for the jump conditions we obtain immediately
c 1
A7 (o7, T) = T (432)
Hence the multiplier A® remains universal also for mixtures.

One cannot argue in the same way in a general model of mixtures in which each
component possesses its own temperature. The multipliers of the partial energy balance
equations are not in general universal functions of the absolute temperature. This means
as well that temperature cannot be measured on the surface of contact between two
different systems because such a surface, even if it is an ideal wall, does not yield the
continuity of temperatures. Consequently, we cannot construct thermometers.

Let us now consider a semipermeable wall separating two mixtures I and II. The wall
is assumed to be permeable for a single chosen component v. On such a wall

o7
vi-n=c for a#~vy, v= cn+? (v’ —cn). (433)
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The jump of internal energy (404), reads

falln = | |22 e ) (v [ (v o,

or, bearing the separation (416) and the relation

A
T3 L s

a=1

in mind, we obtain

lar]] - n+

=30 e+ (v (v—cn>” p(von—c)=0.  (434)

a=1

Simultaneously, the jump of the entropy is of the following form
[b]] - n+[[n]] p(v - n—c) = 0. (435)

These two relations can be now substituted in one of the identities following from the
evaluation of the entropy inequality. The result is

A A
1 8
[ er—Tn+3(v—cn)- (v—cn) + ; Zpa — TZ (675 — %) A?B = 0. (436)
a=1 a=1
Bearing (424) in mind, this relation can be transformed as follows
"] = 0, (437)
where
W =pi+3(v=—en) - (v—en), pj =-TA], (438)

This quantity continuous across ideal semipermeable walls is called the chemical potential
of the component . This can be determined experimentally. Namely according to the

relation (424) we have
A

A
> ptus =pler—Tn)+>_p*, (439)
a=1 a=1
and, for the single fluid,
uzzs—TnJr%, (440)

which is, of course, the free enthalpy, and, hence, a measurable quantity. We can now
argue in the same way as we did for the temperature. The contact between the mixture and
the fluid identical with the y-component of the mixture through the semipermeable wall
for this component yields the measurement of the chemical potential of this component.
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The remaining results of the exploitation of the second law of thermodynamics can
now be written in the following compact form

v o L
T
1 A
d(p) = = (d(pfsz)—ZM?dﬂ“),
a=1
A
pler—Tn) = > pus —p, (441)
a=1
1 A
h = = (q—Zpauﬁ“ua> :
a=1

Equation (441), is the Gibbs equation for the mixtures. We investigate further its
consequences. Equation (441)s is called the Gibbs-Duhem equation. Finally, the relation
(441)4 between the entropy flux h and the heat flux q demonstrates the fundamental
difference between the thermodynamics of single component media for which h = q/T
and the multicomponent media. The presence of the additional term in the above relation
proves that we cannot rely in thermodynamics of mixtures on the classical Clausius-
Duhem inequality as the form of the second law of thermodynamics. This is one of the
main observations made by Ingo Miiller in the construction of thermodynamic mixture
theories.

8.5 Interactions in thermomechanical mixtures, simple mixtures

The above presented Gibbs equation yields immediately the following relations

op(e; =T dp(e; =T
pler—Tn) oy — pler—Tn)

7= 442
H o ar (442)
as well as the integrability conditions
[e% [e% B
Iper _ _TQa i /T)’ 0 _ aﬂl. (443)
op® orT op?  Op~

Hence the derivatives of the Helmholtz free energy density p (e; — T'p) specify constitutive
relations for chemical potentials and for the entropy. In addition, integrability relations
demonstrate couplings between components: the chemical potential of component « de-
pends on all other mass densities.

There are some additional restrictions due to the fact that the multiplier A® is de-
pendent only on the temperature. For this reason the residual inequality contains a
contribution linear in grad p* which must vanish according to the same argument which
we made before. This yields the following identity

A a A
aA? .o ON° € « apa a
QEZI o ptu” + 5T q grad T — A E (Mlﬂ — a—m) u” = 0. (444)

a=1
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Consequently, we obtain

op” opg
v — ay _ 28 aZlL
q =0, M= o p o5 (445)
This yields the following form of the energy flux and the sources in momentum equations
A-1
a = grgradT + > gow”
p=1
A-1 o
m® — pv® = Mg grad T+ Y Mo w’ + Z ( i p° (9,0]) grad p°. (446)

B=1

We see that the only place where the gradlent of partial mass densities appears in the
model is the source of momentum. However even this weak form of the influence has an
important bearing on interactions in the mixture. Namely, if we assume that the gradient
of mass densities does not appear at all in the model we obtain from (446)

1
P~ (‘W 3/)5
This relation yields the following integrability condition
_ L g0 1 sasOP%
pa2 apﬁ pa2 apw
Hence it follows 9
(92,;5 =0 when «a#p. (448)

This means that the partial pressure p® depends in this case on its mass density p® but
not on the mass densities of other components. We say then that the mixture is simple.
Molecules in such mixtures do not feel forces of interactions created in the material due
to heterogeneity. This observation made by Ingo Miiller in 1968 (e.g [53]) has solved one
of the fundamental problems of the classical theory of mixtures of fluids. We see further
that a similar problem arises for immiscible mixtures.

Obviously the relation (447) yields for simple mixtures u¢ = u¢ (p®,T'). Hence

&?p (1 —T)
dp*0pP
Consequently the free energy is the sum of functions which depend on only one mass

density and temperature. The entropy density possesses the same property and so does
the internal energy. Therefore we can write

A A
per = _pe* (0, T), pn=>_ p"n"(p*,T). (450)
a=1 a=1

This decomposition shows that there is no energy of interaction between components in
simple mixtures. It yields as well the following relation for chemical potentials

=0 for a#p. (449)

(e

p

ps = e — Tn® + pt (451)
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which means that in simple mixtures the chemical potential and the partial free enthalpy
are identical.

We proceed to investigate the residual inequality which remains after the analysis
presented above. It has the form

_ [ gradT \ [ —% AP gradT \
' we Ax —LMoP w’
v A-1
( (uf — n7 + 3w - we) WZMauHY> >0, (452)

o o Y a 5
Aa:_i{q_u{(%_%)_(i%_i%) N

where

2T |\ T pe Y p> ol pr oT
au?—u? A-1 o oy
+T—% 3 (paacw _L pp ) . (453)
v=1

The function D is called the dissipation density and it consists of four contributions:

- chemical reactions which are primarily characterized by the difference of
chemical potentials u$ — s,

- heat conduction which contributes with the square of the temperature gra-
dient grad T,

- diffusion which contributes with the square of the relative velocity w®,

- thermal diffusion which contributes with the product of the temperature
gradient and relative velocity.

The vanishing dissipation defines the thermodynamic equilibrium. As this state corre-
sponds to the minimum of dissipation there are additional conditions — thermodynamic
stability conditions of equilibrium. We shall not present them in these notes.

9 Thermodynamical theory of porous materials

9.1 Thermodynamics of immiscible mixtures: introduction and
models without the field of porosity

The main topic of the following Sections is the construction of continuous models of
multicomponent systems in which one of the components is a solid creating skeleton (a
solid confinement) for the motion of fluid components. As we allow for large deformations
of the solid phase we shall mostly use the Lagrangian description of motion. Such models
are called porous material models.

Theories of porous and granular materials can be constructed on different levels of
observation. Microscopic models rely on Newton’s equations of motion of material points
or molecules and use methods of molecular dynamics. Such models can be transferred on
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a semimacroscopic level by multiscaling and averaging procedures. Some numerical meth-
ods such as Monte Carlo are also used in practical applications. On a macroscopic level
continuum field models are constructed. These may either follow from semimacroscopic
models by homogenizing, averaging over Representative Elementary Volumes (REV), con-
struction of moments of kinetic distribution functions or they may be constructed by
means of a phenomenological macroscopic approach. In these Sections we present solely
the latter type of models with a marginal reference to averaging procedures.

The construction of macroscopic continuous models of systems with a solid component
in its most sophisticated form stems from models of multicomponent systems. Differences
are primarily connected with an art of interactions within the solid component. Models
must be clearly different in the cases of suspensions, of granular materials or of porous
materials. In the first case solid particles interact with each other either through the fluid
or through collisions and there is no permanent contact between them. In the second case
a granular solid component may behave as a solid which cannot carry a tensile loading
(unilateral constraint on constitutive relations) or it may fluidize and then behave as a
suspension. Finally, a porous material behaves in average as a usual solid and it forms a
deformable carrier for fluid components. We limit our attention to the last case.

The most important feature of porous materials is the appearance of different kine-
matics for the solid component - the skeleton, and fluid components in channels of the
skeleton. This yields diffusion processes characterized by relative velocities of compo-
nents. In most cases of a practical bearing the dependence on the relative velocity is
reduced to a linear contribution to momentum balance equations (momentum sources) or
even to a simpler form called the Darcy law (see the detailed discussion in [5]).

The problem of thermodiffusion within such models is still very much open. This is
related to difficulties with an appropriate definition of the temperature on the macro-
scopic level of description. The most important property of the classical thermodynamical
temperature, its continuity on ideal thermal walls and, consequently, its experimental mea-
surability, is not fulfilled in porous materials (see: [96]). Simultaneously, such processes
as phase transitions or chemical reactions in porous materials are characterized by real
thermodynamical temperatures (e.g. melting and freezing points, evaporation, etc.) of
components on a semimacroscopic level of description. It means that even if we have
introduced a macroscopic notion of temperature we would have to know a rule of transfor-
mation of this quantity to the semimacroscopic level. This is mathematically an ill-posed
problem. Even though one can formally work with notions such as partial heat fluxes,
specific heats etc. their operational meaning is not clarified yet. This seems to be the
most important challenge of modeling porous and granular materials.

In addition, we have to deal frequently with the problem of different temperatures
for different components. In contrast to gases a local thermodynamical equilibrium is
reached in porous and granular materials after macroscopically long relaxation times. For
instance, a hot water flowing through a cold porous material does not reach locally a
common temperature with the skeleton within seconds or minutes. Consequently, we
should construct thermodynamical models with different temperatures of components.
Such a construction, as we have indicated in the previous Section, is missing even in the
case of fluid mixtures. One of the reasons is again the problem of measurability.

Let us mention in passing that in theories of granular materials stemming from a
kinetic equation it is common to work with a kinetic temperature rather than a thermo-
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dynamical temperature (e.g. [40], [37], [39]). It is defined in a way similar to this of
the kinetic theory of gases as a mean kinetic energy of granulae. There are numerous
difficulties connected with such a notion. For example a natural equilibrium state of a
granular material in which particles do not move would have a temperature equal to zero.
Consequently, deviations from the equilibrium state which are used in the construction
of macroscopic moment equations of the kinetic theory would have to be constructed
by means of a trivial distribution function. Certainly, this cannot give any reasonable
physical results. For this reason moment equations are constructed by a reference to a
Maxwell-like distribution describing processes of simple shearing flows rather than real
equilibrium states. In contrast to, say, Grad’s 13 moment method of rarified gases such
procedures are not justified in any way. Moreover the questions of measurability of kinetic
temperature, a relation to the thermodynamical temperature etc. are not even asked as
yet [7].

Within multicomponent continuous models an exchange of mass is described by mass
sources in partial mass balance equations. These contributions, as demonstrated for fluid
mixtures, must contain additional microstructural variables. This requires an extension of
the set of field equations. In many cases additional equations for microstructural variables
have the form of evolution equations. Then there is no need to introduce additional
boundary conditions. Such microstructural variables cannot be controlled, they develop
spontaneously from initial data. On the other hand, the latter can be usually easily
formulated because many microstructural variables are defined in such a way that they
vanish in thermodynamical equilibria.

In addition to chemical reactions in miscible mixtures, mass exchange in porous media
may have a different physical character. It may follow from some phase transformations
like freezing. It may be related also to adsorption (see: [1], [101]). These processes appear
in cases of components which, in contrast to chemical bindings, form weak van der Waals
bindings solely with the skeleton. Such are, for example, processes of transport of many
pollutants in soils. According to the simplest model of these processes, developed by
Langmuir, they are described by an additional field of the so-called number of bare sites.
In the case of materials with very small diameters of channels adsorption processes possess
a hysteresis loop in the relation between the partial pressure of adsorbate in the fluid phase
and an amount of mass adsorbed by the skeleton and this plays a very important role in
controlling technological processes in such materials. Such loops are caused by capillary
effects. For this reason, they do not appear in materials with moderate and large channels
which is characteristic for usual soils but they do appear in concrete and other ceramic
materials. They have, for instance, an essential influence on the value of temperature of
freezing point of water in concrete.

As already mentioned above multicomponent models of porous materials contain more
than one velocity field. This yields field equations following from partial momentum
balance equations with a corresponding number of partial accelerations. Consequently,
one expects that in such models additional modes of weak discontinuity waves (acoustic
waves) have to appear. This is indeed the case. One of these modes was predicted by M.
A. Biot in 1941. Due to the tradition stemming from geophysics this mode is called P2
compressional (Biot’s) wave as the usual longitudinal wave registered in seismograms was
called P1. Existence of this mode was confirmed in numerous experiments. It has been
found out that it is the slowest of three modes P1, S (transversal wave) and P2. It is also
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very strongly attenuated.

As consequence of existence of additional bulk modes there exist as well additional
modes of surface waves. Apart from the classical Rayleigh wave there exist the so-called
Stoneley waves, various leaky waves and, in general, a number of possible modes of surface
waves depends on properties of neighboring systems, i.e. on the structure of boundary
conditions. Let us mention that surface waves are much weaker attenuated than bulk
waves and for this reason they are easier attainable in measurements. In recent years one
can observe a vehement progress in these measuring techniques.

Couplings of dynamical properties of porous and granular materials with mass ex-
change between components play an important role in various combustion and explosion
problems. These are connected with the propagation of strong discontinuities such as
shock waves and combustion fronts in combustion of solid fuels or deformations of soils
due to impacts of meteorites. Models for such processes are still rather weakly developed.
Most important contributions are based on the model proposed by M. A. Goodman and
C. Cowin [32] which refers to some additional microstructural properties called the princi-
ple of equilibrated pressures. The model leads to a quasilinear hyperbolic set of equations
which admits the existence of shock waves. Incidentally, a similar model is used in the
description of avalanches, landslides and mud flows. However, apart from some simple
properties of propagation conditions, usually one-dimensional, results are rather scarce.

Some elementary properties of one-dimensional Rankine-Hugoniot conditions have
been also investigated within the frame of the model with the porosity balance equa-
tion. However a comprehensive theory of shock waves is still missing and one of the
reasons is lack of a selection (entropy) criterion.

Many processes in porous and granular materials are connected with the development
of instabilities. They lead to fluidization of saturated sands, to the creation of patterns
in porous materials and to some instabilities, such as Saffmann-Taylor, in flows of fluid
components. As usual they are connected with nonlinearities appearing in the model.

One of the most spectacular phenomena accompanying earthquakes is the fountain-
like explosion of water and mud from the sand. It has been found that prior to this
phenomenon the character of permeability of the soil changes in an unstable manner. In
the first stage the homogeneity of the system breaks down and a pattern of chimney-
like channels with a very high permeability is formed. In the second stage one of these
channels becomes dominant and this leads to an explosion-like eruption of water from the
ground. This behavior seems to be connected with a nonlinear coupling of the diffusion
velocity with the gradient of porosity.

Another class of instabilities appears in the model with the balance equation of poros-
ity. These are connected with the coupling between dynamical changes of porosity and
partial stresses in components. Let us mention one of those instabilities. In a case of
a Riemann problem the system develops soliton-like waves of porosity. These are con-
nected with the loss of symmetry of the front of propagation if the two-dimensional front
is concave. Most likely in the vicinity of the symmetry axis the system develops a mushy
region. Multicomponent modeling of porous materials is based on the assumption that
additionally to usual fields of theories of fluid mixtures there exists a microstructure which
is reflected in the simplest case by a single additional field of porosity and by solid-like
properties of one of the components. In some models this microstructural extension is
even broader and corresponding models contain, for instance, the so-called volume frac-

100



tions of all components, double porosity, tortuosity as a simplest measure of complexity
of geometrical structure of channels, couple stresses etc.

The review of various possibilities of construction of nonlinear models can be found in
the article [99]. We begin the presentation of models of porous materials with an example
of a two-component system whose theory is based on the assumption of incompressibility
of components. Models of this art appear quite frequently in applications to soil mechanics
or glaciology.

First of all, let us make a comment on the calculation of averages in modeling porous
materials. The microstructure of these materials has usually characteristic dimensions
of an almost macroscopic nature. Typical dimensions of granulae or radii of channels
are in the order of micrometers and sometimes even millimeters. This means that we
can, in principle, apply a continuum model on this semimacroscopic level and consider
either a single component continuum (skeleton) or a mixture of fluids (fluid components in
channels of the skeleton). This is not being done because extremely complicated shapes of
channels practically rule out the possibility of formulation of boundary value problems for
semimacroscopic field equations. Instead we construct volume averages over the so-called
Representative Elementary Volumes. These are three-dimensional sets whose dimensions
are sufficiently large to be able to assume the randomness of the microstructural geometry
and, simultaneously, sufficiently small when compared with macroscopic dimensions in
order to be able to prescribe average properties to values of corresponding macroscopic
fields. In Figure 9, we show schematically such a REV-domain and the distributions of the
skeleton and channels on the semimacroscopic level. These distributions are described by
characteristic functions x® (Z, t) which, for the a-component, has the value 1 if the point
Z is in the instant of time ¢ occupied by the a-component and 0 otherwise. The notation
Z as well as X appearing further is characteristic for the Lagrangian description of the
multicomponent system which we present later in details. In the following derivation, it
is immaterial as we consider the time ¢ only as a parameter and the whole considerations
concern spatial properties of the system which may be represented in Lagrangian as well
as in Eulerian description. This issue will be made precise further in this Section.

Let us denote by M (X, t) the REV-domain which at the instant of time ¢ is located
at the point Z = X. The point X selecting M can be chosen arbitrarily but it is usually
convenient to make a special choice related to the geometry of REV. Namely, the shape
of REV-domains should be chosen in such a way that it does not deviate from natural
symmetries of the microstructure. For instance, in the most common case of isotropic
microstructure the shape should be spherical. Then M (X, t) is the ball of the constant
radius R whose center lies at X at the instant of time ¢

M(X,t)={Z|X €By & |Z — X| < R}. (454)

By this choice, R must be much larger than, say, typical diameters of channels and much
smaller that the macroscopic dimensions of the body.
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Fig. 9: Schematic Representative Elementary Volume (REV).

Obviously, there is a problem of defining REV in the vicinity of the boundary as well
as the problem of the definition of the boundary 0B, itself. We return to this question
in the discussion of boundary conditions. However, it should be mentioned that these
problems yield the existence of boundary layers which are replaced by additional surface
quantities.

Now let us consider the construction of volume averages. For an arbitrary quantity
©* (Z,t) characteristic for the a-component we construct the average

=g [ @y @ v, (155

where V' = vol M (X, t) and, for simplicity it is assumed to be a constant. By means of
this definition of the volume average we have to define macroscopic gradients of quantities
(p*) (X,t) and their time derivatives. The latter is straightforward because we construct
instantaneous averages over the spatial domain. However the construction of the gradients
is more complicated. Let us choose an infinitesimal vector §X which is constant over
M (X, t). This vector defines the shift of the REV-domain M (X, ). We have

1
CIXEX D=3 [ @) B0V =
M(X+6X,t)

1
_ 1 { | @y @
V M(Xt)

+% & (2,1) X" (Z, 1) N, (Z,1) - 5dez} +0 (|0XP) =
OM(X 1)
~ X0+ { [y, D¥le" @y 2.0 W} 40 (xP) -

o) (X, 1) + %5X- / Grad [o° (Z.1) x* (Z, )] dVy + O (|6X[?) =
M(X,t)
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= (%) (X,t) + 6X- (Grad ) (X, ) +
+%5x- / o (Z.1) Grad [\* (Z.1)] dVy + O (|3X %), (456)
M(X, 1)

where Ny is the unit outward normal vector to the surface OM (X, t). In order to evaluate
the last integral let us introduce the set

MO (X, t) = {Z € M(X,t)|x* (Z,t) =1} (457)

Then the above relation yields

(") (X+0X, 1) — (%) (X, 1) = 6X- (Grad ¢*) (X, 1) + (458)
+i5X- ¢ (Z,t)Ny (Z,1)dS; + O (|6X %) .
14 OIM (X )NM (X, t)

We have used here the formula for the differentiation of the characteristic function x* (Z,t).
Obviously, the gradient of this function is zero in the interior of M®(X,t) and
M (X, t) \M* (X, t), where this function is constant. One has to evaluate only the deriv-
ative in the direction orthogonal to the boundary o M® (X, ). We can do this using local
coordinates such that at every point of the boundary we choose the origin of the orthog-
onal frame with the coordinate &, whose unit base vector is N;. We demonstrate the
calculations using the following definition of the characteristic function in the vicinity of
the point £ =0

X" (1) = 5 Tim [1 — tanh (a8)] (459)
where the dependence on the other two local coordinates is immaterial. Then
Grad [x* (Z,t)] = (Nz-Grad[x"(Z,t)]) Nz = (460)
§=0 a=o0 cosh” (af) |—g

= _66M‘1(X,t) (S) NZ>

where dgre(x,r) (§) is the Dirac-delta function for the surface OM® (X, t). This yields the
transition from the volume integral in (456) to the surface integral in (458).

The relation (458) for the directional derivative of the average (p®) gives rise to the
following formula

véX - inﬁnitcsimaléX' Grad <§0a> (X> t) =

— 5X- (Grad o) (X, ) — —=6X. S (Z Ny (Z,4)dSy  (461)
4 DM (X H)NM(X,8)

To demonstrate the meaning of this relation let us consider a special case in which
©* (Z,t) is piecewise constant. Then the first contribution vanishes identically and in
the second one most contributions vanish due to the outward orientation of the vector
N (Z,t). There remain only those whose counterpart lies outside the domain M (X, ).
We explain this argument in the one-dimensional diagram of Fig. 10. Contributions of
M* (X, t)-sets: (2),...,(6) vanish due to the opposite orientation of the normal vector on
their ends. There remain the contributions of the set (1) and of the set (7) because their
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ends lie beyond the set M (X, ) and this gives the contribution ¢{ — ¢9 of the integral in
(461), where ¢}, % are values of p® on the subsets (1) and (7), respectively. As V' is in
this example identical with the length L of the interval in Fig. 10, we obtain the average
value of the gradient identical with (¢S — ¢f) /L.

Aps

v

Fig. 10: Construction of macroscopic gradients in 1D-case

It is obvious that this construction is extremely singular. One cannot expect ever any
differentiable macroscopic functions to follow from such a construction. Consequently, it
is essential that characteristic dimensions of the microstructure are much smaller than
macroscopic increments |0X|. In addition, the heterogeneity of the function ¢ (Z,t)
should be sufficiently small for the contribution (Grad ¢®) (X, t) to be negligible in (461).
Such a contribution is characterized by the parameter of heterogeneity of the microstruc-
ture epeter = |(Grad ¢*) (X, t) / Grad (¢*) (X, t)| which must be much smaller than the
parameter €yico = R/l < 1, where [ is the macroscopic characteristic length. If these
conditions are satisfied we can speak about macroscopic fields as volume approximations
of real semimacroscopic quantities. We shall not discuss any further the mathematical
structure of such constructions and assume sufficient smoothness for all operations which
we perform on the fields.

We illustrate the above considerations on some simple models of poroelastic materials
with an incompressibility assumption. As in all continuum models we define in Fulerian
description fields on a common domain B; which is time dependent and corresponds to
a part of the three-dimensional space of motion occupied in a current instant of time by
all components. In the case of semipermeable boundary 0B; parts of components which
flow out of this domain are considered separately and one has to solve contact problems.

In a purely mechanical model which we want to consider in this Section processes
are described by two current partial mass densities p? (x,t),pl (x,t),x € B, C R3,t €
T C R, for the skeleton and the fluid component, respectively, and by two velocity fields
v¥ (x,t), vl (x,t) for these two components. All these fields are macroscopic which means
that they are defined on the common domain B; and, for instance the fluid mass and the
skeleton mass contained in a subdomain P, C B; are given by the Lebesgue integrals

MF(P,) = / PFAV, M5 (P) = / SV, (462)
Py Py

In the definition of incompressible components one uses a ”pseudomesoscopic” quan-
tities which are called realistic mass densities. We denote them by p?f and pf'f. They
are also defined in each point of the domain B; and not in points of the skeleton or of the
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fluid, respectively. They may be related to mesoscopic (or semimacroscopic) quantities

2B pFE by the following formulae

1
SR (x,t) = —/ S (z,1) (1 —x") dV, 463
1
where
M, = MPUME, MEnME =0, (464)
F
VM) . = / AV, V(M) = / (1) v,
My t

and x! (z,t) is the characteristic function for M. M, is the image of M (X,t) if we
choose to describe the motion of the skeleton, as we customarily do in the Lagrangian

description, by the function of motion £9(.,¢) : By — B;. Then M, = M (£57! (x,t) ,t).
In contrast to pPf, pf'f which do not possess any physical interpretation in points of the
real fluid for the first quantity and in points of the skeleton for the second one, the mass
densities poF, pE'R are defined solely in points of the real skeleton, and of the real fluid,
respectively. Consequently, they possess a usual physical interpretation. For instance,
pER is equal to 1000% for water in normal conditions.

It is easy to check the following relations
VM) =(1-n)V (M), V(M)=nV(M,), (465)

1 P /
- v, V(M) = [ av.
Ty (M) /Mt X (M) M

The quantity n defined in (465)s is called the porosity.

Consequently

1

5 = SR(1—xM)av =1 - o 466

pt V(Mt)//\/{tpm ( X ) ( n)pt ) ( )
1

F FR_F FR

G dV = ]
Py V (M) /Mtpm X np;

Clearly, the smeared-out, partial mass densities p?, p/" are related to the common macro-
scopic volume in the current configuration. Their definitions contain the full volume of
REV.

By means of the above relations we are now in the position to introduce the notion of
incompressibility appearing in some theories of porous and granular materials. Namely it
is assumed for such models that

PP = const., pER = const. (467)

Consequently the current mass densities pf’, p; are not independent fields. They can
be reduced to the single field of porosity n. In such a case partial mass balance equations
(without mass exchange!) reduce to the following form
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1 (0p} ) . on .
W{Ttt“i“’ (pfvs)} = —a—l—dlv ((1—n)vs) =0, (468)

1 [9pf . on
IOf_R{_t+d1V(PfVF)}E E—I—dlv(nvp)zo,

We can also combine these two equations to the following one
div (nv" + (1 —n)v®) =0. (469)

If we consider equation (468); as a candidate for the field equation for the porosity n
then equation (469) is a constraint condition of the model. This condition yields certain
limitations on constitutive relations appearing in the phenomenological model which are
not always physically and mathematically acceptable. We show here two examples of
models which are thermodynamically admissible. The first one is used frequently in soil
mechanics and in the description of suspensions. In order to obtain field equations we need
momentum balance equations which have the following form in the Eulerian description

S8
% +div (p)v® @ v¥ — T?) = p°, (470)
0 (piv")

ot

where T, T¥ denote symmetric partial Cauchy stress tensors, p°,p’ are momentum
sources. We make the assumption that these quantities satisfy the following constitutive
relations

—I—div(pva(X)vF—TF):f)F, p° +pf =0,

T = T (n, gradn, e”, w) ., TF=1F (n, gradn, e”, w) , (471)

where the symmetric deformation tensor of the skeleton e’ ~ % (BS — 1) satisfies for

small deformations’ the equation

de®
ot
and w := v — v is the relative velocity of components.

By means of the second law of thermodynamics one can show that the constraint (469)
is thermodynamically admissible. This would not be the case were constitutive relations
(471) independent of gradn. In this sense we deal with a higher gradient model. If we
assume in addition the isotropy and linearity with respect to both vector variables grad n
and w then we obtain a relatively explicit form of constitutive relations

= sym grad v°, (472)

T = —(1—-n)pl+ Tfff (n,es) ., T = —npl + Tfff (n, es) , (473)
f)s = —f)F =T (n,es) w—p gradn,

%ie. ||e]| < 1, where ||e¥| = max {)\(1), )\(2),)\(3)} and AN, A® A®) are eigenvalues of .
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where T2, TZ;; are the so-called effective partial stress tensors. The second one is
frequently assumed to be zero and the first one, if it is linear (small deformation of the
skeleton Hes H <« 1), is given by a Hooke’s law with material coefficients depending on the
porosity n. The permeability coefficient m is also usually assumed to be constant. The
pore pressure p is the reaction force on the constraint.

In order to account for instabilities of the microstructure one can try to extend the
above model by accounting for nonlinear dependence on the relative velocity w. This is
justified because such instabilities appear by flows of a high intensity of the fluid com-
ponent. In a continuum model the latter corresponds to contributions p'w. Such an
extension yields in the lowest approximation the following constitutive relations

T = —(1—-n)pl+ Tfff (n,e°) + dw @ w, (474)
T = —npl —I—Tfff (n, es) — W R W,
p’=—pl'=n (n, es) w— (p+I'w - w)gradn,

where § and I" are additional material parameters.

Such a model seems to be appropriate to describe, for instance, instabilities leading to
fluidization and eruption in water saturated sands by earthquakes [92].

The above described class of models shall not be discussed any further. In spite of their
important role in some problems of soil mechanics these models have some faults which do
not seem to be acceptable in cases of wave processes. Most important of them is the lack
of hyperbolicity (the part of the operator connected with the constraint is elliptic). This
leads to a reduced number of real eigenvalues corresponding to speeds of propagation and,
consequently, to the lack of certain modes of propagation of weak discontinuity waves. In
particular the P2-wave and some important surface waves cannot be described by such
models.

9.2 Thermodynamics of poroelastic materials with the balance
equation of porosity

In this Section we present the model of porous materials developed in the recent years
for an elastic skeleton and ideal fluid components. We present its nonlinear foundations
for a system with A fluid components. Only a few basic thermodynamical features will
be discussed in order to place the model within the rational extended thermodynamics.
Thermodynamical details will be discussed in further Sections for two-component models.

9.2.1 Reminder of Biot’s model

Multicomponent continuous modeling of saturated porous materials begun some eighty
years ago with the description of consolidation processes in soil mechanics. K. Terza-
ghi (e.g. [81], [82]) in his works relies on the classical elasticity theory supplemented by
Darcy’s law for the flow of the fluid in pores. This two-component approach to consolida-
tion has been continued in works of M. A. Biot [8]'°, the first one published in 1941, by J.

10The collection of Biot’s papers on porous materials has been published by I. Tolstoy [83].
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Frenkel [29] (1944) and by G. Heinrich and K. Desoyer [35] (1955-56). The culmination of
this research were the works of Biot published in the years 1955-56 (e.g. [9], [10]). These
works form until today the foundation for the linear acoustics of porous media, and their
importance for the field of poroelasticity can be only compared with the role played by
works of Hooke and Lamé in the classical theory of elasticity. The fundamental equations
proposed by Biot can be written in the following form

2

d*u ) oUu  Ou ’U  d%u
pgw:dIVTS+7T( )_1012(%—_),

ot ot ot?
0*U oU  Ou U d*u
F F
—— — _ —_— 4
Po 5z gradp” —m ( ot at) TP ( o1 at2)’ (475)
where
T° = T5+ (P —2N)(divu)1+ 2N symgradu + Q (div U) 1, (476)

pf' = pg—Qdivu—RdivU.

In these equations u and U denote displacements of the skeleton and of the fluid, re-
spectively. The choice of material parameters P, N, (), R describing constitutive relations
for partial stresses is arbitrary. Biot himself was changing his notation from one work
to the other. An essential extension of the set of parameters which characterize separate
components (i.e. P, N for the skeleton and R for the fluid) is the parameter () which
introduces a coupling between stresses.

Initial partial mass densities p§ and pf were denoted in a different way by Biot. We
introduce them here in order to expose the presence of the relative acceleration which
appears with the material parameter p;,. This contribution was introduced by Biot in
order to account for added mass effects which he expected to have in diffusive processes
due to a complex geometry of microstructure of porous materials.

The permeability coefficient m was also introduced in a different form by Biot. It was
argued that this coefficient describing a reaction on relative motion of components should
be dependent on viscosity of the fluid and, primarily, on the frequency of waves. The
latter was attributed by Biot to the tortuosity.

Finally, Biot was considering increments of stresses with respect to constant initial
stresses but he never mentioned this in an explicit form. For this reason, relations (476)
contain initial stresses T3, pf.

Numerous theoretical and experimental papers based on Biot’s model prove that Biot’s
intuition was right and that he included in his model in a correct way the most important
effects appearing in porous materials. However, the experience of the last fifty years in
continuum thermodynamics gives rise to the following questions:

1) Is the coupling of stresses described by the material parameter () admissible
from the thermodynamic point of view?

2) Is the contribution of relative accelerations admissible from the point of
view of material objectivity?

3) How are changes of porosity described by this model?
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4) How should one write in the mathematically correct form the frequency-
dependent permeability?

5) Can one extend in a consistent way Biot’s model to large deformations of
the skeleton and other nonlinear effects?

The first question is motivated by the experience with the theory of mixtures of ideal
fluids. As we have seen in the previous Section, for such a mixture the coupling between
partial pressures cannot be incorporated into the model in a thermodynamically admis-
sible way if one does not account for a constitutive dependence on the so-called higher
gradients. The second law of thermodynamics yields without those gradients a model
which is called the simple mixture in which there is no interaction term in constitutive
relations for partial pressures.

The relative acceleration appearing in the Biot model violates the principle material
objectivity and yields existence of terms in equations of motion which depend simultane-
ously on the choice of the reference system (i.e. observer) and on the material.

Biot did not make any contributions to describe changes of porosity. There were even
claims in the literature that the model does not account for such changes. The question
arises if this is indeed the case.

The form of the permeability coefficient in which a dependence on a frequency of
waves is incorporated cannot appear in general equations of motion which contain as
well a dependence on time. Many papers on this subject avoid this problem by writing
equations (475) after Fourier transformation. The question arises how to incorporate
such a dependence in a general case when, for instance, a complex impulse is applied as a
loading and the temporal form of equations is more convenient for the formulation of the
problem.

In a series of recent papers I have addressed these questions. In order to find an
answer a model in a fully nonlinear form had to be constructed and then linearized. As it is
frequently the case with linear models, it has been shown that Biot’s model indeed follows
from some nonlinear extensions which satisfy both the second law of thermodynamics
and the principle of material objectivity. It is shown that, indeed Biot’s model possesses
numerous flaws but they may be ignored if we consider small disturbances within a linear
approximation. Details of this discussion can be found in the work [105].

9.2.2 Construction of the nonlinear model

The first attempt to construct Biot’s model as a limit of a nonlinear model was under-
taken by R. M. Bowen [13], [14]. It was not very successful as his relations containing
simultaneously Lagrangian and Fulerian quantities do not yield effective field equations.

Geometric nonlinearities connected with possibly large deformations of the skeleton
indicate that the convenient way to describe processes is to define fields on a reference
configuration By of the skeleton. For such a configuration the deformation gradient of
the skeleton is defined as the unit matrix: F° = 1. Hence we formulate the Lagrangian
description of motion of the porous material. Let us mention in passing that there are
papers on this subject in which the Lagrangian description is introduced separately for
each component. It is not only an unnecessary formal complication but sometimes it
yields erroneous results. We do not present this approach in these Sections.
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The aim of the model is to find the following fields defined in points X of the reference
domain By C R* and in instances ¢ of the time interval 7 C [0, 00):

1. mass density of the skeleton referred to a unit reference volume: p° (X, 1),

2. mass densities of the fluid components referred to a unit reference volume: p* (X, t),
a=1,..., A,

3. velocity of the skeleton: % (X, 1),
4. deformation gradient of the skeleton: F¥ (X,t), J%:=detF° >0,
A

Y

5. velocities of fluid components x* (X,t), a=1,..., A,

6. porosity: n (X, 1),
7. temperature common for all components 7" (X, t).

Consequently a thermomechanical process is described by the mapping

w (X, 1) = R w = {ps,pa,)'cs,FS,)'(a,n,T}, a=1,... A (477)

Field equations for these fields follow from balance equations which we proceed to
formulate.

Balance equations are formulated in their global form on material domains of compo-
nents. For porous materials in the Lagrangian description the family of material domains
for the skeleton is defined as a class of subsets of By which is time independent and satisfies
conditions identical with those of the classical continuum mechanics. Material domains of
the skeleton are time independent because the reference configuration By is defined with
respect to the deformation gradient of skeleton F*. For this configuration F* = 1.

It is not the case any more for fluid components. They have different kinematics than
the skeleton which means that domains in the space of motion containing during the
motion the same particles of a particular fluid component move with respect to material
domains of the skeleton. In the Eulerian description the velocity field for this motion is
given by the difference v (x, t) —v* (x, t) for the fluid component «, where v* (x, t) is the
velocity of the fluid and v® (x, t) is the velocity of the skeleton at the same spatial position
x and at the same instant of time ¢. This relative motion yields the time dependence of
material domains of fluid components projected on the reference configuration By. The
projection is carried by the function of motion of the skeleton

VX eByteT: x=f(Xt) =
45 of° (X, 1)
ot
whose existence is assumed in the model. The condition for the existence of the function
of motion f*° shall be formulated later.
In order to describe the kinematics of material fluid domains projected on the ref-
erence configuration we consider the mappings shown in Fig. 11. In the current con-
figuration B; = f° (By,t) we consider an arbitrary subset P C B; which is material

— F° = Grad f* (X, 1), (478)
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with respect to the component «, i.e. by an infinitesimal increment of time At it be-
comes P o, := {X EByae| x — v (x,t + At) At € P}, These two subsets of the space
of current configurations are maps of the subsets P (t) , P (t + At) of the reference con-
figuration By, one at the instant of time ¢ and the other at the instant of time ¢ + At.
Obviously, they contain the same particles of the component «.. This construction is shown
in Fig. 11. Now, we choose an arbitrary particle of the component o which occupies the
position x €P;* at the instant of time ¢, i.e. its position in the reference configuration is
X = £571 (x,t). Its position x + Ax at the instant ¢ + At can be written in the form

X+ Ax = x+x(Xt) At =9 (X + AX,t + At) =
S

f
= x4+ Gradf® (X, 1) AX+aa—tAt = (479)

= x4+ FSAX + %At

Fig. 11: Projections of material domains of the c-component (pull-back)

Consequently, the set P* (t) C By is endowed with the kinematics defined by the
following velocity field

AX
VX €By:  lim —= = X* (X, t) =F%" (x> - %%). (480)

It is called the Lagrangian velocity. Obviously, in the above relations we were using the
following transformations

7 (X, 1) = v (£ (Xot),t), %x*(X,t)=v*(F¥(X1),t). (481)

In order to appreciate the operational meaning of this transformation we formulate
balance equations of mass for all components. They have the following form

4 p°dV = / poav, (482)
dt PS PS
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for every material domain of the skeleton P° C By, and

d

— [ prav = / prdv, (483)
dt Jp Pat)

for every material domain of the a fluid component P* (t) C By, « =1,...A. In the
above relations p°, p® are the mass sources which satisfy the following bulk conservation
law

A
VX EByteT: 7+ p*=0. (484)
a=1

Time dependence of material domains for fluid components yields the following rules
of time differentiation

4 p°dV = / 9 Sav,

dt PS PS at
d . o . e
— prdV = —pdV + p*N - X dS, (485)
dt Jpa) pa(r) Ot oPa(t)

where N denotes the unit normal vector field of the boundary 0P (t).
These relations yield the following local form of mass balance equations for a =

apS N apa . ara Ao
szﬁ WJrDlV(,OX):p, (486)

in regular points (almost everywhere) of B, and

vl =0, || (X2 N-U)]]) =0, (487)

in points of singular surfaces moving through the reference configuration By with the local
speed U. The brackets [[- - -]] denote the difference of finite limits of quantities in these
brackets on the positive and negative side of the surface (comp. (91)).

In a similar manner we obtain the following partial momentum balance equations in
their local form. For the regular points of the reference configuration By

o S¢S
(0°%°) _ DivPS = p5 4 p°bS,
ot
8 (p°%) -
pa_t + Div (pa)'(a ® X — Pa) _ f)a + paba’ f)S + Z f)a _ 0’ (488)
a=1

and for points on singular surfaces
S .S S _
PPU 7] + [[P7]] N =0,
o (X7 N=U) [%]  [P N =0, (489)
In these relations P, P® denote partial Piola-Kirchhoff stress tensors, b”, b® are par-

tial mass forces, and p°, p® denote the momentum sources. Relation (488)3 expresses the
bulk conservation of momentum.
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We do not need to present details of partial energy balance equations. Under the
assumption of a single field of temperature we need solely the bulk energy conservation
law. The derivation is based on a principle of the theory of mixtures that bulk quantities
must be defined in such a way that balance equations for these quantities have the form
of classical conservation laws of the single component continuum thermodynamics.

Bearing this principle in mind we define the following bulk quantities

A A
pr=p"+ ) p% pk=pSET+ ) %, pXi=) X, (490)

a=1 a=1 a=1

which are the bulk mass density, the bulk momentum, and an objective relative momen-
tum connected with the reference of the motion to the skeleton rather than to local centers
of gravity;

A
B D S LI ST

a=1
A
P, . =P 4+ P%
a=1

this is the bulk Piola-Kirchhoff stress tensor with the so-called intrinsic part Py;

A
1 . . . . . .
pE :p5]+§{pSCS-(X®X)—|—ZpaCS.(XQ—X)@)(XQ—X)},
a=1
A
per - =p°% + Zpasa, C° = FTF7, (492)
a=1

this is the bulk specific internal energy with the intrinsic part pe;. The symmetric tensor
C* is the right Cauchy-Green deformation tensor of the skeleton;

0k ek ($X) 0 (1%) o (k0-%) o
A A
Q : =Q°+ 3 QUK+ pre (Xa - X) v (493)
a=1 a=1

A
+PSTFX- Y P (Xa _ X) ,
a=1
and this vector describes the bulk heat flux in the Lagrangian description. Again the

intrinsic part Q; was separated.
The bulk balance equation of energy can be now written in the following form

0 1 1 .
N (6 + 5:82) + Div {p (6 + 51}2) X+Q- PT)'C} = pb - x+pr, (494)
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where

A
pb = pb® +> " p"b*,

a=1

A A
pr = p°rd + Zpara — p°b%  FSX+ Z b - F? (Xa — X) , (495)
a=1 a=1
and r, r® denote the partial radiations.
We skip the presentation of the energy condition on a singular surface because it shall
not be used in these notes.
In the Lagrangian description and with the choice of fields (477) we have at disposal
the following integrability condition
OF®
W = Grad )’(S. (496)
This condition yields the existence of the function of motion (478). By the choice (477)
of unknown fields this relation plays the role of the field equation for the deformation
gradient F7.
It is useful to write equation (496) in the following weaker form
d
— | FSV = f %° ® NdV, (497)
dt PS oPs
for every material domain of the skeleton P° C B,. This balance equation yields the
following condition in points of singular surfaces

U[[F*]] =-[[%°]] ®N. (498)

This relation is usually derived by means of the Hadamard Theorem for singular surfaces.

Before we present remaining equations of the model let us discuss some properties
of the objects which we have introduce above. It is easy to notice a striking similarity
of the structure of bulk quantities to that appearing in the classical theory of mixtures.
This concerns terms with explicit contributions of velocities. However in contrast to the
mixture theory all velocities of the present model are objective because X and X are
relative velocities. Due to constitutive relations these velocities may be also present in the
implicit form in intrinsic parts of stress tensors, internal energy and heat flux vector. It is
also important to notice that the explicit dependence is at least quadratic. If we consider
processes with small deviations from the thermodynamical equilibrium these contributions
can be neglected.

In order to turn over mass balance equations (486), momentum balance equations
(488), energy balance equation (494) and compatibility condition (496) into field equations
for fields (477) we need constitutive relations for partial stress tensors, momentum sources,
the bulk internal energy and the bulk heat flux. If we had these relations we would have
14 (A 4+ 1) equations. Consequently we would be missing one equation. This is connected
with the fact that the porosity n is the additional microstructural variable and this requires
an additional equation. We proceed to formulate this equation.

We have seen in the previous Section that changes of porosity may be described by
a balance equation (468). This was the consequence of incompressibility of components.
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If the components are compressible we are missing this equation. Compressibility of
components is an important feature in the wave analysis and many other problems of
practical bearing and linear models (e.g. Biot’s model) yield in such cases a relation
for porosity which does not coincide with this derived for incompressible materials. In
addition the porosity equation following from the mass conservation law does not contain
a source. Such a source would describe a spontaneous relaxation of porosity. We know
from experience with other microstructural variables that this is an important property
yielding evolution equations for such variables

All these arguments can be made more precise if we motivate an equation for porosity
by a transition from a semimacroscopic model. We do so by means of averaging over the
Representative Elementary Volume (see: [97], [98]).

The porosity is the fraction of void spaces in the skeleton. Consequently, if x* (Z,t)
denotes the characteristic function of the solid component on the semimacroscopic level
(see: Section 9.1) then we have

n(X,t) :—/ Z,1)) dVy, (499)

where the averaging is performed over the reference configuration of the skeleton, i.e.
X €By and it means that the points Z of the real solid move within M (X) according
to semimicroscopic equations of motion. For the purpose of motivation of macroscopic
equations it is not necessary to formulate them.

We proceed to investigate time changes of porosity. We have

on_ 1 / (_— _ Gradyzy® z) vy, (500)

where Grad z denotes the gradient with respect to the variable Z and 7 is the velocity
of the real point of the solid. According to (460) we can transform this relation in the
following way

on .
0 —/ ( +56MaXt)(€)NZ'Z)dVZ:
1 ox® 1 .
= = [ Zadv—= Ny - ZdSy =
V M at Z V 6Msﬁ./\/l Z Z
) OMSMU(OMNMT)
1 .
—+— N - ZdSZ =
v OMNMS
1 . 1 .
== / dVZ —— | DivyZdVy+— N - ZdSy. (501)
X) 4 M5 OMNMS

These three contributions have the following macroscopic interpretation. The first one de-
scribes the source of porosity caused, for instance, by microstructural relaxation processes.
We denote this contribution by n. The second contribution is related to the relative mo-
tion of real components on the semimacroscopic level. Bearing the relation (461) in mind,
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we can identify this term with the contribution of the macroscopic flux of porosity J, i.e.
we can write approximately

1 .
- Div z ZdV; = Div J. (502)

V M5
On the macroscopic level this contribution results from the relative motion of components.
Finally, the last contribution is related to internal deformations of the skeleton. As we
consider porous materials whose skeleton is elastic this contribution, in contrast to the
other two contributions, must appear in equilibrium as well as nonequilibrium processes.
We call it equilibrium changes of the porosity and denote by Ong/0t, i.e.

1

— N, - ZdS, = —.
Vv OMNMS 0

Ong (503)

Bearing the above remarks in mind we introduce in regular points the balance equation
of porosity in the following general form

oA,
ot

where A,, is the deviation of porosity from the equilibrium value, the latter together with
the flux of porosity J and the source of porosity 7 must be given by constitutive relations.
We expect that n tends to an equilibrium under constant external conditions. The equi-
librium value of porosity ng satisfies the equation (504) with the flux and source equal to
zero. The latter as we show later follow indeed from the second law of thermodynamics.

Making an assumption that sources of porosity do not carry surface singularities we
can write the following compatibility condition for porosity on such surfaces

+Divl=n, A,=n-—ng, (504)

Ul[Ax]] = [[J]]- N =0, (505)

which may suggest the form of natural boundary conditions for porosity.

It is clear that the averaging procedure does not specify the balance equation of poros-
ity but it motivates its structure. This is the typical situation for models which are not
based on kinetic microscopical models.

Let us collect balance equations which we have discussed in this Section. They are
shown in the following Tables 10 and 11.

Table 10: Balance equations for the A 4+ 1-component porous material in regular points
of the reference configuration X €B

mass of S %;% =’
mass of a %§ + Div p*X* = p*
S¢S
momentum of S ﬂPTZ — DivP® = p° + p°b?
momentum of « ﬂ%&al + Div (pa)'ca ® X — Pa> = p* + p*b®
: T
bulk energy %p (6 + %CBQ) + Div {p (6 + %SL‘Q) X+Q-P x} = pb - x+pr
integrability of F* 2. _ Grad %5
porosity d—?ﬁ- +Divd =n
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Table 11: Balance equations (dynamic compatibility conditions) in points of the
singular surface

mass of S Ullp®l] =0
mass of a pa(Xa-N—U =0
momentum of S p°U [1x°]] + [|[P°]]| N =0,
momentum of a | p* (X* N —U) [[%]] - [P*)]N = 0
integrability UlF°] =—||x°]|®N
porosity UlA)] = [J]] - N=0

As already indicated we do not quote here the dynamic compatibility relation for the
bulk energy.

In order to construct field equations for the fields w listed in relation (477) we have
to solve the closure problem, i.e. we have to add to balance equations of the Table
11 constitutive relations. We shall do so for some important particular cases. As the
first closure we select the simplest possible one which yields a possibility of exploiting the
second law of thermodynamics in a way typical for the rational extended thermodynamics.
The other cases shall be investigated by means of the classical approach to the exploitation
of the second law of thermodynamics.

In the case of the extended thermodynamics method we proceed as follows.

Let us define the following vectors

1
FO — {pS’pa’pS)&S’paf{a’p (S_I_EI,Q) ,FS,An} c 8%4A+15,

FK = {Oapaxa : GK> _PSGK> (pa)’(a ® XCM - Pa) GK>

1 .
(p(5+§fb2)X+Q_PT5C)-GK,—)’cS@)GK,J-GK} c %4A+15’
K = 1,23,

f:={p°p"p°, 00,07} € R, (506)

feat 1= {0,0,p°b%, p*b% pb - % + pr,0,0} € R*1,
where Gy denote unit basis vectors of Lagrangian coordinates. Then the balance equa-
tions can be written in the following compact form
OF, OFg

ﬁ‘l‘_aXK :f+femt> (507)

where {X K } K125 denote Lagrangian coordinates. For convenience we have chosen again
a Cartesian coordinate system.
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We know already that in procedures of extended thermodynamics it is assumed that
the vectors defined by (506) are sufficiently smooth functions of the vector w of unknown
fields. Then the closure assumption has the form

Fo=Fy(w), Fx=Fg(w), f=fFf(w). (508)

In the case under considerations we obtain the model of poroelastic materials without
heat conduction. In order to incorporate the heat conduction we would have to introduce
either an equation for the heat flux or a dependence on Grad T as a constitutive variable.
Similarly we would have to extend the model if we wanted to describe viscous or plastic
effects - we would have to add equations for partial stresses or a dependence on gradients
of partial velocities. Further we present models in which some aspects of such exten-
sions are indeed discussed within a classical approach to the problem of thermodynamical
admissibility.

Let us stress that the structure of constitutive relations (508) is one of the most charac-
teristic features of extended thermodynamics. Namely the constitutive variables are fields
themselves but not their derivatives as it is always the case in ordinary nonequilibrium
thermodynamics.

In order to expose the structure characteristic for extended thermodynamics we con-
sider a simpler case of the closure in the form (508) under the assumption that processes
are isothermal. This means that we leave out the temperature in the definition (477) of
w and denote it then w;, as well as we ignore the energy balance equation.

The set of equations (508) for w;, without energy balance has thermodynamically the
same structure as the corresponding set of extended thermodynamics. For this reason
we can apply the same principles connected with the thermodynamical admissibility.
They can be formulated as follows:

- entropy inequality: there exist a nontrivial entropy function Ay and a flux
H =Hx G such that for each thermodynamical process (i.e. for each solution
of field equations) the following inequality is satisfied

Ohy

-+ DivH >0, ho=ho(wi,) €R, H=H(w;) € R (509)

- convexity and causality: the entropy function hy = hg (u;s) is concave, i.e.

0%hg

2 6%14(A+1) 0: v
v v ?é awisawis

(vev) <0, (510)
- principle of relativity (Galilean invariance of field equations).

The last principle yields a decomposition of all quantities of the model into two parts:
a convective part which depends explicitly on the absolute velocity fields and a noncon-
vective part which does not depend on absolute velocities at all. This principle is satisfied
identically in the case of Lagrangian description because we deal solely with relative ve-
locities.
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Entropy inequality (509) is exploited by means of Lagrange multipliers which elimi-
nate the limitation of this inequality to thermodynamical processes. According to this
procedure requirement (509) is equivalent to the following inequality for all fields, and
not only for solutions of field equations
Ohy | OHx (aﬁo oF

Vw, € R4, 90K A [ GFo  OFk
w ot T OXK ot T OXE

H = HyGp, (511)

_ f) >0, A 6%14(A+1)’

where A are the Lagrange multipliers, and functions of w;,. As mentioned above IEO, F K,f
are truncations of functions (506) to the subspace R4+ without the energy balance
equation.

The solution of the above problem has the following form

OA 0?hg

awis awis awis ’

dho = A-dFy, dHgx =dFpr-A =

(512)

i.e. according to (510), the map w;; — A is globally invertible. Hence after Legendre
transformation

hy(A) = A-Fg—ho, Hj(A)=AFx—Hx —

ohy = OHgk ~
A Fr = A Af(A) >0. (513)

Consequently, the functions Fo, and F which determine the left-hand side of the field
equations are given if the four-potential (hy(A), Hj (A)) is known. It leaves unspeci-
fied but restricted by the dissipation inequality (513)s only the sources f(A) of the field
equations. This is one of the most important consequences of the second law within the
rational extended thermodynamics. Moreover relations (513) yield the symmetry of field
equations for the unknown vector A:

2 2717/
Oho OA O Hy OA ¢ (514)
ONOA Ot  OAOA OXK

Consequently under the second part of the condition of thermodynamical admissibility
(i.e. nonsingularity of matrix %‘k) the system is symmetric hyperbolic.

It remains to invert the variables, i.e. to find the map A — w;,. This is usually a very
difficult technical problem. For this reason we use further a classical approach which does
not require the execution of the last step.

Let us mention that the residual inequality (513)5 defines the dissipation. This func-
tion vanishes in states called the thermodynamical equilibrium states. Consequently the
necessary and sufficient conditions for the thermodynamical equilibrium within the model
discussed in this Section have the form

Pl = 0 fora=1,... A,
Pl = 0 fora=1,... A, (515)

i, = 0.

They follow directly from definition (506); of the vector f truncated to f.
In the following Sections we discuss some particular models following from the above
thermodynamical scheme.
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9.3 Two-component poroelastic materials: dependence on ob-
jective accelerations and porosity gradient

In order to see the structure of field equations for nonlinear nonisothermal processes
in porous materials we consider a particular case of the two-component system which
describes thermomechanical processes in saturated poroelastic materials. This thermody-
namical construction is connected with the classical Biot model of poroelastic materials.
We have already mentioned two characteristic features of Biot’s model motivating the
construction which we present further. Within a purely isothermal framework Biot pro-
posed a two-component linear model in which partial momentum balance equations are
coupled by three terms. The first one, diffusive forces, following from the relative motion
of components, is classical. The second one follows from the assumption that the mo-
mentum source contains a contribution of the relative acceleration of components. This
yields the consequence that the matrix of partial mass densities is not diagonal. The off-
diagonal part is assumed to be symmetric. The third one appears in partial stresses and
describes the reaction of one component on volume changes of the other. This coupling
is also assumed to be symmetric.

It is rather straightforward to show that the second contribution violates the principle
of material objectivity and the third contribution contradicts the second law of thermo-
dynamics. However, one can construct a nonlinear model whose linear limit is identical
with the Biot model. We present this construction in this Section. In order to simplify
technicalities, we present this construction in two separate steps. First, we construct the
model with a contribution of relative accelerations and then a model with couplings of
partial stresses.

A nonlinear objective model with a contribution of relative accelerations is thermo-
dynamically admissible if we add some nonlinear contributions to partial stresses and to
the free energy. They reflect in the simplest manner the existence of fluctuations of the
microstructural kinetic energy caused by the heterogeneity of momentum in the represen-
tative elementary volume. The existence of such fluctuations as a result of tortuosity of
porous materials has been indicated by O. Coussy in 1989 [21]. However, the constitutive
part of a model based on such considerations has not been presented. There exist some
attempts to derive Biot’s model with the contribution of relative acceleration by means
of Hamilton’s principle based on the fluctuation kinetic energy. As the true variational
principle does not hold for dissipative systems the dissipation through fluctuation and
diffusion is accounted for by a pseudo-potential and a pseudo-variational principle. This
does not seem to be the right way of handling irreversible processes. For this reason we
rely rather on the nonequilibrium thermodynamics in our considerations.

Let us begin with the construction of the model with the relative acceleration as a
constitutive variable. We follow here the construction presented in [104].

We consider a two-component continuum consisting of a solid skeleton and of a fluid.
As in the previous Section, the motion of the skeleton is assumed to be described by the
following twice continuously differentiable function

x=f"(X,t), XeBy, teT, (516)

where By denotes the reference configuration of the skeleton and 7 is the time interval.
The velocity, the acceleration and the deformation gradient of the skeleton are defined by
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the relations
i oS 9%
X =

F* := Grad f°. (517)

ot’ ot

Certainly, the value F¥ = 1 corresponds to the reference configuration for, say, ¢t = ¢, in
which 9 (X, ) = X.

Motion of the fluid is described by the transformation of the Fulerian velocity field

vl = vI (x,t) defined on the space of current configurations f° (By,t) of the skeleton.
We have

vl =T (7 (X, 1), 1) = %" (X,1). (518)
The acceleration of the fluid is then given by
//F a)’(F ’F 'F ’F S—l 'F ’S
X :W_‘—X -Gradx”, X" :=F"' (%" %), (519)

where X* is the Lagrangian velocity of the fluid with respect to the skeleton.
We proceed to determine the transformation rules for the above quantities specified
by the Euclidean transformation rule

x* =0 (t)x+c(t). (520)

The relations (517) and the time differentiation of the relation (520) yield the following
quantities in the new reference system

FS* — OF%, %5 = 0%° + Ox + ¢ 5 = 0%5+20%” + Ox + ¢, (521)

where the dot denotes the time derivative.
We assume that the transformation rule for the velocity field of the fluid component
has the same form as it does for the skeleton

% = 0%+ Ox + ¢. (522)
Consequently ) )
% =0(x"-%%) = X"=X" (523)

Bearing these relations in mind we can now easily derive the transformation of the
acceleration of the fluid. We obtain immediately

0 . . .
= (oxF + Ox + é) +XF . Grad (O)’cF + Ox + é) - (524)
— Oo%F +20%" + Ox + ¢,
where the definition of the Lagrangian velocity has been used.
Due to the presence of contributions dependent solely on the choice of the frame we

.- .G . . wS nF . . .
say that velocities %5, % and accelerations %°, %' are nonobjective. Consequently, their
difference is also nonobjective. We have

For this reason the difference of accelerations cannot be used as a constitutive variable in
a construction of the macroscopic model of a two-component system.
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If we take the gradient of the transformation relations for velocities we obtain
. S .
Grad%** = O Grad%® + OF° = O =Grad ()’(S* — O)’(S) |

Grad £"* = O Grad %" + OF" = O =Grad (£ — 0%") F5". (526)
Consequently, we can write
20 (%" —%%) =(2—3) 0 (X —%%) +;0 (" —%%) =
= (2 —3) Grad (¥ — O%") X" + ; Grad (X°* — 0%%) X7, (527)

where 3 is arbitrary.
Substitution of this relation in (525) yields

-0 (XF %5 (25X Grad%F — 5XF - Grad)'cs) .

It means that the quantity

a, = % (%" = %%) + X" Grad %" — (2 —3) X" - Grad %" — 3X" - Grad £° =
0 ; %
=5 (K =%%) = (1—3) X" Gradx" —3X" - Grad %", (529)
is objective, i.e.
a* = Oa,. (530)

We call this quantity an objective relative acceleration. As an objective variable it can be
incorporated into the set of constitutive variables. Obviously, there exists a class of such
accelerations specified by the constitutive coefficient 3.

It is easy to see that a linear momentum source p in an isotropic material may contain a
term p%a, ~ p‘b% (X" — %) as required by relations of Biot’s model. The open question
is if the second law of thermodynamics admits this type of contribution in a fully nonlinear
model.

As we have already mentioned the nonlinear poroelastic two-component model requires
the formulation of field equations for the following fields

V= {pF 5 &5 F5, Ton}  for  (X,t) € ByxT, (531)

where p? is the partial mass density of the fluid per unit volume in the reference con-
figuration of the skeleton, i.e. in the current configuration it is given by the relation
pl = pf'J%=1 J% := det F®. T is the absolute temperature of the medium common for
both components, and n is the current porosity. Other symbols have the same meaning
as before.

The partial mass density of the skeleton in the reference configuration, p°, does not
appear among the fields because it is constant in a homogeneous material without mass

exchange between components.
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These fields are assumed to fulfil the following set of balance equations

op* .
RF:= = 4 Div (pFXF) —0, (532)
0%
M5 = ,05% —DivP* —p =0, (533)
F F a)’(F > F L F . F N
M" :=p W_I—X -Gradx” | = DivP" +p =0, (534)
) .
E : — 7”: +DivQ — P¥- Grad %% — P¥ - Grad 2" — (F57p) - X" =0, (535)
p o =p"+p",
OFS
F:= — — Gradx® =0, (536)
ot
oA,
N = > +Div)—n=0, A,:=n-—ng, (537)

where P°, P denote the first Piola-Kirchhoff partial stress tensors, p is the momentum
source, ¢ is the specific internal energy per unit mass of the mixture, Q is the heat flux
vector, ng describes the equilibrium porosity, J is the porosity flux, and n is the porosity
source. The porosity balance equation (537) yields the model essentially beyond the frame
of Biot’s model due to the contribution of relaxation source 7.

As we show in the next Section, changes of porosity predicted by the linearized porosity
balance equation are identical with those following from Biot’s model and Gassmann
relations provided the relaxation time of porosity goes to infinity (i.e. n = 0). However, it
should be mentioned that many other approaches to the problem of evolution of volume
fractions, porosity, etc. appear in the literature. One of the most popular forms of such an
evolution equation follows from the so-called principle of equilibrated pressures introduced
by Goodman, Cowin, Nunziato, Passman and others (e.g. [32]). Even though in some
applications such an approach may by advantageous to the porosity balance, we do not
discuss it any further in these notes.

In order to obtain field equations from the above balance equations we have to specify
constitutive relations for these quantities, i.e

F={P°,P" p,e,Q,np,J,n}, (538)

must be functions of constitutive variables. In the model, we are presently discussing, the
set of constitutive variables is chosen as follows

C = {pF,FS,XF,An,T,G,aT}, G := Grad T, (539)

Hence the gradient of porosity does not appear among the variables. As we see further
it means that we can expect only the so-called simple mixture model to follow from
thermodynamical considerations in which some couplings of components are absent. We
do so on purpose to avoid technical difficulties of accounting simultaneously for two new
contributions: due to a, and due to N := Gradn. Later we consider the model with the
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dependence on N but not on a,. One can show that the combined model satisfies the
second law of thermodynamics.
Once the function

F=F(C), (540)

is given, we obtain a closed system of differential equations for fields V.
Constitutive relations (540) satisfy the second law of thermodynamics in the form of
the following entropy inequality
0
%%—DiVHZU, n=n(), H=H(C), (541)
which must hold for all solutions of field equations. In this inequality 7 is the specific
entropy and H its flux.
This requirement is equivalent to the following inequality which must hold for all fields
dpn

-+ DivH-A""RF — A" M5 — A" -MF — A°E — AF.F — A"N>0,  (542)

where

AT AT AT AT AT AT (543)

are Lagrange multipliers dependent on constitutive variables C.

The exploitation of the second law of thermodynamics in the general case is technically
impossible. Therefore we make simplifying assumptions sufficient for the second law to be
satisfied and yielding explicit limitations on constitutive relations. They are as follows:

1° The material is isotropic. Consequently, scalar constitutive functions, for instance,
depend on vector and tensor variables solely through invariants. This assumption will be
applied in some steps of our proofs. Some relations are simpler in a general form and then
we do not introduce this limitation.

2° The dependence on the relative velocity X7 is at most quadratic. This assumption is
related to the structure of the nonlinear contribution to the objective relative acceleration.
We motivate its form further.

3° The dependence on the temperature gradient G is linear. We could skip this as-
sumption on the cost of some technicalities but the experience with the thermodynamical
construction of poroelastic models shows that this simplifying assumption does not yield
any undesired results.

4° The dependence on the deviation of porosity n from its equilibrium value npg,
A, =n — ng, is quadratic.

5° The dependence on the relative acceleration a, is linear.

6° Higher order combinations of variables G, XF ,A,,a, can be neglected.

As we see further these assumptions limit thermodynamical considerations to a vici-
nity of the thermodynamical equilibrium similar to this appearing in the classical Onsager
thermodynamics.

Bearing these assumptions in mind we can write the following representations of con-
stitutive functions

— partial stresses

1 . .
P® = P; (Cp, A,) + 505 Cp)F°X" @ X", Cp:={p"F° T},
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1 , .
PY =Pl (Cy,A,) + EUF Cp)FXF @ X' ng=ng(Cg), (544)

— internal energy and entropy

pe = peo (Cp, Ay) + lSd (Ce) (FSXF) : (FSXF) ,

2
1 d d
pn = po (Cie, ) + 514 (Ce) (FSXT) - (F5XF) (545)
— fluxes of energy, entropy, porosity

Q QvX — KG+Q.F*a,,
H = HX"+ HG+H,Fa,, (546)
J = X'+ J;G+J,FTa,,

where all coefficients are functions of variables Cp,
— momentum source

F5'p = I, X" +1I;G — p),F*"a,, (547)

with coefficients dependent again on variables Cp.

The contributions with the coefficients €4, 77, to the energy and entropy are motivated
by fluctuations of the microstructural kinetic energy caused by the tortuosity'!. We do
not introduce any additional microstructural variable describing changes of tortuosity.
For this reason a macroscopic influence of tortuosity can be solely reflected by the seepage
velocity which in our model corresponds to the Lagrangian velocity XZ. The classical
kinetic energy in this model is given by % (ps)'cs X5 4 PRl xE ) Consequently, the
correction %sd (XF — % ) . (XF — %5 ) may be considered as an added mass effect resulting
from tortuosity.

As we see further, the dependence of partial stresses on this velocity, introduced in the
simplest form by (544), is then required by the consistency of the model with the second
law of thermodynamics. In other words, we show further that coefficients ¢, % in the
stress relations (544) and the coefficient ¢4 in the energy relation (545) are connected (see:
formula (587)).

The exploitation of the second law of thermodynamics (542) is standard. We apply
the chain rule of differentiation to constitutive laws. We skip here rather cumbersome
technical details.

Linearity of the second law of thermodynamics with respect to time derivatives

op" OF% 0A, 0%° 0%xF ar 9G
ot’ ot ot ot ot ot Ot

UTortuosity is the geometrical property of flows in channels of porous materials and it may be defined
as the ratio of the average length of the streamline within REV to the typical linear dimension of REV.
Hence, its minimum value is equal to one. It corresponds to the straight streamline.
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yields

F F 1 (977 agd , ,
P AP — [ Zdd _ pAeZSa S~cF\ | S~cF
A= AL +2((9,0F Aapp)(FX) (FX) (548)
Fo0pn dpeo
A = =22 A°
0 apF apF
opn dpeg 1 [ On Osggq 5 .
F_ 0  Ae - d _ Ae Sy F\ . FSXF 4
AT = SR AR g (g Vg ) (FX) - (FXT)L 6w
n __ 810770 eapgo
A" = aAn_A A (550)
(0% = pla) A + A" = — (1, — Aeq) FFX" + pl, AF X —
— Div (H,F®) + A Div (Q,F”) + A" Div (J,F®) =0, (551)
(0" = pBs) A+ Py A" = (ny — A%eq) F¥XT — gl ASFIXT +
+ Div (H,F*) — A* Div (Q,F®) — A" Div (J,F*) =0, (552)
apno dpey 1 (0Ony Ogyq GG F S
S0 A2 o = A=) (FOXT) - (FOXT) = 0.
NS s (GF NG ) (FX) - (FX) = o0 (553)

These identities still contain linear contributions of Grad F°, A,, quadratic contri-
butions of the latter as well as quadratic contributions of Lagrangian velocity. As they
should hold for arbitrary fields coefficients of these contributions must vanish separately.
After easy analysis we obtain

H,=0, Q,=0, J,=0, (554)

g — Nea — Apl,
pS = Pl (1 + ;Lf“)

The second law of thermodynamics is also linear with respect to the following spatial
derivatives

pSA”S _ _pFAvF _ UFSXF’ hi=—

(555)

Grad %°, Grad %", Grad p", Grad F*, Grad G, Grad A,,. (556)

We have listed them in the order of the further analysis and, simultaneously, skipped the
derivative Grad a, because it does not contribute to the second law due to the relations
(554). The linearity with respect to (556) yields a set of identities and leaves a residual
inequality which is essentially nonlinear. It defines the dissipation in the system and
has the following form

D ((9HV _AEGQV 0P

f— n_ ’F-
2 A8T+HT)X G+

0H oK aJ
n ( T T

o7 T NG N T

+ATL XE - XE 4+ A™ > 0.

) G G+ (557)
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Hence the state of thermodynamical equilibrium defined by D = 0 appears if
G=0, X"=0 n=0, (558)

i.e. the temperature gradient, relative motion (diffusion), and the relaxation of porosity
cause the deviation from the equilibrium.
Clearly the assumption 4° yields the linearity of n and A™ with respect to A,. In
addition, the above inequality yields homogeneity of these functions, i.e. we can write
A,

h=—= AT=NA, (559)

where 7, \" can be solely functions of variables Cr. Consequently, we obtain as well

0P 0Jr

== =0, ===0. (560)

It is worth mentioning that due to (554) the relative acceleration does not contribute
to the dissipation. This property of the model follows from the fact that the model does
not possess any independent field of tortuosity which could relax to the thermodynamical
equilibrium.

Now we return to the coefficients of spatial derivatives of fields. The vanishing coeffi-
cient of Gradx® yields the following results

APSFST (% - AE%) FST | (—HV FASQy + A" ,oFAgF) 1=0, (561)

OF% OF%
oy Dzq Iy Jgq
— —AN—=0, —-AN—=0 562
ol ol T OII o1l ’ (562)
Iy Oeq F o Ong deq s P
2 —A° 117 — —AN— | = —
(aIH aIH) T \gr ) T\ T ET ) (563)
1 oA —y (O'S + Lot
= ; (564)
2p7, ) (1 + ;’—i) + A
where
1
[:=trC% II:= 3 (I =t C®), III:=detC® C°:=F"F" (565)
are main invariants of the Cauchy-Green deformation tensor C?.
The coefficient of Grad %7 yields
dpn dpeg
€ S F 0 €
A (PO—I-PO):—(W—AW , (566)
a’r]d e agd .
o1t~ o (567)
Licis F 0 p° s 0 Ae
EA (0" +0") = —ply 1‘|’p_p D —p7y — prA° (568)
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Consequently, bearing (562) and (567) in mind,

My _AS deq
OF% OF%

= 0. (569)

Next we consider the coefficient of Grad p’. We have

—AC —A— — A ) XE 4 gy ——F5XE — e ——FSXF =0, (570

(3pF Ip* Ip* ) o Ups op* - (570)
OH 0K dJr

N=— =0, =L-= 1

5 TG =0 5 (571)

Similarly, the coefficient of Grad F* yields

OHy gaQV nacb F FApf@ps—T P =S —=F
sym{(aFS —A aFS—A 8F5)®X +p" AN F ® X" +9E” + =

—sym {(HV A A FS T g XF} — 0, (572)
OH7p oK dJr
A° =0 =0 573
oFs L oFs " 9Fs (573)
where the components of tensors 2°, ZF in Cartesian coordinates are given by the relations
— OP; _ ,05 OPRY
St = SRS XY s = ~L SRR A (574)

Under our assumptions the contribution of Grad A,, does not yield any restrictions.
Finally, the last condition follows from the vanishing coefficient of Grad G and it has
the form
Hr+A°K =0, Jr=0. (575)

Inspection of the results (571), (573) for thermal coefficients yields

A=A (T) = A= %, ie. Hp= —%, (576)
where the ideal wall argument has been used.

It is not quite clear what limitations on partial stress tensors are imposed by conditions
(570), (572). Derivatives of partial stresses with respect to the mass density p as well
as with respect to the deformation gradient F*° seem to restrict elastic properties of the
system in equilibrium. This does not seem very plausible. Hence we assume that the
coefficient y vanishes, i.e.

p=0. (577)

Then the multipliers of momentum equations vanish as well. As the consequence of
(553), (555), (563), (569) we obtain

—p% =¢e4—Tn, = const. = eq=const., n, = 0. (578)
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It is convenient to introduce the following notation
Y :=e—Thn, (579)
Py = py — ésd (FSXF) . (FSXF) .

Then, for Lagrange multipliers we have

F 1 9pty F P 1 0pyy n 1 Dpyy n
M =g =M A= mggRs M= oggR =N (5%)

and the relation (553) implies the following classical formula for the internal energy

o
=9 —T—.
c=t T (581)
Simultaneously the relations (570), (572) yield
OHy IQv F 0P
—A° —AN =0, —=0
opF OpF " 9pF ’
OHy . 0Qy F oy pF . B
2III(aIII_A aIH)+p A"~ (Hy — A°Qy) =0, (582)
21118—q) —0=0 = &=J0, o= t (583)
9I11 = = 05 0 = const.

These relations yield the following integrability condition for the multiplier A?"

ONP” ONP”
F S
PRV

=0 = A=A (T, pf) . pl= g5 1)l (584)

Consequently, integration of (580); leads to the following additive splitting of the free
energy

pb = pFyf 4 pSyS — %A“TA,% + %gd (FSXF) : (FSXF) , (585)
F = T (Tpf), ¢ =97 (T.F%).

The above separation property is characteristic for the so-called simple mixtures. It
means that the choice of constitutive variables (539) rules out the coupling of components
through deformations: changes of the current mass density pf” do not have influence on
¥ and deformations F® of the skeleton do not have influence on ¥

In addition, integration in (582); yields

_Qv_ o

Hy = ie. H

e = (Q-pfurX"), (586)

1
T
where we have accounted for the relations (575) and (576).

Inspection of relations (578), (564) and (568) leads immediately to the following iden-
tification of constitutive coefficients coupled to the relative acceleration

€q = _p92> US = _23p92> UF = -2 (1 - 3) ng (587)
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Simultaneously, relation (561) with (579), (580), (585) and (586) for partial stresses
P35 and relation (566) for partial stresses P{ yield

S DpS” SES—T 0 PSS o XS 5-1
Pr = OFS + BAETT — 3BT X7 @ X7, fi=TAN"® 77, (588)
0 , .
Pr = —pf? a¢F JIFST — BALTIFST — (1 —3) pd, X5 @ X5,

Hence, as mentioned in the introduction, the partial stresses do not possess a coupling
term characteristic for Biot’s model and this fallacy of the model can be removed by
additional constitutive variables.

For practical purposes it is convenient to transform equations of the model to Eulerian
coordinates. We write them in an arbitrary noninertial reference system. The set of
balance equations (532) has then the form

— mass balance for the fluid component

3

Ipy
—5 + v (p Fvi) =0, (589)

— momentum balance for the skeleton

S

o7 (aa—t%—v gradvs) = div T + p;b® + J° 'y grad T+ (v — v®) —
a F S F S F F S S

12 E(V —v7) = (1—=3) (vi =v®) -grad v’ —3 (v = v”) - gradv® |,  (590)

— momentum balance for the fluid

F
pF (aaLt + vl gradvF) = div T + pf'b? — J5 "Iy grad T—7 (VF — VS) +

+p10 {% (v =v%) = (1 —3) (v = v°) - grad v’ — 3 (v = v°) -gradvs} . (591)

— energy balance

apt

T + div (ptsv +q) —T% . grad v —T7 - grad v/’ — (592)

— (VF—VS) . {7r (VF—VS) + J My grad T—

2 %(VF —v%) = (1—3) (v = v7) -grad vl —5 (v —v¥) -gradvs} },

— porosity balance

0I5 1A, JSTIA,,

5 + div (Js_lAnVS —I—J) +

= 0. (593)
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The external forces pb?, pf'bl", called apparent body forces, contributing to momen-
tum balance equations have the following structure

pib® = p (b +1%),  pb" =

iS::é—I—QQ(VS—é)—I—(Q—Q (x —c), (594)

" =420 (v -8+ (2-07) (x—¢), 2:=00 =-0,
where pPby, pE'bl" are true (e.g. gravitational) body forces, and p7i%, pf'if’ are inertial
body forces. In order of appearance in the above relations, they consist of the inertial
force of relative translation, Coriolis force, Euler force, centrifugal force. They depend
on the matrix of angular velocity €2 of the noninertial system with respect to an inertial
one. Certainly, the inertial body forces vanish in an inertial reference system. It should
be mentioned that the partial accelerations appearing in the above partial momentum
balance equations combined with apparent body forces are objective, i.e. invariant with
respect to the Euclidean transformation.
The remaining notation used above is as follows

pr=p" 0N =l e pp =T m =T (595)
while the Cauchy stress tensors T, TF are given by the following constitutive relations

np°
OII1

oS _ o oS
TS — S—IPSFST -9 S _BS —/ (11 — BS BS
! o | B T )BT+

I111| + (596)
+B8ALL — 3pq, (VF — VS) ® (VF — VS) ., B° =F°F°T,

T = J5'P'FY = —pf1 - A1 — (1—3) pry (vVF = vT) @ (vF = v7), (597)

pF — pF2 8¢F
t apf‘ )

with the free energy given by
pt¢ = pf¢5 (T> I> II>III) + pf¢F (Tapf) — P12 (VF - VS) : (VF - VS) . (598)

The energy ¢ and the energy flux vector q are given by

e=1 _T%’ q=J'F°Q=J""1Qy (VF —VS) — J5 'K gradT, (599)

and the porosity flux has the form
J=JF T =@ (v - 7). (600)

There remains the question of practical estimation of additional parameters p{, and
3. The added mass coefficient pJ, has been extensively studied in literature concerning
Biot’s model. The parameter 3 is new. There seem to exist various possibilities for its
estimation connected to the fact that it appears in contributions which may be time
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independent. As an example let us consider a stationary isothermal process in which, in
a chosen inertial frame of reference, the skeleton does not move (i.e. v® = 0). Such a
flow of the fluid through a porous material is described by the mass balance and by the
momentum balance for the fluid. For simplicity we neglect changes of porosity. Then we

have
div (p; v") =0, (601)

[pf +2(1—3)pp) v -gradv?® = —gradp” — [7+ (1 —3) prp divv?] v7,

p" = p" (of).

The correction of the permeability coefficient 7 driven by volume changes of the fluid
divv? seems to be very small. However the correction of mass density appearing on
the left-hand side of this equation may be essential and measurable. For instance, in an
irrotational flow (rot v = 0) we have approximately

1
grad |ng (p — po) + 3 (pf +2(1=3)pp) vi - v | +7vi =0, (602)

where p = p!'/n is the pore pressure and py its constant reference value. If the pressure
increment is of the order of, say, 10 kPa the velocity of the fluid must be of the order of
1 m/s to make both contributions of the similar order. Practically measurable would be
the influence of 3 for much smaller velocities which seem to be plausible at least for rocks.

We proceed to present basic results for the model which yields couplings not appearing
in simple mixtures. As we have seen (Section 8.5), in order to obtain expected couplings
between components the thermodynamics of miscible mixtures requires a dependence on
gradients of mass densities. This indicates that such couplings are related to weak non-
local interactions which are described in the simplest case by the second gradients of
deformation!?. In the case of porous materials it is sufficient to incorporate a dependence
on the gradient of porosity. This does not mean that models with other second gradients
are not meaningful but, of course, they are much more difficult to handle. For the pur-
pose of construction of a linear model of Biot’s type it is sufficient to add the variable
N = Gradn [100], [102]. The set of unknown fields given by (531) remains the same, i.e.

V= {p" %° %" F° T,n} for (X,t)€ByxT. (603)

Also the set of balance equations (532)-(536) and the set of constitutive quantities F
(538) do not change. There is a change in the set of constitutive variables in which we
leave out the relative acceleration a, but add N. Hence, we have

c - :{F,FS,XF,An,T,G,N}, G := CradT, N :=Cradn,
F = F(@). (604)

We have to modify as well the simplifying assumptions. We replace the assumptions
5° and 6° by the following ones

12Current partial mass densities p® are described by volume changes, say for small deformations
(p5 — p&) /pg which, in turn, are given by deformation gradients. Consequently, gradients of current
mass densities describe a dependence on second gradients of deformation.
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5° The dependence on the gradient of porosity N is linear.

67 Higher order combinations of variables G, X%, A,,, N can be neglected.

The analysis of the second law of thermodynamics reveals that the thermodynamical
equilibrium is again defined by the relations

G|, =0 XF =0, Ap=0. (605)

Vector fluxes, instead of (546), and momentum sources, instead of (547), must have
the form

Q = QX' - KG+QuyN,
H = H/X"+ H;G + HyN, (606)
J = X"+ J;G+JyN,

F57p = Iy XF + 117G + [yN, (607)

where the coefficients may be functions of the reduced set of constitutive variables

C'={F°T,A,}. (608)

The variables F°, T' characterize equilibrium processes (p!’

in equilibrium is not indepen-
dent due to the vanishing relative velocity X* ) = 0). The dependence on the nonequi-

librium variable A,, must be treated separately due to its scalar character.

The rest of the analysis is similar to this presented in the previous case. We skip it
and present here only some final results for isotropic materials.

The Helmholtz free energy for this model has the following form

py = puS 4 pfyt, (609)
W = S (LILJS pF 1), o7 = oF (J5, o8 1), of = p" 75,

The partial Piola-Kirchhoff stress tensors are given by the relations

200" oyp"

Fo_ SS—T SpS-T,

Pl = P IF = Qopg = IF (610)
8¢S 8¢F

s _ s SES—T

P = pooms + Qopg EET

while fluxes and sources satisfy the following constitutive relations

1 , ,
H = T (Q — pF¢FXF) . J=0,J°XY &y = const.,

p = 7F*XY — NF5!'Gradn, n= —%. (611)
Consequently, in this model there exist equilibrium couplings of partial stresses through
volume changes of components described by J° and p!” as well as nonequilibrium cou-
plings described by the dependence on A,,. In addition, there are couplings through the
momentum source which are due to the diffusion velocity X7 as well as the gradient of
porosity Gradn.
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9.4 Linear model

We reduce the above nonlinear model to the linear poroelastic two-component model of
isothermal processes. However we skip all technical details and present only finite results.
Such a linear model is based on the following set of unknown fields

{7 0", v7 V" e% n}, (612)

where p° = p?, pl" = pI" are macroscopic current partial mass densities of the skeleton
and of the fluid, respectively, v°, v" are macroscopic velocity fields of these components,
e’ ~ % (BS — 1) is the macroscopic deformation tensor and n denotes the current porosity.
These fields must satisfy the following conditions which are the basis for the linearization

of a nonlinear thermodynamical model

o { e I

n —"ngo

1 613
e/l <1 (613)

HeSH = max{))\(l) , ))\(3))} , €:= %, (614)

where A, A2 \®) are eigenvalues of the deformation tensor e°.

Fields (612) are functions of the spatial variable x €B, and time ¢ € 7. They must
satisfy field equations which follow from partial balance equations by a linear closure.
The partial balance equations appropriate for the chosen model are as follows

’ ) A®

- mass conservation laws

op°® op"
% + pg divv® =0, % + pb divvi =0, (615)
- momentum balance equations
ov® ovF
pg% — divT® + p, p(f% — divT! — p, (616)
- balance equation of porosity

O (n —
% +divd =7, (617)

- integrability condition for the deformation tensor

oe’
% — sym grad v°. (618)

This condition is related to the existence of a displacement vector u®. In the linear model
such a vector leads to relations

ou®
v = TR e® = symgrad u®.

134



Then the relation (618) becomes the identity. If we do not introduce the displacement
vector, which is convenient in the wave analysis, then the relation (618) becomes the part
of the set of field equations.

The partial Cauchy stress tensors satisfy the following constitutive relations

T = T+ Nel+2u%e® +Qe14+8(n —np)l, e:=tre’, (619)
T = —p"1, p" =1y — (py ke + Qe) + B(n —np),
ng = no(l+de),

where np denotes values of the porosity in the thermodynamical equilibrium which cor-
responds to vanishing sources p,n. The constant tensor T3 is the initial partial stress in
the skeleton, pl — the initial partial pressure in the fluid, and these quantities as well as
the material parameters \°, 1%, k, Q, d, § are functions of an initial porosity ng. Certainly
the parameters \°, ;i correspond to classical Lamé constants while s corresponds to the
classical compressibility coefficient of an ideal fluid. The contribution with the parameter
[ is related to nonequilibrium changes of porosity and it may have an important bearing
in the theory of nonlinear waves. It can be shown that it yields small contributions to
volume changes of both components.

The prime is used in the above relations to indicate a form of constitutive relations
which follows directly by the linearization of the full nonlinear thermodynamical model.
These relations shall be modified in the sequel.

The linear constitutive relations for the flux of porosity and for the sources have the
following form

J=0,(vF —v5), p=n(v/ —v) — Ngradn, # n_T”E (620)

In the linear model the material parameters ®, 7, N, 7 are constants depending solely on
the initial porosity ng. Due to this property the contribution of the gradient of porosity
can be incorporated into the partial stresses. Namely if we define modified constitutive
relations by
T =T -N(n-np)l, T':=T"+N(mn-ny1l, (621)

then the source in the equations (616) contains solely the contribution of the diffusive
force m (vI" — v¥).

It is easy to see that the mass density p° can be eliminated from the set of fields by
integration of the mass balance equation (615);. According to (618) we have

o S _ .S
:_pga_j N (622)

0 0p°
- divv® = a0 5
o

ot ot

Simultaneously we can solve the porosity balance equation. We have

dn—ng) n—-np _ Jde—c¢)
T

(623)

Hence o o .
n=ne[l+de+—(e—¢e)——= [ (e— e),_, e */"ds]. (624)
T T Jo
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The last contribution describes memory effects which are similar to these caused by the
viscosity. In the first approximation they can be neglected in models describing acoustic
waves in soils which corresponds to the assumption 7 — oo. We shall rely on this
assumption in this Section.

Summing up the above considerations we see that the full linear thermodynamical
model without memory effects contains the following essential fields

{vo, v e% e}, (625)

which have to satisfy the field equations

S
pg% = div{)\sel—|—2,uSeS—|—Q51—|—B(n—nE)1—N(n—no)l}+
+m (VF—VS),
pOv” F
P = —grad {— (pg ke + Qe) + B(n —ng) — N (n —ng) } — (626)
—r (v =),
and
oe” s Oz . L o
i sym grad v*, E—dlvv, e=tre’, (627)
P
n = n0(1+56+—0(e—5)).
no

If we assume § = 0, N = 0, then the set of equations (626) coincides with the set
of Biot’s equations in which the coupling through the added mass was neglected. The
classical Biot’s model does not contain any counterpart of the relation (627)4 for porosity.
In soil mechanics one uses a kind of hybrid extension of Biot’s model in order to specify
n'3.

Parameters of the model: \° + %,us Kk, @, N,d, Py can be found as functions of true
compressibilities of components K, K, K; and the porosity ny by means of a generaliza-
tion of the so-called Gassmann-like relations. We shall not present them in these notes
and refer the reader to the work [103]. The remaining parameters y° and 7 as well as p;,
if we account for relative accelerations require additional experimental data.

Bassuming that the partial fluid mass density p?’, and the true fluid mass density pf'?* are given one

can calculate the porosity from the relation n = pf /p'. However such a statement is useful under the
assumption of incompressibility of the real fluid: p® = const. A similar statement can be formulated
under the incompressibility assumption of skeleton. Both of them are useless in acoustics.

136



10 Appendix: Some physical units of quantities in
continuum thermodynamics
A. Units of pressure and stresses

(p and partial pressures in mixtures, Piola-Kirchhoff P and Cauchy T;
pressure in SI: 1Pascal=1kg/s?m)

Pa:% at:fn% atm bar torr mmWs:T%%
1 1.02:107° 9.87-107% 10°° 75104 0.102
9.81-10* 1 0.968 0.981 736 10*
1.013-10° 1.033 1 1.013 760 1.033-10%
10° 1.02 0.987 1 750 1.02-10*
133 1.36-10~3 1.32:1073 1.33-1072 1 13.6

9.81 10~4 9.68-10° 9.81-10° 7.36:1072 1

B. Units of the force
(body forces pb have the SI unit: [Newton/ m3]; force in SI: 1Newton=1kg-m/s?)

N kp Mp p dyna

1 0.102 1.02-107* 102 10°
9.81 1 1073 10? 9.81-10°
9.81-103 103 1 10° 9.81-108
9.81-1072 1073 1076 1 981
10° 1.02-107% 1.02-107° 1.02-1073 1

C. Units of energy and work
(energy density pe has the SI unit: [Joule/ m3]; energy in SI: 1 Joule=1kg-m?/s?)

J kpm kWh kcal erg eV

1 0.102 2.781077  2.39-107* 107 6.24-10%8
9.81 1 2.72-107%  2.34.107% 9.81-10"  6.12-10""
3.6-10° 3.67-10° 1 860 3.6-101  2.25.10%°
4.19-103 427 1.16-107% 1 4.19-10'°  2.61-10%
1077 1.02-107%  2.78-107 % 2.39-107'' 1 6.24-10"

1.6:107Y 1.63-1072° 4.45.1072° 3.83-107% 1.6-107* 1

D. Units of power
(working of body forces pb - v, energy radiation pr, working of stresses P-%

and T - L have SI unit: [Watt/mﬂ; power in SI: 1Watt=1kg-m?/s?)

W kW = PpS wl kel
1 107° 0.102_1.36-10° 0.239 0.86
10° 1 102 1.36 239 860
9.81 9811073 1 133102 234 843
736 0.736 1 176 632
419 41910 % 0427 5.6910° 1 3.6

1.16 1.16-107% 0.119 1.581073 0.278 1
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Remark: Heat fluxes Q and q have SI unit: [Watt / mQ];
entropy has SI unit: [Joule/ m® - K}; entropy fluxes H and h have SI unit:
[Watt/ m? - K];
entropy radiation ps has the SI unit: [Watt / m® - K}
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absolute temperature, 62 continuity, 9

acceleration, 14 continuity principle, 9

added mass coefficient, 131 contravariant basis, 5

added mass effect, 125 contravariant metric tensor, 5

adiabatic exponent, 65 convexity, 72

adiabatic isolation, 59 Coriolis force, 29

Almansi-Hamel tensor, 14 Cosserat media, 22

angle between vectors, 4 covariant basis, 5

apparent body force, 29 covariant metric tensor, 4

apparent body forces, 131 cross product, 8

Avogadro number, 57 current configuration, 9

axiomatic thermodynamics, 36 cyclic processes, 36

balance eqs of extended thermodyn., 71 deformation gradient, 9

balance equation, 10, 19 densities of thermomechanics, 22

balance equation of porosity, 116 density, 18

balance equations determinant of tensor, 6
Eulerian description, 28 diathermal isolation, 59
Lagrangian description, 24 diffusion velocity, 86

barycentric velocity, 86 dimension of vector space, 3

basis, 3 dispersion relation, 73

Boltzmann constant, 66 dissipation, 39, 44

dog and flea model, 32

caloric state equation, 65 dyadic product, 6

Caratheodory principle, 60

Carnot’s cycle, 57 effective partial stress tensors, 107
Cattaneo equation, 85 eigenvector, 7

Cauchy stress tensor, 28 elastic stress, 80

Cauchy Theorem, 19 empirical temperature, 60
Cayley-Hamilton Theorem, 7 enthalpy, 64

centrifugal force, 29 entropy, 61

characteristic equation, 7 entropy flux

chemical potential, 68, 94 Eulerian description, 28
Clausius-Clapeyron equation, 64 Lagrangian description, 22
Clausius-Duhem inequality, 46 entropy principle, 36

closure, 30 entropy source, 22

components of mixture, 85 equilibrium changes of porosity, 116
composition of tensors, 6 equilibrium state, 35
concentration of the component, 67 Euclidean transformation, 14
conductivity matrices, 45 Euclidean vector space, 4
conservation law, 10, 23 Euler force, 29

constitutive relation, 63 evolution equation, 10
constitutive relations, 31 extended thermodynamics, 31, 71
constraint, 106 exterior product, 7
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fading memory, 85 kinetic temperature, 98

field equations, 30 kinetic theory, 32

field equations of extended thermodyn., 71 Kotchine condition, 24
first law of thermodynamics, 59 Kronecker delta, 5
flux, 19

Lagrange multipliers, 41
four-potential for poroelastic materials, 119 Lagrangian velocity, 111, 121
Fourier law, 39 left Cauchy-Green tensor, 14
free enthalpy, 68, 94 Legendre transformations, 63
length of vector, 4

Lie derivative, 17

line element, 8

four-potential, 72

frozen equilibria, 65
function of motion, 9

Galilean transformation, 14 linear poroelastic two-component model
Gassmann-like relations, 136 of isothermal processes, 134

Gibbs equation, 39, 62 linear transformation, 5

Gibbs free energy, 63 linear viscoelastic solid, 84

Gibbs thermodynamics, 57 Liouville equation, 34

Gibbs-Duhem relation, 70 local action, 10

local basis vector, 8

H-Theorem, 32 local rotation tensor, 13

Hadamard conditions, 25

heat conductivity, 39 main field, 73

heat exchange, 59 material objectivity, 51

heat flux material singular surface, 29
Eulerian description, 28 material time derivative, 18, 28
Lagrangian description, 22 material vector, 9, 11

Helmholtz free energy, 39, 63 material volume, 26

higher gradient model, 106 Maxwell relation, 64, 70

mechanical power, 59
memory effects, 136

micropolar media, 22
ideal walls, 30, 36 microscopic model, 97

incompressibility, 56 miscible mixtures, 85
inertial body force, 29 mol. 57

inertial body forces, 131

inertial force of relative translation, 29
inner product, 3

internal energy, 22

irreversibility, 32

I-Shih Liu Theorem, 41
ideal gas, 59

mol fraction, 67
Mooney-Rivlin material, 53
motion, 9

multiple temperatures, 85

isometry, 14 nonconvective flux, 74
isothermal compressibility modulus, 66 noninertial frame, 29
isotropic functions, 47 normal stress effect, 83
isotropic heat conductor, 44 normal vector, 12

isotropy, 46

isotropy of materials, 46 objective quantities, 15

objective relative acceleration, 122
Kac model, 34 objective time derivative, 16
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orthonormal basis, 5 semipermeable membrane, 68
simple mixture, 109, 129

parametric line, 8 simple mixture model, 123

partial balance equations, 86 simple tensor, 6
partial Cauchy stress tensor, 86 singular surface, 22
partial heat flux, 86 skeleton, 98
partial mass density, 85
partial Piola-Kirchhoff stress tensors, 112
partial pressure, 67
permeability coefficient, 107
permutation symbol, 8
Piola-Kirchhoff stress tensor, 22
Poincare’s cycle, 32
polar decomposition, 12
pore pressure, 107
poroelastic materials

extended thermodynamics, 118
porous material model, 97

source, 19
space of configurations, 9
spatial elasticity tensors, 80
specific entropy, 22
specific heat
under constant pressure, 65
under constant volume, 46, 64
spin, 16
stability condition of equilibrium, 40
stability conditions of equilibrium, 66
standard linear solid, 85
state of the system, 57
principal invariant, 7 StoBzahlansatz, 34

principal stretch, 13 stress relaxation time, 85
principle of equilibrated pressures, 100 stretch tensor, 12

principle of frame indifference, 47 stretching, 16
principle of material objectivity, 47, 52 subbody, 9
production, 19

projection of vector, 4

proportionality Theorem (I-Shih Liu), 56

summation convention, 4
supply, 19
symmetric hyperbolic system, 73

Rankine-Hugoniot conditions, 30 symumetry group of the material, 47

recurrence time, 32

regular point, 22

relative deformation gradient, 16
relative molecular mass, 57
relative velocities, 114
Representative Elementary Volume REV, 98
residual inequality, 38, 44

right Cauchy-Green tensor, 12
rigid body motion, 47

rigid heat conductor, 43
Rivlin-Ericksen fluid, 84
Rivlin-Ericksen tensors, 17

tensor of second order, 6

tensor product, 6

thermal conductivity, 85
thermal relaxation time, 85
thermal state equation, 64
thermodynamic processes, 36
thermodynamical equilibrium, 40, 46, 119
thermodynamical potential, 63
thermodynamical potentials, 39
thermodynamical process, 71
thermodynamical stability, 10
thermoelastic material, 31
thermomechanical process, 110

saturated poroelastic materials, 120 S
thermostatic mixture theory, 67
scalar product, 3

second law of thermodynamics, 10, 32, 36, tortuosity, 120, 125
71 trace of tensor, 6
transformations

seepage velocity, 125
bag Y of Newtonian continuum mechanics, 74

semimacroscopic model, 98
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translation space, 3
transpose of tensor, 6
Truesdell’s mixture theory, 86

universal gas constant, 66
urn model, 32

vector product, 8
vector space, 3
velocity, 9, 14

velocity gradient, 14
viscosity coefficient, 85
viscous fluid, 82
viscous stress, 80

Weissenberg effect, 83
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