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1 Introduction

Continuum theories of multicomponent systems can be roughly divided into three groups:

— systems without diffusion (i.e. relative motion of components); the most
prominent examples are composites and polycrystals,

— miscible mixtures in which the modelling does not require additional mi-
crostructural variables; in special cases (e.g. quasistatic processes) diffusion
processes are described in such systems by Fick’s laws,

— immiscible mixtures which do require additional microstructural variables
(porosity, degree of saturation, etc.); in special cases diffusion processes are
described in such systems by Darcy’s laws.

This classification is not sharp as, for example, in many polycrystals diffusion pro-
cesses may play an important role (e.g. by solid-solid phase transformations), suspensions
may behave almost as granular materials (immiscible mixtures) and require microstruc-
tural variables such as the size distribution of grains or they may behave as mixtures of
fluids (miscible mixtures).

Modern continuum models of mixtures of fluids have been initiated in 1957 by a
series of articles of C. Truesdell (e.g. see: [45]) who presented a systematic construction
of a continuous approach to multicomponent fluid systems. He was able to incorporate
numerous ad hoc models of fluid mixtures developed by A. Fick (1855), J. Stefan (1871), G.
Jaumann (1911) and many others. The purely mechanical model developed by Truesdell
and some others was essentially extended and corrected by I. Miiller (1968) and gave
rise to the modern thermodynamical theory of miscible mixtures. It is presented in some
details in the book of I. Miiller [34].

We present two groups of models: miscible and immiscible mixtures. In the first case
we consider the classical model proposed by C. Truesdell and extended by I. Miiller. In the
second case we present a model with the balance equation for porosity and its particular
cases for small deformations of the skeleton (Biot’s model and the simple mixture model).

It is difficult, if not impossible, to give the full list of references for continuum theories
of mixtures. Further we quote only some representative papers and, simultaneously, refer
to easily available books and monographs which contain more detailed hints on literature.
In particular, the following books are recommended:

S. L. S00; Fluid Dynamics of Multiphase Systems, Blaisdell, Waltham, 1967 (par-
ticularly classical modeling of suspensions),

A. C. ERINGEN (ed.); Continuum Physics, vol. 11I: Miztures and EM Field Theories,
Academic Press, New York, 1976 (in particular Part I: R. M. Bowen, Theory of mixtures)

C. TRUESDELL; Rational Thermodynamics, Second Edition, Springer, New York,
1984 (Lectures 5 and 6 with contributions on both miscible and immiscible mixtures),



J. BEAR; Dynamics of Fluids in Porous Media, Dover, New York, 1988.

I. MULLER; Thermodynamics, Pitman, Boston, 1985 (Chapter 6 on miscible mix-
tures).

K. R. RAajacoprAL, L. TAO; Mechanics of Mixtures, World Scientific, Singapore,
1995.

K. WILMANSKI; Thermomechanics of Continua, Springer, Berlin, 1998 (Chapter 10
on immiscible mixtures).

K. HUTTER, K. JOHNK; Continuum Methods of Physical Modeling, Springer, Berlin,
2004 (Chapter 7 on theory of mixtures).

Whenever possible we use in these notes an absolute notation for tensors. If needed
representations in Cartesian coordinates are applied. We denote vectors by small boldface
letters and tensors of the second order by the capital bold face letters, e.g.

v = e, T =1iyerRe,
V-W = V,pWg, Tv = tkﬂ)lek, T.S =tr TTS = tklskl,
ov ov ot
gradv = —kek ®e, divv :—k, grad T :—klek Re Re,, etc.
ox; oxy, 0T,

In the second part of the notes we distinguish between Lagrangian and Eulerian reference
systems. Their unit base vectors are denoted: Lagrangian base vectors Gg, K = 1,2, 3,
and Eulerian base vectors e, k = 1,2, 3.



2 Fundamentals of the theory of miscible mixtures

As indicated above the main purpose of the theory of miscible mixtures is to describe the
macroscopic behavior of mixtures of fluids (in particular — gases). Such effects as heat
conduction, diffusion, chemical reactions, osmosis, etc. should be included. We present
also separately an application of the theory of mixtures to multicomponent systems con-
taining charged particles which yields various forms of magnetohydrodynamics. While
viscous effects are often important in mixtures, they are left out of consideration here.
They may be included but yield technical problems of some extent.

2.1 Thermodynamic processes

It is convenient to describe mixtures of fluids, as we do in the fluid dynamics, in the
Eulerian reference. It means the current configuration is the reference configuration for
the motion. All fields of the model are functions of the spacial variable x €5; and the
time variable ¢ € 7. The domain of the mixture B, depends on time and in any instant of
time each point of this domain is occupied simultaneously by particles of all components
of the mixture. We distinguish the components by the index a running from 1 to A,
where A is the number of components.

In the case of thermomechanical systems considered in this Chapter the thermody-
namic process in the above system is assumed to be described by the following fields

{p*, v, T}, a=1,.. A, (1)

where p® are the current partial mass densities of components referring to the common
unit volume in the current configuration B;, v® are the velocity fields of components and T’
denotes the absolute temperature common for all components. The last quantity requires
an assumption that all components possess the same temperature. In many practical
applications this assumption is not satisfied and we demonstrate an example further
in these notes. However, the problem of thermodynamic modeling of multicomponent
systems with multiple temperatures is still not fully solved and, as we see further, we are
able to produce only partial results.

Field equations for the fields (1) follow from the partial balance equations of mass and
momentum and from the energy balance equation for the mixture. The partial balance
equations for « = 1, ..., A have the form

d

— [ prdv = [ v, 2
dt Jp.” /7,? prav, @)
d .

—_ pivedV = j{ TndS + / (p“b* + p*) dV, (3)
dt Jpy opg P

d (o' a 1., a L, o

—_ p* (6% + v - vH)dV = (T*vY — q%) - ndS+

dt Jp opp

+/ (paba v paT,a + éa) d‘/, (4)
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where P C B; is a measurable subset of the current configuration which moves with the
kinematics of the a-component and 9P;* denotes its surface with the unit outward normal
vector n. The quantities with the hat are volume densities of sources and, according to
the fundamental assumption of Truesdell’s mixture theory they must satisfy the following
conservation laws

A
d =0, Y p*=0, ) & =0. (5)
a=1

The remaining quantities T% b%, &% q%, r* denote the symmetric partial Cauchy stress
tensor in the a-component, the body force per unit mass of the a-component, the par-
tial density of the internal energy of the a-component, the partial heat flux in the a-
component, and the density of energy radiation in the a-component, respectively.

In the case of the single temperature field the partial energy balance equations are
not used and we need only the energy conservation of the mixture. This must have, of
course, the classical form

d 1 _
7 Ptp(€+§v'v)de{

(Tv—q)-nd5+/p(b~v+r)dv. (6)
oP:

Pt

We obtain indeed this relation if we add equations (4) and introduce the definitions

A A A
p=> 0" pv=>_p"v pe=> p*(e*+ju”u),
a=1 a=1 a=1

A A
T :Z (Toc _ paua®uo¢) 7 q= Z (qoc 4 poc (ga + %ua.ua) uoc _ Taua) 7
a=1 a=1
A A
pr:Zpa(Ta+ba~uo‘), u® =v® —v, Zpo‘uo‘:(). (7)
a=1 a=1

The presence of convective terms containing the diffusion velocities u® follows from the
fact that subsets P; of the current configuration B; possess the kinematics of the barycen-
tric velocity field v and it means that fluxes contain additional contributions — none of
these subsets is material with respect to any of the components.

It can be easily checked that the above definitions yield as well the classical conser-
vation of mass and momentum for the whole mixture

A

d d

— [ pdV =0, —/ pvdV:j{ TndS+/ pbdV, pb =% p**. (8)
dt Jp, dt Jp, Py Py 2

a=1

Let us remark that the presence of diffusion yields a macroscopic heat flux q even in
the case when the partial heat conduction contributions q* are absent. This property is
essential for a peculiar form of the second law of thermodynamics of mixtures which we
discuss further.



The above global balance equations yield in a standard way local laws. They have
different form in regular points in which fields are continuous and in singular points on
surfaces on which fields may suffer jumps. Namely

opv®
ot

+ div (pava RV — Ta) — paba 4 15017

% + div (pev +q) = T-grad v + pr, (9)
in regular points. The last equation, the so called balance of internal energy, follows
by elimination of the contribution of kinetic energy by means of mass and momentum
conservation laws.

In singular points the balance equations have the form of jump conditions across the
surface. We use them here only for bulk mass of the mixture and the bulk energy of the
mixture but, of course, they may be easily derived for all other equations as well. We
have for these two quantities

lo(v-n—c=0, [[.]]=()"=(.)7,
[a-n]=[T(v-e)]-n-[[e+3(v—cn) - (v-en)]]p(v.n-c), (10)

where ¢ denotes the speed of the surface and n is the unit normal vector to this surface.
As indicated the double parenthesis denotes the difference of limits on both sides of the
singular surface.

2.2 General constitutive relations for fluid mixtures

Let us begin with the specification of mass sources for chemical reactions. Components
of the mixture are then not the most fundamental ingredients of the macroscopic picture.
These are rather molecules (constituents) which satisfy laws of mass conservation. To see
this structure let us consider the simplest example of formation of water from hydrogen
H and oxygen O. These two are molecules (constituents) while the mixture consists of
the following components: H,O, Hy, Oy, OH, H,O. They are participating in chemical
reactions which can be symbolically written in the form

H,—2H =

Oy —20 =
H+0O—-0OH =
H+OH - H,O =
2Hy + Oy — 2H,O =

(11)

= R R I =

The matrix of coefficients 7/, = 1,...,6,7 = 1,...,5 in this set of relations is called the
stoichiometric matriz. Its rank determines the number of independent reactions. In our



example this rank is equal to 4. The conservation of mass for molecules (constituents) in
each reaction can be written in the form

A
Z/Y(ZMOC/’LH - Oa r= ]-a "'7R7 (]‘2)
a=1

where M, denotes the molecular weight of the component «, ppy is the mass of a hydrogen
atom and R is the number of reactions.

Further we consider only the set of independent chemical reactions and we denote
their number by v. The contribution of each reaction to the production of components
depends also on the rate of reaction which we denote by \",r = 1,...,v. Then the mass
source in partial mass balance equations can be written in the form

P =) A Mapm . (13)
r=1

It is clear that the conservation relations (12) imply (5);.

We proceed to transform the balance equations (9) into field equations for the fields
(1). We use the strategy of continuum thermodynamics and assume that the constitutive
quantities

F=A{N,T%p%¢,q}, (14)

are sufficiently smooth functions of constitutive variables. The choice of the constitutive
variables specifies the class of substances admissible in the model under construction. We
follow here the case considered by I. Miiller [34] and consider inviscid fluids. We include
among constitutive variables the gradients of partial mass densities. It has been shown by
. Miiller that this yields a desirable structure of interactions of components. We return
later to this point. The chosen set of constitutive variables is as follows

C ={p® grad p®,v*, T,grad T} . (15)
Hence the closure of the set of balance equations has the form
F=F(C). (16)

These relations must satisfy the conservation restrictions (5)s.

In order to describe viscous fluids we would have to add a dependence on gradients
of velocity to the set of constitutive variables. This can be easily done but the results are
not so transparent as in the present case.

2.3 Material objectivity

The principle of material objectivity (material frame indifference) concerns the behavior of
field equations under the so-called Euclidean transformation. This transformation follows
from the assumption that the configuration space is isometric. This means that two
arbitrary points of the material system at the instant of time ¢, say x; and x5, transform
in the new frame into x} and x3, respectively, preserving the distance, i.e. the following
condition is satisfied

|x1 — Xo| = [x] —x3].



This is indeed the case if the transformation is described by the following relation for an
arbitrary point of the configuration space

x*=0(t)x+c(t), O'=0"" (17)

Clearly, the orthogonal tensor O describes the rotation of the frame and the vector c
the translation, both dependent on time in an arbitrary manner. We assume that this
dependence is sufficiently smooth.

Scalar a, vector w, and tensor T transform in an objective manner if they satisfy the
following transformation rules

a*=a, w'=O0Ow, T'=O0TO". (18)

Obviously, neither the velocity nor the acceleration transform in an objective manner.
Differentiation of (17) with respect to time yields

. . dO dc
= O O ( O = C ——— 1
v v+ Ox + ¢, o ¢=0 (19)
* ov * * . N o
a* = E+V-gradv = 0Oa+20v + Ox + ¢.

Consequently, the momentum balance equations do not transform in an objective manner.
The transformation from an inertial to a noninertial frame yields centrifugal, Coriolis,
Euler, and translational forces known from the classical mechanics. Simultaneously, the
mass and energy balance equations transform in an objective manner (e.g. comp. [32]).

In the case of chemical reactions there appears an additional problem related to the
contribution of mass sources to the momentum balance equations. It becomes clear when
we use the chain rule of differentiation on the left hand side of (9)s and substitute mass
balance equations (9);. Then the above described structure remains unchanged if we
assume that the following vector

f)a _ ﬁava7 (20)

is objective rather than the momentum source itself. We do so in further considerations.
The principle of material objectivity (material frame indifference) requires that func-
tions

Fo={N,T%p" = p*v* e,a} = F (C), (21)
remain unchanged under an arbitrary Euclidean transformation, i.e.
Fr=F,(C). (22)

Note that the constitutive function F,(.) is the same in (21) and (22).

An immediate consequence of the above principle is the elimination of one of veloc-
ities among constitutive variables. Instead of partial velocities this set may contain only
relative velocities which are objective. These may be diffusion velocities u®, or, as they
are only A — 1 independent variables of this art, relative velocities

we = v — v, (23)

which are more convenient in the calculations.



The full representation of constitutive functions in their objective form is a rather
complicated task and we shall not do so in these notes. We limit our attention to con-
stitutive functions which are linear in grad p®, w®, gradl". In this case the most general
form of the constitutive equations compatible with the material objectivity is as follows

Y= X (T,

T — _pa (pﬂ T)
A-1
pY — pOve = Z M2? grad p? + Y " MoPw? + Mg grad T, (24)
=1 =1
A A-1
ar = Y qlgradp’ +> giw’ + qreradT,
=1 =1

er = e (0.7,

where the index I denotes the so-called intrinsic part of the quantity

A A A

a = q_Z%pa(ua_ua)ua:an+2(pa€a1_TQ)ua7 (25)
ajl pa B p a=1

e = 5—;%7u ;7

The coefficients appearing in relations (24) may be dependent on p” and T. However,
they are not independent due to the previously discussed restrictions on sources. Namely
we have

A
S M =0, B=1,..,4, (26)
a=1
A
M =0, B=1,...,A-1,
a=1
A
> My = o0
a=1

In spite of the above assumed linearity the whole model remains nonlinear due to
various nonlinear explicit contributions.

2.4 Second law of thermodynamics
2.4.1 Evaluation of the entropy inequality

The strategy of continuum thermodynamics in construction of macroscopic models relies
on the assumption that solutions of the field equations identically satisfy the second law
of thermodynamics called also the entropy principle. This law consists of four parts:

10



i/ There exist a nontrivial entropy density function n and the entropy flux h which
are both constitutive. In the case of miscible mixtures, considered in this Section, they
must have the following general form

A-1
n:n(pﬁ,T), h= Zh“gradp —l—ZhO‘W + hpgrad T, (27)
a=1 a=1

where iy, hy,, and hy may be functions of 0T,
ii/ The entropy density satisfies the balance equation whose form in regular points is

as follows

9pn
ot

where o denotes the entropy source.
iii/ The entropy source is nonnegative for all solutions of field equations, i.e. for all
thermodynamic processes. Consequently, the following inequality holds

+div (pnv +h) = (28)

0 :
Vadl thermodynamic processes% + div (PUV + h) Z 0. (29)

iv/ There exist ideal walls on which there is no entropy production and the temper-
ature is continuous across it, i.e.

[h-n]+ (gl p(v-n—c)=0, [[T]=0. (30)

I-Shih Liu (e.g. [32], [34]) has proposed a method of exploitation of the inequality
(29) which reminds the classical method of Lagrange multipliers in mechanics. Namely,
instead of this inequality restricting the solutions of field equations we consider solutions
of an extended inequality which should hold for all fields. This can be done if we consider
field equations as constraints on solutions of the entropy inequality. Such constraints can
be eliminated by multipliers and the extended form of the inequality is as follows

dpn
Vall fields o + div (pnv + h) Z A" ( +div (p Z e/NTON )

a (07 Oé
—ZA” <p +div(,0°‘va®va—To‘)—f)a)— (31)

Ope
—A® (8—'[; + div (pev + q) — T grad V) > 0.

The Lagrange multipliers A?", A*", A® are functions of constitutive variables p?, grad p°,
vP, T, gradT. After the exploitation of the above inequality these multipliers must be
eliminated as auxiliary quantities.

Insertion of constitutive relations into the inequality (31) leads to an inequality which
is explicitly linear in the derivatives

B

oT 0 ovP
{875 ,grad ® grad T, %,grad@gradp e —, gradv } (32)

11



Since the inequality (31) must hold for arbitrary fields these derivatives can be chosen ar-
bitrarily. Consequently, the inequality can be violated if these contributions do not vanish
identically. This yields a series of identities which, on the one hand side, determine mul-
tipliers and, on the other hand, restrict constitutive relations. In addition, there remains
a nonlinear part of the inequality, the so-called residual inequality which determines the
dissipation density of processes.

We quote only one of the consequences of these identities

A A
AN == ST A o (- Mgy, (33)
a=1 a=1
where
3 s 1 5 o
A=A —f(vﬁ-uﬂ—%uﬂ-uﬂ):Af (p™,T). (34)

For further details we refer the reader to the following Appendix and to the book of
Ingo Miiller [34].

2.4.2 Appendix: identities following from the entropy inequality

on 0
or ~“or ="
oh oq
T _ Al —grad T
Og Og 0, g=gradT,
on Oe I, s 1 8
— L AN (=A%) — A" — VP LAY 0,
dp° dp? p( ) p p
oh e oq
0 grad pb 0 grad pf
on .0 p’ s B
ws ~ Nows N =0 A=At
_ EA: On a5 ) ﬁAv“ -0
et ow? ow? p -

apa apa pa awa awa p 2

a = 1,..,A-1
Op 0N N L (O Ba) Lial a1
opA opA et ppA \ OwP ow? ) 2 -

12



Residual inequality
A

oh oq on Oe

—— A2 — e\ [ A
; Ké‘pﬁ 9p” ) ’ (apﬁ 9p” ) !

Ao 1
Y AT p AT - grad o't
a=1 apﬁ p

oh 0q = . Op® - -
— — AN — — AV ZE . AP A Y > 0.

2.4.3 Results for a single fluid

For a single fluid the results follow from the above considerations by setting A = 1. We
obtain

A = 0,
e p
dn = A <d€—ﬁdp),
h = Aq, (35)
op q-grad p + T q-gradT > 0.

We use now the part iv/ of the second law of thermodynamics. Let us consider an
impermeable ideal wall which separates two different single fluids I and II. Such a wall
moves with the speed ¢ = v - n. The jump condition (30) yields then

[h]] ' n=0 and [[T]] =0. (36)
Bearing (10) and (35)3 in mind, we obtain
A5 (pr, T) = Ajy (prr, T) - (37)

This relation must hold for an arbitrary independent choice of p; and p;;. Hence it can
be satisfied only if it is independent of mass densities at all. We conclude

AL (T) = A (T). (38)

Consequently, the function A® (T) is the same for all ideal fluids and, for this reason, we
call it universal.

In order to determine this function it is sufficient to inspect (35)9 for the case of ideal
gases. Then it is identical with 1/7". Hence it follows in general

1
A= —. 39
- (39)
Relations (35) become
1 P 1
dn = T de — Edp , h =74 @ grad T < 0. (40)

These are the results identical with those of the classical thermodynamics. The first
relation is called the Gibbs equation.

13



2.4.4 Ideal walls in mixture

If we consider an impermeable wall separating a mixture I from a single fluid II and
account for the jump conditions we obtain immediately

A (03.7) = 7. (1)
Hence the multiplier A® remains universal also for mixtures.

One cannot argue in the same way in a general model of mixtures in which each
component possesses its own temperature. The multipliers of the partial energy balance
equations are not in general universal functions of the absolute temperature. This means
as well that temperature cannot be measured on the surface of contact between two
different systems because such a surface, even if it is an ideal wall, does not yield the
continuity of temperatures. Consequently, we cannot construct thermometers.

Let us now consider a semipermeable wall separating two mixtures I and II. The wall
is assumed to be permeable for a single chosen component v. On such a wall

(a7

07
v® - n=c for a#~vy, v=cnt+— (V'

—cn). (42)

The jump of internal energy (10)s reads

) n— | |22 = e = dv-an) - (v-en)| | (v n=0) 0.

or, bearing the separation (25) and the relation

A
T--Y (L4 s ),

a=1

in mind, we obtain

[ar

Zp +er+ 5 (v—cn)- (V—cn)” p(v-n—c)=0. (43)

Simultaneously, the jump of the entropy is of the following form

[(h]] - n+[[n]] p (v - n—c) = 0. (44)

These two relations can be now substituted in one of the identities following from the
evaluation of the entropy inequality. The result is

[ er —Tn+ 3 (v—cn) - (v—cn) Zp —TZ <67’3 ) A"B] = 0. (45)
Bearing (33) in mind, this relation can be transformed as follows

[n]] =0, (46)
where

W7 = i+ (v—en) - (v—en), i} = ~TAF, (47)

14



This quantity continuous across ideal semipermeable walls is called the chemical potential
of the component v. This can be determined experimentally. Namely according to the
relation (33) we have

A A

S pug=pler—Tn)+> p° (48)

a=1 a=1
and, for the single fluid,

#I=€—T77+I—;, (49)

which is, of course, the free enthalpy, and, hence, a measurable quantity. We can now argue
in the same way as we did for the temperature. The contact between the mixture and
the fluid identical with the y-component of the mixture through the semipermeable wall
for this component yields the measurement of the chemical potential of this component.

The remaining results of the exploitation of the second law of thermodynamics can
now be written in the following compact form

. 1
AV @
T

d(pn) = f< per) Zu‘i‘@)

pler—Tn) = Z (50)

1 o, 0L O
h = T<q—;p uIU>-

Equation (50)y is the Gibbs equation for the mixtures. We investigate further its
consequences. Equation (50)s is called the Gibbs-Duhem equation. Finally, the relation
(50)4 between the entropy flux h and the heat flux q demonstrates the fundamental
difference between the thermodynamics of single component media for which h = q/T
and the multicomponent media. The presence of the additional term in the above relation
proves that we cannot rely in thermodynamics of mixtures on the classical Clausius-
Duhem inequality as the form of the second law of thermodynamics. This is one of the
main observations made by Ingo Miiller in the construction of thermodynamic mixture
theories.

2.5 Interactions in thermomechanical mixtures, simple mixtures

The above presented Gibbs equation yields immediately the following relations

Oper—T Op(er—T
o_ Op(er—Thn) o = p(er 77)7

= 51
as well as the integrability conditions
Oper _ 00 wf/T)  Opg _ Opy (52)
op> or ' 9pf  9p>’
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Hence the derivatives of the Helmholtz free energy density p (e; — T'n) specify constitutive
relations for chemical potentials and for the entropy. In addition, integrability relations
demonstrate couplings between components: the chemical potential of component o de-
pends on all other mass densities.

There are some additional restrictions due to the fact that the multiplier A® is de-
pendent only on the temperature. For this reason the residual inequality contains a
contribution linear in grad p® which must vanish according to the same argument which
we made before. This yields the following identity

ON] oo 4 ON N A W
Z g Ut G ered T — A Z(Mpv—a—m)u =0. (53)

a=1
Consequently, we obtain

Mg = W 0

P
Qp - 07 8p,y p 8p,y .

(54)

This yields the following form of the energy flux and the sources in momentum equations

A-1
qr =qrgrad T + Z gyw’
p=1
a A a — af ﬁ aalu’l
m® — pv* MTgradT+ZM +Z 8,05 —p 957 grad p°. (55)

p=1

We see that the only place where the gradient of partial mass densities appears in the
model is the source of momentum. However even this weak form of the influence has an
important bearing on interactions in the mixture. Namely, if we assume that the gradient
of mass densities does not appear at all in the model we obtain from (55)

1 0p* _ Opg
. o6
p20p8  9pP (56)
This relation yields the following integrability condition
L av@ = _Léaﬁ%_
pa2 apﬂ pa2 ap'y
Hence it follows
0
a]p?ﬁ =0 when «o#0. (57)

This means that the partial pressure p* depends in this case on its mass density p* but
not on the mass densities of other components. We say then that the mixture is simple.
Molecules in such mixtures do not feel forces of interactions created in the material due
to heterogeneity. This observation made by Ingo Miiller in 1968 (e.g [34]) has solved one
of the fundamental problems of the classical theory of mixtures of fluids. We see further
that a similar problem arises for immiscible mixtures.
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Obviously the relation (56) yields for simple mixtures u¢ = u$ (p*, 7). Hence
p(er —Tn)

Op~0pb
Consequently the free energy is the sum of functions which depend on only one mass

density and temperature. The entropy density possesses the same property and so does
the internal energy. Therefore we can write

=0 for a#p. (58)

A A
per =Y _pe (p"T), pn=>_pn*(p*,T). (59)
a=1 a=1

This decomposition shows that there is no energy of interaction between components in
simple mixtures. It yields as well the following relation for chemical potentials

p

o’

(67

py =e* —=Tn"+ (60)

which means that in simple mixtures the chemical potential and the partial free enthalpy
are identical.

We proceed to investigate the residual inequality which remains after the analysis
presented above. It has the form

Do gradT \ ([ -4 AP gradT \
=\ Twe ax _dyee )\ T ws

v A—1
7 ( (1 — pf + 2w w?) VZMaMHAT> >0, (61)

where

A-1 o
(p()‘é@7 - M) } . (62)
. p

The function D is called the dissipation density and it consists of four contributions:
- chemical reactions which are primarily characterized by the difference of
chemical potentials p$ — u,

- heat conduction which contributes with the square of the temperature gra-
dient grad T,

- diffusion which contributes with the square of the relative velocity w?,
- thermal diffusion which contributes with the product of the temperature

gradient and relative velocity.

The vanishing dissipation defines the thermodynamic equilibrium. As this state cor-
responds to the minimum of dissipation there are additional conditions — thermodynamic
stability conditions of equilibrium. We shall not present them in these notes.
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3 Mixture models of charged particles, plasmas (mag-
netohydrodynamics — MHD)

3.1 Preliminaries

The continuous models of mixtures can be also constructed for systems consisting of
charged particles. We present here only a simple version of such a model in which these
particles do not possess any structure. With an additional condition of the so-called
electric neutrality this model describes gaseous plasma in some ranges of parameters
(e.g. [37], [29], [26]). In Fig. 1 we show roughly different forms of plasma for various
temperatures and electron densities. It is seen that the mixture model leading to the
so-called magnetohydrodynamics (MHD) is appropriate only in a rather limited region of
these parameters. Thermodynamics of single component continuum in electromagnetic
fields is described in details in the book of I. Miiller [34] (see also: [33]).
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Figure 1: Different properties of plasma appearing in nature
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3.2 Fundamental equations for mixtures in electromagnetic field

The aim of the continuum mixture theory in electromagnetic field is to determine the

following fields

n® — particle density of type o whose molecular mass is equal to m®,
v® — velocity field of particles of component «,

T — temperature field of the component «,

E — electric field,

H - magnetic field.

All these fields are functions of the point x and time ¢.

Field equations are constructed on the basis of balance equations which in the present

case have the following global form

d

— mano‘dv—/ pdv, (63)
dt Jpp Py

d

— [ menevedv = f TndS + / e“n® (E+v® x B)dV+ (64)
dt Jpa P P

+ [ b rptyav
Py

d

— mn® (e* + 4v* - v¥) dV = j{ (Tv* —q%) - ndS+

dt Jpg opp

+/ e“n® (E+ v* x B) - v¥dV + / (P“DY - v* + pr® + %) dV, (65)
Py P

t t

where the notation is as before and, additionally, e* denotes the electric charge per particle
of type a.

In comparison with relations (2), (3), and (4) there is an additional contribution of

the electromotive force E + v x B.

As before we can replace the above equations by their local counterpart in regular

points. They have the form

mo‘w + m®div (n®v?®) = p°,

A,
Lonov

ot

m +div (m*n®*v* @ v& — T%) = e*n® (E + v* x B) + p*b® + p,

mo‘% (n%e® + tnv* - v®) + div (m*n® (* 4 $v* - v*) vo+q*—Tv*) = (66)

=e*n*v® - E + m*n®*r®* + m*n*b* - v + £°.
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The sources must fulfil the conservations laws
A

A A
d =0, > p*=0, Y =0 (67)
a=1 a=1

a=1

In addition to these thermomechanical balance laws the electromagnetic field must
satisfy the Maxwell-Lorentz equations

D
88—15 +J =rotH, (Ampere-Oersted)
B
86—15 = —rotE, (Faraday)
divB =0, (Gauss) (68)

divD =e, (Gauss)

where (Lorentz aether relations)

A A
D=¢E, B=pH, e= Zno‘eo‘, J= Znaeo‘vo‘. (69)
a=1 a=1
Constants in MKSA (Giorgi) system of units (meter, kg, sec, amper) have the values
A?st kg m
_ ~12 _ -7
go = 8.854x 10 o po = 4w x 10 22 (70)

1
coflo = 5, = 2.99796 x 10°.
C S

This form of Maxwell equations indicates that we neglect any possible structure of
molecules and consider them as point charges in vacuum. This assumption, typical for
theoretical modeling of gaseous plasmas, is well-supported by experimental evidence in
many cases of practical importance — particularly for high temperature plasma. It may
not be, however, appropriate for such systems as, for instance, electrolytes or cold metallic
vapors where electric polarization of molecules cannot be neglected. An example of this
art is the MHD-generator as a pump of liquid metals.

3.3 Bulk equations

We proceed to investigate the bulk equations for the above system. Before we do so let
us derive some relations following directly from Maxwell-Lorentz equations.
Taking the divergence of equation (68); and substituting (68), we obtain immediately

% +divJ =0. (71)

Hence we obtain the equation of conservation of charge and J is its total flux.
On the other hand, taking the vector product of (68); with B, we get

E 1 1
508— xB+JxB=—rotBxB=—|[div(E®E)—1grad(B-B)].
ot Mo Mo
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Simultaneously

oE 0 0B
EOEXB = E(DXB)_SOEXE:
= %(D><B)—50[div(E@E)—%grad(B~B)],

where (68)3 and (68), have been used. Consequently, the combination of these two results
yields
oD x B
¢E +J x B:—a—:eriv (BeH+D®E)—1(B-H+D E)1]. (72)
This relation describes the Lorentz force appearing on the left-hand side in terms conve-
nient for conservation laws
The second relation follows when we take the scalar product of (68); with E. We get

E-J = iE-rotB:
Ho
O(E-E 1 . 1
= —80%%+%d1V(BXE)+%BI‘OtE
J(E-E) 1 . 1,0(B-B)
= —gil 4 — BxE)- —i-— "/
€05 By +/L0 le( X ) /LOQ By
Hence
E-J=-1 <a(]gt'E)+a(Eé;H))—div(ExH). (73)

This is the expression for the Joule heating appearing on the left-hand side convenient
for conservation laws.

We are now in the position to formulate the bulk equations for the system. These
equations are useful in, at least, two cases. First of all, due to the complexity of the
multicomponent system it is very often the case that a one-component model is used. This
is the classical magnetohydrodynamics (MHD) for which the multicomponent background
is needed only to give the physical inside into different contributions. This classical MHD is
frequently applied in the description of wave propagation and stability analysis of plasmas.
On the other hand, bulk equations may be used instead of one of the partial equations.
We shall do so for the two-component plasma (e.g. for the fully ionized plasmas).

Addition of partial balance equations leads similarly to the mixtures of fluids consid-
ered earlier to the following equations

dp . .
T + div (pv) = 0,

ag;tv+div(,0v®v—T)—eE+J><B—i—,0b, (74)

%(p5+%pv-v)—i—div[(pe—i-%pv-v)v—i-q—Tv] =E-J+pr+pb-v,
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where

A A
p= E mn%, pv = E menve,
a=1 a=1

A A
T = Z (T* —m*n“u*®@u®), u*=v*—v, pb= Zmanaba,

a=1 a=1

A
pe = Zmo‘na (e* + tu*-u®), (75)
a=1
A
q = Z [qa + mon® (ga + %ua . ua) u® — Taua} 7
a=1

A
pr = Zmo‘na (r* +b*-u?).
a=1

These relations must be combined with the contributions of the electromagnetic field.
Bearing the relations (72), (73) in mind we obtain the following final form of the bulk
conservation laws

0
28+ div (pv) =0,

ot

0

E(pv+D><B)+
+div(pv@v-T-(B@H+D®E)+;(B-H+D-E)1) = pb, (76)
0

a(p5+%pv-v+%(D-E+B-H))+

+div[(p5+%pv~v)v+q—Tv+ExH} =pr+pb-v.

In contrast to relations (74) these equations have the divergent form required from true
conservation laws. As we see the full momentum density of the mixture is given by
pv + D x B and the full energy density by pe + 3pv-v+3 (D-E+ B-H). The corre-
sponding corrections of the momentum flux

T =BoH+D®E)-1(B-H+D: E)1, (77)
is called the Mazwell stress tensor, while the additional flux of energy
q” =E x H, (78)

is called the Pointing vector.
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Let us now return to the partial mass balance equation. If we multiply this equation
by e* and then perform the summation over all components, we arrive at

86 +divy = Z (79)

This equation coincides with the conservation of charge (71) if the right-hand side vanishes

Yy Sp=o. (80)

This constraint arises due to the peculiar structure of the mixture which consists of the
charged particles.

By means of the partial momentum balance equations we can also derive the equation
for the current J. Multiplying equations (66)2 by e* and summing up, we get

8.] . . ea e « L «
E+dlv(J®v+v®J)—d1v(ev®v+z%(T — n*m*u ®u)>—

—ErvxB)y EI g, Z () nt +Z b3 e s)

a=1 a=1

This is the most general form of Ohm’s law which can be derived in the framework of
multicomponent MHD model. We return to simplified forms of this equation in the sequel.

3.4 Constitutive relations

In order to get field equations for the fields quoted at the beginning of this Section we
have to construct constitutive relations for the following quantities

f: {ﬁa’Ta7 ﬁa7€a’qa’éa}' (82)

We shall do so further for a particular case of a two-component system. Little has been
done as yet on the basis of the modern thermodynamic approach to the general consti-
tutive problems and such systems as electrolytes, biological fluids were not sufficiently
investigated. We make here only a few general remarks on the problem of material ob-
jectivity and skip entirely the problem of thermodynamic admissibility.

The main problem in the question of objectivity is the lack of invariance of Maxwell-
Lorentz equations even with respect to the Galilean (i.e. time-independent) transforma-
tion. This feature of electrodynamics led to the construction of special theory of relativity.
It has been shown that these relations are invariant with respect to the change of the so-
called Lorentz frames in the space-time. This property indicates rather complicated rules
of transformation for fields E, D, H and B when written in the classical way. However, if
we construct the four- dimensional objects

0 —FE; —FEy —FE5 0 D, D, Ds

FE 0 B —-B -D 0 Hs; —H.

AB\ __ 1 3 2 AB\ __ 1 3 2
(90 ) - E2 —Bg 0 Bl ) (77 ) - —D2 —H3 0 Hl s (83)

Es By, —-B;y 0 -Ds Hy, —-Hy 0
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then it can be shown that ¢ and n are four-tensors. We shall not go into that problem
and construct the transformation rules in the classical way.

The starting point for these considerations are assumptions that the electromotive
force

E=E+v x B, (84)
and the antisymmetric object ®
B; = €ijk Pk, (85)

are, respectively, a vector and a tensor of the second rank. These assumptions indicate
that the Euclidean transformation provides

E*=0&, & =007 (86)

Bearing the above remarks in mind, we can write the constitutive variables, for instance,
in the following form

C= {no‘, T E,®,D% grad T, v* — VA} , D% =symgrad v®. (87)

which describe the compressibility, thermal expansion,electro-magnetic resistivity, viscos-
ity, thermal conductivity, and diffusion, respectively.
It seems that such a general case

F=F(), (88)

has never been discussed.

Finally, let us make a remark concerning the structure of source terms. As we know
from the thermodynamic theory of fluid mixtures one cannot expect too much from the
thermodynamic analysis which may specify the sign but not the detailed structure of these
terms. In models of plasma they are usually suggested by some microscopic analysis. In
the case of MHD models, one commonly assumes the following form of p* and £¢ if the
mass sources are absent

A B8

Yo o aE m (67 (67 (67 (67
b _nmﬁlm”(v -V, v,
- mﬂ
= —nm® Y O3k (T —T7 89
€ n-m et (ma+mf3)21/ ( )’ ( )

where 1% is the collision frequency of o and 3 - particles and k is the Boltzmann con-
stant. Clearly, it is a very far fetching assumption which ignores all cross effects and
nonlinearities. However, it indicates that the momentum source is primarily responsible
for the relaxation due to diffusion and the energy source is primarily responsible for the
thermal relaxation.
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3.5 Two-component model

The simplest mixture of charged particles appears in the case of the fully ionized hydrogen.
The mixture contains only electrons and ions of hydrogen. This is a rather hypothetical
system because in almost all plasmas which we face there are at least also some neutral
particles. However, in order to see some important features of such a multicomponent
system we consider now this ideal situation with an additional assumption on the electric
neutrality n® = n® = n. Simultaneously

A e ~€e

/36 = /31 = 07 p = _152 = 137 € = _él = é? (90)

where, of course, indices e and i denote electrons and ions, respectively.
Fields of the model are as follows

{n,v¢,v',T°,T",E,H}. (91)
It is convenient to make the following transformation of velocity fields
(ve,v') = (v,J) (92)
where the bulk quantities are defined as follows
p = mn+mn~~mhn,
pv = m'nv¢+mnv — v=v'+ %jve, (93)
J = —enve+envt — LJ =v' — v
en
Hence
AT S (e o) o)
The set of governing equations has now the following form
n+ndivv=0, divJ=0, n= % + v- grad n,

)
pv =divT + I x B+ pb, v =20 + (v-grad) v,

ot
1 e

8—J+div <J<§§>v+v®J——J<§§>J+i (TG—QT’)) = (95)
ot en me mt
— e S 3xB-Z (b b)) - —p, E=E+vxB,

me me me me

R 1 OB

i J="—r10tB, — = —10tE
g T TN v

and the following partial energy balance equations
1 1
m°n (z—fe — —J-grad z—:e) = T gradv — T°-grad —J—
en en

: e e e N ~ 1
—divq®+mnr® +€ - v -p+—J-p,
en
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. . 1 .me . ) 1 €
m'n <5’1 + —J-grad 512) = T'-gradv + T" - grad —J (96)
en mt en mt

me

. 1
—divq“+m'nr' —é+v-p+—J - p—.
en mt
Certainly, we still need constitutive relations in order to close the system. In most
cases of practical importance, it is assumed that they have the form of constitutive laws
for an ideal gas, e.g.

T = _pe]-a TZ = _plla (97)
3 o .
mne® = —=p° m'ne' = =p,
o o
Under these assumptions some estimates of relaxation times, stability properties, etc.
have been solved. For instance, the typical relaxation time for thermal processes (equal
temperatures of components!) have been estimated for hydrogen to be of the order of
107 3s.
For further details we refer the reader to the literature on plasma physics.
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4 Porous materials as mixtures — phenomenology

4.1 Diffusion and thermodiffusion in systems with a solid phase

Theories of porous and granular materials can be constructed on different levels of ob-
servation. Microscopic models rely on Newton equations of motion of material points or
molecules and use methods of molecular dynamics. Such models can be transferred on
a semimacroscopic level by multiscaling and averaging procedures. Finally, on a macro-
scopic level continuous field models are constructed. These may either follow from semi-
macroscopic models by homogenizing, averaging over Representative Elementary Vol-
umes (REV), construction of moments of kinetic distribution functions or they may be
constructed by means of a phenomenological macroscopic approach. In these notes we
present solely the latter type of models with a marginal reference to averaging procedures.

The construction of macroscopic continuous models of systems with a solid component
in its most sophisticated form stems from models of multicomponent systems. Differences
are primarily connected with an art of interactions within the solid component. Models
must be clearly different in the cases of suspensions, of granular materials or of porous
materials. In the first case solid particles interact with each other either through the fluid
or through collisions and there is no permanent contact between them. In the second case
a granular solid component may behave as a solid which cannot carry a tensile loading
(unilateral constraint on constitutive relations) or it may fluidize and then behave as a
suspension. Finally a porous material behaves in average as a usual solid and it forms a
deformable carrier for fluid components. We limit our attention in these notes to the last
case.

The most important feature of porous materials is the appearance of different kine-
matics for the solid component - the skeleton, and fluid components in channels of the
skeleton. This yields diffusion processes characterized by relative velocities of components.
In most cases of a practical bearing the dependence on the relative velocity is reduced
to a linear contribution to momentum balance equations (momentum sources) or even
to a simpler form called the Darcy law. In these notes we present solely some elements
of a more general approach which leads to a set of hyperbolic field equations reminding
the hierarchy appearing in the extended thermodynamics [60], [63]. Some details can be
found in references quoted in the sequel.

The problem of thermodiffusion within such models is still very much open. This
is related to difficulties with an appropriate definition of the temperature on the macro-
scopic level of description. The most important property of the classical thermodynamical
temperature, its continuity on ideal thermal walls and, consequently, its experimental
measurability, is not fulfilled in porous materials ([52], p. 76). In addition such pro-
cesses as phase transitions or chemical reactions in porous materials are characterized
by real thermodynamical temperatures (e.g. melting and freezing points, evaporation,
etc.) of components on a semimacroscopic level of description. It means that even if we
have introduced a macroscopic notion of temperature we would have to know a rule of
transformation of this quantity to the semimacroscopic level. This is mathematically an
ill-posed problem. Even though one can formally work with notions such as partial heat
fluxes, specific heats etc. their operational meaning is not clarified yet. This seems to be
one of the most important open issues of modelling porous and granular materials.
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In addition we have to deal frequently with the problem of different temperatures
for different components. In contrast to gases a local thermodynamical equilibrium is
reached in porous and granular materials after macroscopically long relaxation times.
For instance a hot water flowing through a cold porous material does not reach locally
a common temperature with the skeleton within seconds or minutes. Consequently we
should construct thermodynamical models with different temperatures of components.
Such a construction is missing even in the case of fluid mixtures. One of the reasons is
again the problem of measurability.

Let us mention in passing that in theories of granular materials stemming from a
kinetic equation it is common to work with a kinetic temperature rather than a thermo-
dynamical temperature. It is defined in a way similar to this of the kinetic theory of gases
as a mean kinetic energy of granulae. There are numerous difficulties connected with
such a notion. For example a natural equilibrium state of a granular material in which
particles do not move would have a temperature equal to zero. Consequently deviations
from the equilibrium state which are used in the construction of macroscopic moment
equations of the kinetic theory would have to be constructed by means of a trivial dis-
tribution function. Certainly this cannot give any reasonable physical results. For this
reason moment equations are constructed by a reference to a Maxwell-like distribution
describing processes of simple shearing flows rather than real equilibrium states. In con-
trast to - say - Grad 13 moment method of rarified gases such procedures are not justified
in any way. Moreover the questions of measurability of kinetic temperature, a relation to
the thermodynamical temperature etc. are not even asked as yet.

4.2 Mass exchange, chemical reactions, adsorption

Within multicomponent continuous models an exchange of mass is described by mass
sources in partial mass balance equations. However these contributions must contain
additional microstructural variables. For instance in the case of chemical reactions this is
the vector of extent of chemical reaction (e.g. [34], [45]). This requires an extension of the
set of field equations. In many cases additional equations for microstructural variables
have the form of evolution equations. Then there is no need to introduce additional
boundary conditions. Such microstructural variables cannot be controlled, they develop
spontaneously from initial data. On the other hand the latter can be usually easily
formulated because many microstructural variables are defined in such a way that they
vanish in thermodynamical equilibria.

Further in these notes we present in some details a model of processes of exchange of
mass called adsorption. These processes appear in cases of components which, in contrast
to chemical bindings, form weak van der Waals bindings solely with the skeleton. Such are,
for example, processes of transport of many pollutants in soils. According to the simplest
model of these processes, developed by Langmuir (see: [62], [1], [2], [3] for references)
they are described by an additional field of the so-called number of bare sites. In the
case of materials with very small diameters of channels adsorption processes possess a
hysteresis loop in the relation between the partial pressure of adsorbate in the fluid phase
and an amount of mass adsorbed by the skeleton and this plays a very important role in
controlling technological processes in such materials. Such loops are caused by capillary
effects. For this reason they do not appear in materials with moderate and large channels
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which is characteristic for usual soils.

4.3 Dynamics; additional modes of bulk and surface waves

As already mentioned above multicomponent models of porous materials contain more
than one velocity field. This yields field equations following from partial momentum
balance equations with a corresponding number of partial accelerations. Consequently
one expects that in such models additional modes of weak discontinuity waves have to
appear. This is indeed the case. One of these modes was predicted by M. A. Biot in
1941 (see the collection of Biot’s papers on porous materials [43]). Due to the tradition
stemming from geophysics this mode is called P2 compressional (Biot’s) wave as the usual
longitudinal wave registered in seismograms was called P1. Existence of this mode was
confirmed in numerous experiments. It has been found out that it is the slowest of three
modes P1, S (transversal wave) and P2. It is also very strongly attenuated.

As consequence of existence of additional modes there exist as well additional modes
of surface waves. Apart from the classical Rayleigh wave there exist the so-called Stoneley
waves, various leaky waves and, in general, a number of possible modes of surface waves
depends on properties of neighboring systems, i.e. on the structure of boundary condi-
tions. We discuss this problem further in these notes. Let us mention that surface waves
are much weaker attenuated as bulk waves and for this reason they are easier attainable
in measurements. In recent years one can observe a vehement progress in these measuring
techniques (see [31] for some recent reviews and references).

4.4 Coupled problems (combustion, explosions)

Couplings of dynamical properties of porous and granular materials with mass exchange
between components play an important role in various combustion and explosion prob-
lems. These are connected with the propagation of strong discontinuities such as shock
waves and combustion fronts in combustion of solid fuels or deformations of soils due
to impacts of meteorites. Models for such processes are still rather weakly developed.
Most important contributions are based on the model proposed by M. A. Goodman and
C. Cowin [23] (see also [38]) which refers to some additional microstructural properties
called the principle of equilibrated pressures. The model leads to a quasilinear hyperbolic
set of equations which admits the existence of shock waves. However, apart from some
rather simple properties of propagation conditions results are rather scarce.

Some elementary properties of one-dimensional Rankine-Hugoniot conditions have
been also investigated within the frame of the model with the porosity balance equation.
However a comprehensive theory of shock waves is still missing and one of the reasons is
lack of a selection (entropy) criterion.

4.5 Instabilities (e.g. eruptions during earthquakes)

Many processes in porous and granular materials are connected with the development
of instabilities. They lead to fluidization of saturated sands, to the creation of patterns
in porous materials and to some instabilities, such as Saffmann-Taylor, in flows of fluid
components. As usual they are connected with nonlinearities appearing in the model.
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One of the most spectacular phenomena accompanying earthquakes is the fountain-
like explosion of water from the sand. It has been found that prior to this phenomenon
the character of permeability of the soil changes in an unstable manner. In the first stage
the homogeneity of the system breaks down and a pattern of chimney-like channels with
a very high permeability is formed. In the second stage one of these channels becomes
dominant and this leads to an explosion-like eruption of water from the ground. This
behavior seems to be connected with a nonlinear coupling of the diffusion velocity with
the gradient of porosity.

Another class of instabilities appears in the model with the balance equation of
porosity. These are connected with the coupling between dynamical changes of porosity
and partial stresses in components. Let us mention one of those instabilities. In a case
of a Riemann problem the system develops soliton-like waves of porosity [39]. These are
connected with the loss of symmetry of the front of propagation if the two-dimensional
front is concave. Most likely in the vicinity of the symmetry axis the system develops a
mushy region.

4.6 Subjects considered in these notes

Further we present a series of models of porous materials and we concentrate on their
formal structure rather than on practical applications.

We begin with the presentation of some aspects of models in which changes of porosity,
the microstructural variable characteristic for porous materials, are described by partial
mass balance equations. This is possible under the assumption that real components are
incompressible (see: [61], [51] for further details).

The next model considered contains all fundamental fields characteristic for porous
materials and changes of porosity are described by its own balance equation. Such an
equation can be formulated in different forms. We concentrate in this notes on a single
choice of the equation of the first order [53], [54], [55], [57] and do not discuss other
possibilities. The purpose of this model is primarily to show that, at least in some cases,
the thermodynamic construction of models of porous materials can be done by means of
methods developed within the so-called rational extended thermodynamics [35].

The subsequent model is constructed on the basis of the classical thermodynamic
approach and demonstrates that the dependence on the gradient of porosity as the con-
stitutive variable yields models with couplings appearing, for instance, in the linear model
constructed by M. Biot and considered to be the reference for models of porous materials.
If we neglect this dependence we obtain a model which corresponds to the model of sim-
ple mixtures of fluids discussed earlier. In this Section the model is based on constitutive
assumptions for changes of porosity [66] but the conclusions can be easily extended on a
model with the balance equation of porosity which we do not show in these notes (e.g.
compare: [69]).

As next we present the model in which we include two effects: dependence on the
temperature gradient and on the relative acceleration of components (see: [72] for details).
The latter is sometimes contributed to the influence of the so-called tortuosity on the
behavior of porous materials (e.g. [10], [16], [27]). Tortuosity is the microstructural
property describing the relation of the real length of streamlines of fluid components to
the macroscopic distance or, if the channels in the skeleton are well-defined geometrical
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objects, the ratio of the length of such channels to the macroscopic length. Consequently,
the variable describing this effect is a scalar bigger than one. It is rather doubtful if
indeed the relative acceleration as a constitutive variable corresponds to the tortuosity
but the dependence seems to indicate the existence of some other nonlinear effects which
are related to the added mass effect.

All models mentioned above are nonlinear. In cases of large deformations of the
skeleton we use the Lagrangian description [52].

In the subsequent Section we discuss a certain linear extension of Biot’s model and
Biot’s model itself. The main purpose of this discussion is to show the determination of
some effective (macroscopic) material parameters by means of properties of real compo-
nents. This yields the so-called Gassmann-type relations [70].

Finally we show some properties of acoustic waves in linear poroelastic materials.
This example of application of the linear models has an important practical bearing in
nondestructive testing and in seismology [31].
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5 Some models of porous materials with the incom-
pressibility assumption

Multicomponent modeling of porous materials is based on the assumption that addition-
ally to usual fields of theories of fluid mixtures there exists a microstructure which is
reflected in the simplest case by a single additional field of porosity and by solid-like
properties of one of the components. In some models this microstructural extension is
even broader and corresponding models contain, for instance, the so-called volume frac-
tions of all components, double porosity, tortuosity as a simplest measure of complexity
of geometrical structure of channels, couple stresses etc.

We present in this Section an example of such a model for a two-component system
with an assumption of incompressibility of components. Models of this art appear quite
frequently in applications to soil mechanics or glaciology [49].

As in all continuum models we define in Fulerian description fields on a common
domain B; which is time dependent and corresponds to a part of the three-dimensional
space of motion occupied in a current instant of time by all components. In the case
of semipermeable boundary 9B; parts of components which flow out of this domain are
considered separately and one has to solve contact problems. We return to the problem
of configurations of multicomponent system further in this work.

In a purely mechanical model which we want to consider in this Section processes
are described by two current partial mass densities p; (x,t), pf" (x,t),x € B C R%,t €
T C R, for the skeleton and the fluid component, respectively, and by two velocity fields
v¥(x,t), vl (x,t) for these two components. All these fields are macroscopic which means
that they are defined on the common domain B; and, for instance the fluid mass and the
skeleton mass contained in a subdomain P; C B; are given by the Lebesgue integrals

Mﬂm:/ﬁm:M%mzfﬁw; (98)
Py Pr

In the definition of incompressible components one uses a ” pseudomesoscopic” quan-
tities which are called realistic mass densities. We denote them by pi® and pf'E. They
are also defined in each point of the domain B; and not in points of the skeleton or of the
fluid, respectively. They may be related to mesoscopic (or semimacroscopic) quantities

PR pER by the following formulae
1 / 1
SR SR F FR FR11F
pR = pSE(1— HFYdV, pfF = | otrrav (99)
T Jp o ) 0 =y
where
P, = PUPl, P nPF =0, (100)
V(P —/PHFdV, vV (PY) :—/P (1—HT)av,

and HT is the characteristic function for Pf. P; is a neighborhood of a generic point
x and it is usually chosen to be identical for all points of the porous body, i.e. it is
obtained by a shift of a chosen domain over the whole current configuration B;. This
domain should be small enough to deliver a good approximation, for instance, in the
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vicinity of the boundary. Then it is called the Representative Elementary Volume (REV).
In contrast to pPf, pF'® which do not possess any physical interpretation in points of the
real fluid for the first quantity and in points of the skeleton for the second one, the mass
densities pSZ, pE'R are defined solely in points of the real skeleton, and of the real fluid,
respectively. Consequently, they possess a usual physical interpretation. For instance,
pER is equal to 1000%% for water in normal conditions.

It is easy to check the following relations
V(PH)=0-n)V(P), V(P)=nV(P), (101)

1
_ HFdV, V(P :—/ v,
VR /p Po= ]

The quantity n defined in (101)3 is called the porosity.

Consequently
1
Bt = LA HT) v = (=) (102)
1
F — FRHFdV: FR
pt V(Pt) /7;tpm npt

Clearly, the smeared-out, partial mass densities p;, pf” are related to the common macro-
scopic volume in the current configuration. Their definitions contain the full volume of
REV.

By means of the above relations we are now in the position to introduce the notion
of incompressibility appearing in some theories of porous and granular materials. Namely
it is assumed for such models that

PR = const., pEE = const. (103)

Consequently the current mass densities p!’, p{ are not independent fields. They can
be reduced to the single field of porosity n. In such a case partial mass balance equations
(without mass exchange!) reduce to the following form

L{aap; +d1v( 5 S)}: —%+div((1—n)vs)—0, (104)

1 [0pF on .
{ 8; +d1V( ; F)}E E%—dlv(nvF):O.

We can also combine these two equations to the following one
div (nv" + (1 —n)v®) = 0. (105)

If we consider equation (104); as a candidate for the field equation for the porosity
n then equation (105) is a constraint condition of the model. This condition yields cer-
tain limitations on constitutive relations appearing in the phenomenological model which
are not always physically and mathematically acceptable (see: [12]). We show here two
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examples of models which are thermodynamically admissible. The first one is used fre-
quently in soil mechanics and in the description of suspensions. In order to obtain field
equations we need momentum balance equations which have the following form in the
FEulerian description

0 (pv?)
ot

0 (prv")
ot

+div (p)v® @ v — T?) = p°, (106)

+div (pf v @ vF = TF) =p", p*+p" =0,

where T, TF denote symmetric partial Cauchy stress tensors, p°, pf" are momentum
sources. We make the assumption that these quantities satisfy the following constitutive
relations

TS = T° (n,gradn,es,w), T =TF (n,gradn,es,w), (107)
f)s = f)S (n,gradn,es,w),

where the symmetric deformation tensor of the skeleton e® satisfies for small deformations’
the equation

s
de” _ sym grad v, (108)
ot
and w := v — v¥ is the relative velocity of components.

By means of the second law of thermodynamics one can show that the constraint
(105) is thermodynamically admissible. This would not be the case were constitutive
relations (107) independent of gradn [61]. In this sense we deal with a higher gradient
model. If we assume in addition the isotropy and linearity with respect to both vector
variables grad n and w then we obtain a relatively explicit form of constitutive relations

T° = —(1-n)pl+ T2 (n,e”), T =—npl+T.; (n e, (109)
f)s = —pl'=n (n,es) w—pgradn,

where Tfff,Tfff are the so-called effective partial stress tensors. The second one is
frequently assumed to be zero and the first one, if it is linear (small deformation of the
skeleton Hes H < 1), is given by a Hooke’s law with material coefficients depending on the
porosity n. The permeability coefficient 7 is also usually assumed to be constant. The
pore pressure p is the reaction force on the constraint.

In order to account for instabilities of the microstructure one can try to extend the
above model by accounting for nonlinear dependence on the relative velocity w. This is
justified because such instabilities appear by flows of a high intensity of the fluid com-
ponent. In a continuum model the latter corresponds to contributions pf'w. Such an
extension yields in the lowest approximation the following constitutive relations

T = —(1 —n)p1+Tfff (n,e%) + 6w @ w, (110)
T = —npl+ Tfff (n, eS) — W R W,

He. HeSH < 1, where HeSH = max {)\(1), A2, )\(3)} and A, A®) \B) are eigenvalues of e°.
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p=—-pf=n (n, eS) w— (p+Tw-w)gradn,

where 6 and I' are additional material parameters.

Such a model seems to be appropriate to describe, for instance, instabilities leading
to fluidization and eruption in water saturated sands by earthquakes ([51], 2).

The above described class of models shall not be discussed any further in this work.
In spite of their important role in some problems of soil mechanics these models have some
faults which do not seem to be acceptable in cases of wave processes. Most important of
them is the lack of hyperbolicity (the part of the operator connected with the constraint
is elliptic). This leads to a reduced number of real eigenvalues corresponding to speeds
of propagation and, consequently, to the lack of certain modes of propagation of weak
discontinuity waves. In particular the P2-wave and some important surface waves cannot
be described by such models. We discuss the structure of those modes following from a
different model presented further in these notes.

2see also: the PhD Thesis of Theo Wilhelm at the University of Innsbruck, Institut fiir Geotechnik
und Tunnelbau of Prof. D. Kolymbas
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6 The model with the porosity balance equation and
extended thermodynamics

In this Section we present the model of porous materials developed in the recent years [56]
for an elastic skeleton and ideal fluid components. We present its nonlinear foundations
for a system with A fluid components. Only a few basic thermodynamical features will be
discussed in order to place the model within the rational extended thermodynamics [60],
[68]. Thermodynamical details will be discussed in further Sections for two-component
models.

Geometric nonlinearities connected with possibly large deformations of the skeleton
indicate that the convenient way to describe processes is to define fields on a reference
configuration By of the skeleton. For such a configuration the deformation gradient of
the skeleton is defined as the unit matrix: F¥ = 1. Hence we formulate the Lagrangian
description of motion of the porous material.

The aim of the model is to find the following fields defined in points X of the reference
domain By C R* and in instances ¢ of the time interval 7 C [0, c0):

1. mass density of the skeleton referred to a unit reference volume: p° (X, t),

2. mass densities of the fluid components referred to a unit reference volume: p* (X, 1),
a=1,...,A,

3. velocity of the skeleton: %° (X, t),

4. deformation gradient of the skeleton: F¥ (X,t), J%:=detF >0,
5. velocities of fluid components x* (X,t), a=1,..., A,

6. porosity: n (X, t),

7. temperature common for all components T' (X, t).

Consequently a thermomechanical process is described by the mapping
u:(X,t) = R ui={p°, 0 %% F %% n, T}, a=1,...,A (111)

Field equations for these fields follow from balance equations which we proceed to
formulate.

Balance equations are formulated in their global form on material domains of compo-
nents. For porous materials in the Lagrangian description the family of material domains
for the skeleton is defined as a class of subsets of By which is time independent and satisfies
conditions identical with those of the classical continuum mechanics (e.g. [44]). Material
domains of the skeleton are time independent because the reference configuration By is
defined with respect to the deformation gradient of skeleton F°. For this configuration
F5=1.

It is not the case any more for fluid components. They have different kinematics
than the skeleton which means that domains in the space of motion containing during the
motion the same particles of a particular fluid component move with respect to material
domains of the skeleton. In the Eulerian description the velocity field for this motion is

36



given by the difference v® (x,t) — v* (x, t) for the fluid component o, where v* (x,t) is the
velocity of the fluid and v¥ (x, t) is the velocity of the skeleton at the same spatial position
x and at the same instant of time ¢. This relative motion yields the time dependence of
material domains of fluid components projected on the reference configuration By. The
projection is carried by the function of motion of the skeleton

VX eBpteT: x=x°X1t) =

S
)'(S _ aX (X7 t)

— F¥ = Grad x®° (X, 1), T ,

(112)

whose existence is assumed in the model. The condition for the existence of the function
of motion x* shall be formulated later.

It is easy to check that the Lagrangian fields of velocities of material domains of fluid
components are given by the following relation

VX €By: X*(X,t):=F (% - x9),
X7 (X, 1) = v (X (X), 1), % (X 1) =v (x7 (X)) (113)

In order to appreciate the operational meaning of this transformation we formulate
balance equations of mass for all components. They have the following form

— [ pSav = / poav, (114)
dt 7),5' PpS

for every material domain of the skeleton P° C By, and

d

= prdV = / pedv, (115)
Pa(t) Pa(t)

for every material domain of the a fluid component P*(¢t) C By, « =1,...A. In the
above relations p°, p* are the mass sources which satisfy the following bulk conservation
law

A
VX eByteT: 7+ p*=0. (116)

a=1

Time dependence of material domains for fluid components yields the following rules
of time differentiation

d deV:/ 0 Sdv,
P

% PS S ap
d 0 .
— pXdV = —ptdV + p*N - X dS, (117)

where N denotes the unit normal vector field of the boundary 0P ().
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These relations yield the following local form of mass balance equations for a =

1,..., A

8103 ~ apa : aNro NeY
szs, E—FDIV(pX):p, (118)

in regular points (almost everywhere) of By, and

vl =0, || (X2 N-0)]]) =0, (119)

in points of singular surfaces moving through the reference configuration B, with the local
speed U. The brackets [[- - -]] denote the difference of finite limits of quantities in these
brackets on the positive and negative side of the surface.

In a similar manner we obtain the following partial momentum balance equations in
their local form. For the regular points of the reference configuration B

o S¢S
('0 X ) —DiVPS :ﬁS+prS7
ot
9 (p*%) <
p— + Div <poc)'(oc ®X* — Pa) _ Ifja + pocboc7 135 + Zf)a =0, (120)
ot gt

and for points on singular surfaces

p°U [[%°]] + [[P®]] N =0,
o (X2 N=U) [%]) - [P N =0, (121)

In these relations P®, P® denote partial Piola-Kirchhoff stress tensors, b®, b® are
partial mass forces, and p°, p* denote the momentum sources. Relation (120)3 expresses
the bulk conservation of momentum.

We do not need to present details of partial energy balance equations. Under the
assumption of a single field of temperature we need solely the bulk energy conservation
law. Details concerning partial energy balance equations and the derivation of the bulk
equation can be found in the book [56]. The derivation is based on a principle of the theory
of mixtures that bulk quantities must be defined in such a way that balance equations
for these quantities have the form of classical conservation laws of the single component
continuum thermodynamics.

Bearing this principle in mind we define the following bulk quantities

A A A
p=p° + Zpo‘, px =p %% + Zpaf{a, pX = Z poXe, (122)
a=1 a=1 a=1
which are the bulk mass density, the bulk momentum, and an objective relative momen-
tum connected with the reference of the motion to the skeleton rather than to local centers
of gravity;

A
P :—I%—FS%ﬁX®X+§:W<Xa—X)®(XQ—X>}, (123)

a=1

A
P, : =P+ P
a=1
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this is the bulk Piola-Kirchhoff stress tensor with the so-called intrinsic part Py;

A
1 . . . . . .
pE —p51+§{pSCS~<X®X>+ZpaCS.(XO‘—X)@)(XO‘—X)},
a=1
A
per = pe’ 4+ Zpo‘sa, C* .= FTF%, (124)
a=1

this is the bulk specific internal energy with the intrinsic part pe;. The symmetric tensor
C?® is the right Cauchy-Green deformation tensor of the skeleton;

Qg {rkekein 3 (1% s (k-X) o (%) pos

A A
Q : =Q°+ Z Q — pSESX+Zpa5a (XO‘ — X) + (125)
a=1

a=1

A
+PSTFX- Y PYFS (Xa _ X) ,
a=1

and this vector describes the bulk heat flux in the Lagrangian description. Again the
intrinsic part Q; was separated.
The bulk balance equation of energy can be now written in the following form

0 1 1 .
" (E + 53:’2) + Div {p (E + 53:’2) X+Q- PTX} = pb - x+pr, (126)

where

A
pb = prS+Zpaba’

a=1
A A
pro=p°rS + 3" por — p°b%  FIX+ Y pob - FF (X‘* - X) : (127)
a=1 a=1

and 7%, 7% denote the partial radiations.
We skip the presentation of the energy condition on a singular surface because it shall
not be used in these notes.
In the Lagrangian description and with the choice of fields (111) we have at disposal
the following integrability condition
OF%
- = Grad x°. (128)
This condition yields the existence of the function of motion (112). By the choice (111)
of unknown fields this relation plays the role of the field equation for the deformation
gradient F5.
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It is useful to write equation (128) in the following weaker form

d
— | F%dv :7{ %% @ NdV, (129)
dt PS oPS

for every material domain of the skeleton P° C By. This balance equation yields the
following condition in points of singular surfaces

UlF]] = - [[¥]]eN. (130)

This relation is usually derived by means of the Hadamard Theorem for singular surfaces.

Before we present remaining equations of the model let us discuss some properties
of the objects which we have introduce above. It is easy to notice a striking similarity
of the structure of bulk quantities to that appearing in the classical theory of mixtures.
This concerns terms with explicit contributions of velocities. However in contrast to the
mixture theory all velocities of the present model are objective because X and X are
relative velocities. Due to constitutive relations these velocities may be also present in the
implicit form in intrinsic parts of stress tensors, internal energy and heat flux vector. It is
also important to notice that the explicit dependence is at least quadratic. If we consider
processes with small deviations from the thermodynamical equilibrium these contributions
can be neglected.

In order to turn over mass balance equations (118), momentum balance equations
(120), energy balance equation (126) and compatibility condition (128) into field equations
for fields (111) we need constitutive relations for partial stress tensors, momentum sources,
the bulk internal energy and the bulk heat flux. If we had these relations we would have
14 (A + 1) equations. Consequently we would be missing one equation. This is connected
with the fact that the porosity n is the additional microstructural variable and this requires
an additional equation. We proceed to formulate this equation.

We have seen in Section 5 that changes of porosity may be described by a balance
equation (104). This was the consequence of incompressibility of components. If the
components are compressible we are missing this equation. Compressibility of components
is an important feature in the wave analysis and many other problems of practical bearing
and linear models (e.g. Biot’s model which we present further in these notes) yield in such
cases a relation for porosity which does not coincide with this derived for incompressible
materials. In addition the porosity equation following from the mass conservation law
does not contain a source. Such a source would describe a spontaneous relaxation of
porosity. We know from experience with other microstructural variables that this is an
important property yielding evolution equations for such variables. All these arguments
can be made more precise if we derive an equation for porosity from a semimacroscopic
model. This was done by a multiscaling technique in the work [57].

Bearing the above remarks in mind we introduce in regular points the balance equation
of porosity in the following general form

oA,
ot

where A,, is the deviation of porosity from the equilibrium value, the latter together with
the flux of porosity J and the source of porosity n must be given by constitutive relations.

+Divl=n, A,=n-—ng, (131)
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We expect that n tends to an equilibrium under constant external conditions. The equi-
librium value of porosity ng satisfies the equation (131) with the flux and source equal to
zero. The latter as we show later follow indeed from the second law of thermodynamics.

Making an assumption that sources of porosity do not carry surface singularities we
can write the following compatibility condition for porosity on such surfaces

UllAn]] = [I]]-N =0, (132)

which may suggest the form of natural boundary conditions for porosity.
Let us collect balance equations which we have discussed in this Section. They are
shown in the Tables 1 and 2.

Table 1: Balance equations for the A 4+ 1-component porous material in reqular points
of the reference configuration X €B

0% _ »8
mass of S _ o= p
mass of « °~ 4 Div p*X® = p*
o S¢S
momentum of S % — DivP® = p® + p°b°
momentum of « % + Div | p%x* @ X — PO‘> = p* + p“b®
bulk energy %p (z—: + %xQ) + Div {p (5 + %xQ) X+Q-— PTX} = pb - X+pr
integrability of F* % = Grad X°
porosity % +DivJ =n

Table 2: Balance equations (dynamic compatibility conditions) in points of the singular

surface
mass of S U Hpsﬂ =0
mass of o pa<Xa-N—U> =0
momentum of S p°U [[%°]] + [[P®]] N =0,
momentum of a | p° (Xa N - U) %] — [[P]|N =0
integrability U [FSH = — HSH ® N
porosity UlA)] = [J]] N =
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As already indicated we do not quote here the dynamic compatibility relation for the
bulk energy.

In order to construct field equations for the fields u listed in relation (111) we have
to solve the closure problem, i.e. we have to add to balance equations of the Table
1 constitutive relations. We shall do so for some important particular cases. As the
first closure we select the simplest possible one which yields a possibility of exploiting the
second law of thermodynamics in a way typical for the rational extended thermodynamics.
The other cases shall be investigated by means of the classical approach to the exploitation
of the second law of thermodynamics.

In the case of the extended thermodynamics method we proceed as follows.

Let us define the following vectors

1
Fo = {ps,pa,psﬁs,paﬁa,p <6 + 59’62) ,FS,An} e R,

FK = {O, pO‘XO‘ . GK, —PSGK, (,Oaf(a (%9 Xa - Pa> GKa

1 .
<P <€+§$2)X+Q—PT>&) G, %Gk, J-Ggp € RUTI
K = 1727 3’
f .= {ﬁs’ﬁa’ﬁs’f’a’o’ O,TAL} c %4A+15, (133)
foor :={0,0, p°b%, p*b*, pb - % + pr, 0,0} € R4,

where G denote unit basis vectors of Lagrangian coordinates. Then the balance equa-
tions can be written in the following compact form

OF,  OFx

o+ oy =+ fear (134)

where {X K } K125 denote Lagrangian coordinates. For convenience we have chosen a
Cartesian coordinate system.

In procedures of eztended thermodynamics [35] it is assumed that the vectors defined
by (133) are sufficiently smooth functions of the vector u of unknown fields. Then the
closure assumption has the form

Fo=Fo(u), Fx=Fg(u), f=fFf(u). (135)

In the case under considerations we obtain the model of poroelastic materials without
heat conduction. In order to incorporate the heat conduction we would have to introduce
either an equation for the heat flux or a dependence on Grad 7" as a constitutive variable.
Similarly we would have to extend the model if we wanted to describe viscous or plastic
effects - we would have to add equations for partial stresses or a dependence on gradients
of partial velocities. Further we present models in which some aspects of such exten-
sions are indeed discussed within a classical approach to the problem of thermodynamical
admissibility.
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Let us mention in passing that the structure of constitutive relations (135) is one of
the most characteristic features of extended thermodynamics. Namely the constitutive
variables are fields themselves but not their derivatives as it is always the case in ordinary
nonequilibrium thermodynamics.

In order to expose the structure characteristic for extended thermodynamics we con-
sider a simpler case of the closure in the form (135) under the assumption that processes
are isothermal. This means that we leave out the temperature in the definition (111) of
u and denote it then u;s as well as we ignore the energy balance equation.

The set of equations (135) for u;; without energy balance has thermodynamically the
same structure as the corresponding set of extended thermodynamics. For this reason
we can apply the same principles connected with the thermodynamical admissibility.
They can be formulated as follows:

- entropy inequality: there exist a nontrivial entropy function hy and a flux
H =Hy G such that for each thermodynamical process (i.e. for each solution
of field equations) the following inequality is satisfied

oh
a—t” +DivH >0, ho=ho(u,) €R, H=H(u,) e R® (136)

- convexity and causality: the entropy function hy = hg (u;s) is concave, i.e.

0?hyg

v 6Q%IZJL(AJrl)7 0: R
v v 7& 8uis(3’uis

(vev) <0, (137)

- principle of relativity (Galilean invariance of field equations).

The last principle yields a decomposition of all quantities of the model into two
parts: a convective part which depends explicitly on the absolute velocity fields and a
nonconvective part which does not depend on absolute velocities at all. This principle
is satisfied identically in the case of Lagrangian description because we deal solely with
relative velocities.

Entropy inequality (136) is exploited by means of Lagrange multipliers which elim-
inate the limitation of this inequality to thermodynamical processes. According to this
procedure requirement (136) is equivalent to the following inequality for all fields, and
not only for solutions of field equations

Va,, € RUAHD .

ot Toxk M\ Toxk
H — HyGg, (138)

Oho  OHy <8F0 OF x _F> S0, A eRia)

where A are the Lagrange multipliers, and functions of u;;. As mentioned above Fo, Fx,
are truncations of functions (133) to the subspace R4+ without the energy balance
equation.
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The solution of the above problem has the following form

oA ?hg

— AdF Hg = dFg - A -
dhg dFo, dHg =dFg = ouw;, Ou0u;,’

(139)

i.e. according to (137), the map u;s — A is globally invertible. Hence after Legendre
transformation

hy(A) = A-Fo—ho, Hi(A)=AFx—Hy —

N S Y N (140)

— O*aAa K aA7

Consequently, the functions Fo, and Fx which determine the left-hand side of the
field equations are given if the four-potential (h (A), Hy (A)) is known. It leaves unspec-
ified but restricted by the dissipation inequality (140)5 only the sources f (A) of the field
equations. This is one of the most important consequences of the second law within the
rational extended thermodynamics. Moreover relations (140) yield the symmetry of field
equations for the unknown vector A:

0?hy ON  O?H} OA
OANOA Ot  OAOANOXKE

Consequently under the second part of the condition of thermodynamical admissibil-
ity (i.e. nonsingularity of matrix Bfig&) the system is symmetric hyperbolic.

It remains to invert the variables, i.e. to find the map A — u;,. This is usually a
very difficult technical problem. For this reason we use further a classical approach which
does not require the execution of the last step.

Let us mention that the residual inequality (140)5 defines the dissipation. This func-
tion vanishes in states called the thermodynamical equilibrium states. Consequently the
necessary and sufficient conditions for the thermodynamical equilibrium within the model
discussed in this Section have the form

=1 (141)

il = 0 fora=1,... A
Pl = 0 fora=1,... A (142)
nly = 0.
They follow directly from definition (133)s of the vector f truncated to f.
Some additional details concerning thermodynamical properties of such a model can
be found in the article [63].

We proceed to discuss some particular models following from the above thermody-
namical scheme.
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7 Two-component models with constitutive relations
for porosity

7.1 Fields and field equations

In this Section we investigate models of porous materials in which porosity satisfies a
constitutive relation. We consider two classes of the models [66]. In the first class labeled
(I) we assume that the real fluid in pores is incompressible. This is a weaker assumption
than this of the full incompressibility discussed earlier. This assumption means that
changes of the geometry of the medium are controlled by two independent processes.
On the one hand the skeleton may macroscopically deform and the porosity remains
constant. Only the deformation gradient F¥ changes. We say that the process proceeds
in undrained conditions. On the other hand the porosity may change by the drainage
and still the macroscopic geometry of the skeleton may remain unchanged: F° = 1. Then
changes of mass density of the fluid are determined by changes of porosity alone

pf =np™™,  p"R = const. (143)

In the second class of models labeled (C) we allow for arbitrary changes of mass

densities pf’, p? but the porosity is assumed to be given by a constitutive relation. In

a general case this relation is assumed to be of the form n = n(pf'/py) which is the

consequence of the dimensional analysis for isotropic materials. In this section, we assume
the simplest form of this relation

n=ny—=—¢ (144)

where pI", p¥, ny denote reference constant values of partial mass densities and the porosity.

Let us note that in general the porosity n may change as well without accompa-
nying changes of macroscopic mass densities pf’, p¥. This happens when changes of n
are compensated by changes of real mass densities p™f, p°f in such a way that their
products npf®, (1 —n) p>% remain constant. Such changes are not controllable on the
macroscopic level. They must proceed spontaneously. Consequently they yield a relax-
ation of porosity characteristic for microstructural variables. Relaxation properties are, of
course, dissipative. They require a source term in the relation for changes of porosity and
the corresponding equation has been demonstrated in the previous Section. We return to
such models further in these notes.

Fields which describe mechanical processes in the model discussed in this Section are
as follows

1. the reference partial mass density of the fluid component
pf = p" (X, t) = pF'J® =nJpfR,  J% :=detF%, X B, (145)

2. the field of partial velocity of the skeleton %° (X,¢) on the macroscopic level of
description,

3. the field of partial velocity of the fluid % (X, ) on the macroscopic level of descrip-
tion,
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4. the macroscopic deformation gradient of the skeleton F* (X, ).

By means of the velocity fields one can define the macroscopic filter velocity w (X, ¢),
and its corresponding Lagrangian image X" (X, ¢) appearing in balance equations

wi=%x"—%% XI'.=F5'w. (146)

The reference partial mass density of the skeleton p° = p5 does not appear among
those fields because it is constant in time if we assume that there is no mass exchange
between components. Its current value is given by the relation

of = pS TS, (147)

which satisfies identically the partial mass conservation law in FEulerian description.
Summing up we can write the following relations for the porosity in the two above
classes of the models

F
(I)-models : n= JS_IpTR, pt't = const., (148)
p
(C)-models : n= L pbR = ﬁ = const
) FR’ 0 )
Po o

The fields must fulfil the following balance equations in Lagrangian description
1. mass conservation of the fluid component

8,0F . F~pFY\ _

2. momentum balance for the skeleton

.S
gO0%

P, = Div P% +p, (150)

3. momentum balance for the fluid

p(0X7 o F . pF
p W—FX -Gradx” | = DivP" — p. (151)

In addition the deformation gradient F° must fulfil integrability conditions yielding
the existence of the field of motion of the skeleton. They consist of two parts.

4. Kinematic compatibility condition relates the time derivative and the gradient of
velocity

OF3 .5
o Grad x°. (152)
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The second part — a geometrical compatibility condition is a symmetry relation

23

Grad F® = (Grad F®) T (153)
or, in Cartesian coordinates

OF5.  OFy,
oXL — oXK’
where the small index refers to Eulerian coordinates, and the capital index to Lagrangian
coordinates.
Obviously, all operators Grad, Div, BXLK refer to Lagrangian variables.
As we have mentioned conditions (152),(153) yield the existence of the field of motion
of skeleton, say x° (X, t), whose derivatives give the deformation gradient and the partial
velocity, vis.

(154)

g = 9
ot

Momentum balance equations contain partial Piola-Kirchhoff stresses P, P¥ which
are related to the usual Cauchy stresses by the following transformation rules

TS — JS_IPSFST, TF — JS_1PFFST. (156)

F¥ = Grad x°, (155)

Momentum equations contain as well the source p which is the diffusion force.

We have to perform a closure in order to obtain field equations from the above balance
relations. For poroelastic materials we consider further two models following from two
choices of constitutive variables. Namely we choose either

e = {pF,FS,XF} , (157)
or
c? = {pF,FS,XF, Gradn} ) (158)

The porosity n does not appear among these variables because it is either given by the
relation (148); or by the relation (148),. Consequently it can be eliminated from the set
of independent constitutive variables.

The following functions must be given in terms of constitutive relations

F={P* P py° 4"}, (159)

where 1°, 1" denote partial Helmholtz free energies appearing further in the second law
of thermodynamics.

For reasons of material objectivity we should choose not only the relative velocity as
the variable but also one of the objective measures of deformation. We shall do so further
in this note. However the exploitation of the second law of thermodynamics is easier if
we impose the objectivity after the exploitation of the entropy inequality.

For any of the choices of constitutive variables constitutive relations are assumed to
have the form of the relation

F=F(C9), a=1,2 (160)
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which is sufficiently smooth for all operations which we perform in the sequel.

Let us make two methodological remarks.

Our main interest in comparison with Biot’s model as well as in the analysis of
acoustic waves is limited to linear models. Consequently the above presented nonlinear
models are an overkilling. We do so on purpose because the exploitation of the second law
of thermodynamics for a model with linear constitutive laws cannot be made consistent
with explicit nonlinear contributions to field equations. This yields serious flaws of the
thermodynamical analysis known in all nonlinear field theories.

Secondly we should point out that the restriction to incompressible real fluids in the
class (I) of models does not lead to any constraints. This may be simply interpreted
as a change of variables: changes of the partial mass density of the fluid are replaced by
corresponding changes of the porosity. There is no reaction force on such a ”constraint”
This is different from the cases which were considered previously (e.g. Section 5). In those
cases the model possesses an additional equation for porosity which, in turn, is considered
to be a real microstructural variable with spontaneous relaxation properties. In such
models the incompressibility assumption yields the existence of the reaction pressure, and
it requires a special structure of constitutive relations.

Let us mention in passing that the above change of variables may lead to some
mathematical problems due to the restriction 0 < n < 1. In a linear model changes of
porosity with respect to its initial value ng are small. The choice of a real value of ny,
say between 0.1 and 0.6, guarantees that this restriction is indeed fulfilled. In nonlinear
models we have to take care of this constraint. If thermodynamic restrictions are derived
by means of the partial mass density, which we do in this Section, such a restriction does
not appear.

7.2 Thermodynamic admissibility
7.2.1 Second law of thermodynamics

We present here solely the second law of thermodynamics for two-component systems for
which the temperature is constant. If this is the case it may be formulated as follows
(e.g. [66]). For any solution of field equations (i.e. for any thermodynamical process) the
following inequality

s oy
S F
e +p ( ET + XF . Grad )

s OFS

—-P
ot

—PF.Gradx" —p-w <0, (161)
must be satisfied identically.

The main technical problem by the exploitation of this inequality is the limitation
to solutions of field equations. This can be eliminated by means of Lagrange multipliers
introduced to thermodynamics by I-Shih Liu (e.g. [56]). Namely it can be shown that
the following inequality
OF®

p° a¢5+p 8—+XF Grad¢? | — P%. — — PF . Gradxf —p-w—
ot ot ot
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n [ 0P : P~ F r [OF°
—A {E—l—DlV(pX) — A" W—Gradx

~AYS. {psaa — DivP* —p} -

ox
_AVF. { (W +XF . Grad % ) . DivPF+f>} <0, (162)

must hold for any fields and not only for solutions of field equations. The multipliers
A", AT AYS, AYF are functions of constitutive variables C(®) for o either equal to 1 or to
2. We proceed to discuss the consequences of the above condition for these two different
models.

7.2.2 CW—models

We consider the model with constitutive variables given by the relation (157). It is not
necessary to distinguish between (I)-models and (C)-models because the only difference
appears in the final results due to the substitution of either (148); or (148)s.

It is easy to check that the chain rule of differentiation in the inequality (162) yields
the linearity of this inequality with respect to the following derivatives

opF OF° 0%° oxF
{at’at’at’at} (163)
as well as
{Grad pl', Grad F¥, Grad %°, Grad XF} ) (164)

Consequently, as the inequality must hold for all fields, the coefficients of these
derivatives have to vanish. We obtain from the contributions of time derivatives (163) the
following relations

o’ ot
A" = S F
oy® ot oY . L OUF .
PS AF — S F S FS T s XF_ F FS T a XF
* P oFs TP gFs ~F < oxr) P oxr) %
v v op® oyr
pSAS:_pFAF:_’OSaXF_pFa)'(F' (165)

On the other hand the coefficients of spatial derivatives (164) lead to the following
identities

,0 6¢F _ A" XF aPST AUS aPFT AvF -0
opF opF opF ’
0 .
P ((;ﬁs - A"FS- ) o XF o
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AF =PF = —pFA"FS T, (166)
It remains the residual inequality
p-w>0, (167)

which defines the dissipation density of the system.
For technical reasons we make the following simplifying assumption
awS _ 8¢F
OXF  OXF
We consider further the model in which this assumption is not being made. It has conse-

quences on nonlinear contributions of diffusion velocity.
Combination of relations (165); and (166); yields now

FOUT 097
opF’  0pF

= 0. (168)

A" =p =0. (169)
The second part of this relation has the most important bearing on the structure of
interactions described by the model. Namely the partial free energy of the skeleton does
not react on changes of the porosity. We see in a moment what is the reaction of partial
stresses on this property. Such a conclusion would be impossible if we performed the
exploitation of the second law for a linear model.
Relation (166)y leads after easy calculations to the relation
oPr
—— = —-A"F5T. 170
Hence relations (165) and (166)s yield the following relations for partial Piola-
Kirchhoff stresses

oS E
PS — 5 PF — _F2 FS T

or, after the transformation to partial Cauchy stresses, described by (156),

50 OpF
T =p; aﬁsFST T = —p"1, p"=p" aqﬁ (171)
t

These are classical thermodynamical relations for elastic materials, and ideal fluids,
respectively. The most important property of these relations is the fact that identities
(169)2 and (170) yield

T° =T (F%), p"=p"(pf). (172)

The latter requires an assumption on isotropy and it shall be proven in the next
Subsection.

Consequently, we obtain an analogon of the simple mixture model which we have
considered for mixtures of fluids. It means that one cannot obtain Biot’s model by
linearization of the above model. Couplings between partial stresses which are appearing
in the original Biot model with the material constant () would have to violate the second
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law of thermodynamics. This property seems to be common for all multicomponent
models of poroelastic materials which do not contain higher gradients among constitutive
variables.

Obviously the model contains coupling due to the relative motion of components and
described by the source p. For this reason solutions of boundary — initial value problems
and consequently local values of partial stresses follow from the coupled field equations.

We should also mention that the similarity of the relation for pf for incompressible
real fluids ((7)-models) to the relation for compressible fluids ((C')-models) is misleading.
This relation has an entirely different physical interpretation. For compressible fluids the
relation (172), yields the following linear form of the constitutive relation for the partial
pressure

p=py +r(p" =), (173)

where pl is the reference pressure and pf — the corresponding reference partial mass
density. In such a case the compressibility coefficient x describes elastic properties of the
fluid. Simultaneously its square root specifies the speed of the longitudinal wave in the
fluid. This is not the case for the model with the incompressibility assumption. As the real
fluid in this case is incompressible it has no elastic properties. Consequently the relation
for p™ describes its dependence on changes of porosity which are due to microscopical
morphological changes of the skeleton such as a redistribution of grains. Hence acoustic
properties related to such a constitutive relation for the pressure cannot be extracted from
microscopic properties of the real fluid component.

Incidentally such a model supports views advocated by W. G. Gray (e.g. see: [24])
that macroscopic constitutive relations of components in the macroscopic model cannot
be directly related to constitutive properties of real components, and even less they can be
derived by any averaging procedure for a single real microscopic component. Macroscopic
constitutive properties reflect for each component microscopic properties of both real
components as well as microscopic interactions between them.

In the next Subsection we consider a higher gradient model which allows for interac-
tions in constitutive relations for partial stresses.

7.2.3 C@—-models

We proceed to consider the model based on constitutive variables (158). However we
limit the attention to the simplest case in which the model is linear with respect to the
gradient of porosity. In such a case it may appear solely in the constitutive relation for the
source p because this is the only vectorial constitutive function. We simplify the model
even further and assume linearity of the source with respect to both filter velocity w and
grad n. Consequently

p =mw — N gradn, (174)

where material parameters 7 and N may still depend on pf and F¥. We have left out
a possible nonlinear contribution proportional to the vector product wx gradn which
would appear in a general nonlinear isotropic model. In contrast to linear contributions
such a term would be nondissipative. The minus sign in (174) is related to the property
of incompressible models in which N coincides with the pore pressure. In general it may
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not be the case. This parameter seems to be always positive. However such a property
does not follow from the second law of thermodynamics.

We assume also the relation (168) to hold.

Bearing the relation (148) in mind we obtain the following contribution of the source
to the inequality (162)

1 rd
([)-models : p-w=7w- W_NTJS {Gradp" — p"F*T DivF*~'} . XF,

(C)-models : p-w=7rw-w— N— Grad p - XF, w=FX5, (175)
P
Contributions appearing with the parameter NV in these relations change the identities of
the previous Subsection following from coefficients of spatial derivatives. Namely relations
(166); and (166); will be influenced. We collect all these results of the second law of
thermodynamics in the juxtaposition.

Table 1
(I)-models (C)-models
8@/}5 apr 8@/}5 ot
A" = F A" = F
=p° apF TP G =p° a7 TP g
S F S F

" =0 5ps TP s " =055 TP s P

PF — —pFAnFS_T, PF — —pFAnFS_T,
o N S N
—aw — ——J% =0, pF'E = const. —aw — g =0,
P o0F T b P o0F T b
op O e r op" pOPT N\ osr
F =0 — —+ —% | F = 0.
aFs P BpF ! oFs T \P BpF TR

After easy manipulations we obtain the following relations for the partial Piola-
Kirchhoff stresses in both classes of models

5O

(I)-models : P%=p SFS +nNF T, (176)
oS
. S S
(C)-models : P” =p 3F5’
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F
(I)-models & (C)-models: P¥ = — <pF2i + nN) F5 T (177)

as well as the following identities for partial free energy functions

8¢F Ot 5 OP° N
(I)-models : 9F5 = —pF o —F"T pF PR’ (178)
oy POY” sy s0¥° N
(C’)-models . W = — (p ap + —= FR F s P W = pg_R
Then for the partial Cauchy stresses follow the relations of the form
(I)-models
TS: SSleST NSll TF:—F]_
J 5FS +nNJ p 1,
pF . FQJS 1 8¢F + NJS 1 (179)
(C)-models
o>
S — S5 ST F_ _F
T = J 8FSF ’ T = —D 17
F P2 y5-1 ¢F S-1.
poo J 9p —— tnNJ

It is seen that both models contain couplings of stresses which may lead to the Biot’s
constitutive relations for stresses (e.g. [12], [43]) of the linear model. We proceed to
investigate this question.

In order to simplify the construction of the linear model we evaluate the above non-
linear relations for isotropic materials. In such a case free energies 1%, ) satisfying the
principle of material objectivity depend on the deformation gradient F* solely through
the invariants of its symmetric part. For instance we can choose the invariants of the
right Cauchy — Green deformation tensor C¥

1

C®:=FF° [:=trC° |II:= 3 (I? —tr C®), III = J°* :=det C*.(180)
Then

¥ =o° (1,11 111,p"), " =" (I,I1,1I1,p"). (181)

Let us exploit the identity (178); under the above assumption. Bearing the following
relation in mind

ot sOp"
55 = Foos (182)
we obtain
a¢ o 5 ot e YT s2 or
= 2 B ——IB ——B —JII1 1
8FS < ol 6[] ol 6[]] ( 83)
BY . =FSF°T, III=J%?,
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where the symmetric tensor B is called the left Cauchy-Green deformation tensor. Now
we can write (178); in the form

(I)-models :
ot pop” 0" T\ gs GOV g _
(C)-models :

oyt poyt N ot opr s oW e
<2IIIaHI+p 5o+ orR ) 192\ 1 ! B — 2B =0.

These relations must hold for arbitrary deformations B®. Consequently, according to the
corollaries of the Cayley-Hamilton theorem in the tensor analysis, coefficients of tensors
1,B%, B2 have to vanish independently. Hence in both cases the free energy ¥ must
be independent of invariants I, 11, and, consequently (comp. relations for N in Table
1) N must be independent of these two invariants in (C')-models but not necessarily in
(I)-models. In addition we have

8¢F 8¢F
975 T BpF
our  pWF N
YR ra

(I)-models : " =" (J%,p"), J°—— =0; (185)

(C)models :  ¢F =y (J%,pF), J=— (186)

N = N(J%p").

The differential equation (185)s for (I)-models can be easily solved by the method of
characteristics. If we denote the variable along the characteristic by & then we can write
this equation in the characteristic form

A’ e df ot
dé Tde Tde
Consequently ¥ is constant along the characteristics, and these are labeled by the
following initial values

pt"J571 = const, (188)

=0. (187)

which follows from (187); 2. It means that the solution of the identity (178), for isotropic
materials with incompressible real fluid is of the form

(I)-models: ¢" = 4% (p]). (189)

The problem is more complicated for compressible materials. However we can simplify
the equation (186) if we change the variables in a way suggested by the above solution
for the (I)-model. Namely we obtain

(C)models :  (p",J%) = (pf,J°) = ¢F =" (pf,J%) (190)
and
op* N 1 75N (pF,
JS 8?5 = _pg‘—R = ¢F - wgieal (pf) - /)(I)T—R/l (:Og é-) d§ (191)
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It is instructive to apply the relation (178)s in the formulae (179) for Cauchy stresses.
For isotropic materials we obtain immediately

(I)-models:
™S = pSJ5! { (Jsg—?j + ngquj) 142 <88—¢f + Ig—i’;) B — zg—}ij”} ,
TF = —pfyst <pF% +p5(277fj) 1, (192)
(C)-models:
TS = pSJ5! {Jsg—?::1+2 (%—f - I?—fj) B — 22—15352} : (193)
TF = —pFjs— <PF%+PS%) 1.

Let us discuss first the structure of stress relations for (I)-models. As indicated by
(189) the first contribution to the partial stress T cannot contain any coupling to the
deformation of the skeleton. Consequently it is the derivative of the partial Helmholtz
free energy ° with respect to p/’ which relates T to the deformation of the skeleton.
According to the relation (178), for the existence of this coupling the coefficient N must
be different from zero. For the symmetry required in the Biot’s model it is necessary
to introduce a rather complicated dependence of the pasrtial free energy function 1 on

S 9

the mass density p!” which would create a term in p 55 canceling out the contribution

p°pFJ S*‘gﬁ—; to the stress T (the wrong sign!) and simultaneously produces another
one introducing the coupling to the deformation of the fluid. Even though it is possible
in principle such a model does not seem to be very plausible and we do not investigate it
any further.

Let us mention in passing that in a particular case of the constant partial free energy
Y the relation (179)y for incompressible real fluids yields N = %F which is the pore
pressure of classical models. Hence in this particular case the coefficient in the diffusion
force (174) coincides with that of classical models of consolidation. This structure has
been indicated in the work [51] on nonlinear sources.

The structure of stress relations for (C')-models is simpler. As thermodynamical
requirements do not lead to any restrictions of the free energy ¥° on p!’, and the free
energy ¥ on J¥ we may produce as a particular case a desired dependence and symmetry.
We shall do so for the linear model.

Concluding the above thermodynamical considerations we see that the Biot’s consti-
tutive relations for stresses can be derived from nonlinear C®®-models by a specific choice
of partial free energies. It means that such a transition requires a higher gradient model
as a background.

7.3 Linear models

Among linear models describing two-component (saturated) poroelastic materials the
most frequently used is the Biot model. We quote the fundamental relations of the
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classical Biot model in a chosen inertial frame of reference (e.g. [12] [43])

o S 0 F 0 o
pg% = )\° grad tr e5+2,u5 div eS—i—Q grade+m (VF - VS) —p12 (% - %) ,(194)
8 F 8 F 8 S
p5% = rpy grade + Qgradtre” —m (v = v7) + py <% B %) ’
where
965 F_F
% = sym grad v¥, 57? =divv", e:= % =tre’ - n%’ (195)

and e denotes the macroscopical Almansi-Hamel deformation tensor of the skeleton,
its trace, tre”, is the volume change (small deformations!) of the skeleton, ¢ is the
volume change of the fluid and this is related to the increment of fluid content,
¢, by the relation (195)3. pf” denotes the current partial density of the fluid component.
Py, pb are constant initial partial mass densities connected to the true mass densities

ps B, pEE in the following way

oo = (L=no) 3™ po =mopp ", (196)

where n is the initial porosity. v°, vf" are macroscopic velocities of both components,
ie. v —v9 is the seepage velocity. The material parameters \°, i, x, Q, T, p12 are
constant.

The literature on Biot’s model is far from being unique in relation to the notation
and this creates a lot of confusion. The above material parameters are characteristic for
the formulation of a two-component mixture. Usually in soil mechanics use is being made
of the total bulk stress T = T° + T, and the fluid partial stress is related solely to the
pore pressure p. Namely T = —ngpl.

For this reason the material parameters are introduced, for instance, in the following
way [41]

2
K = )\S+§us+pgﬁ+2Q, G =5, (197)
1 bk
C:=— r M.=""
no (Q+p0 K/)a n%

On the other hand in the standard reference book on linear acoustics of porous materials
[14] the following form of the set (194) is used
o w

ow ovlt  ov®
T=T°+TF TF = _npl., — = o _9r

=divT,

T:)\ftresl—i—Q,ueS—ﬁMCl,

ovF ow 1
uw w N, — dp—— ) 198
Puw— T Pu g, gradp — =w (198)
p=M(—Btre® +(),
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with the following relations among parameters

1
P=00+P0, Puw=p0 s Pw=—5 (P = pr2), (199)
0
s F s 1 F 1 T
Ap =N Hrpy +2Q, p=p°, BM=—(Q+rp), —===3
No K nyg

Still another set of parameters is used by Allard [9], where pi12 = —pa, P52 = po, p5 = p1,
etc.

Let us return to the set (194). The parameter p;5 describing the contribution of
the relative acceleration is usually related to the tortuosity of the porous material. For
example, in the works [10], [27] the following approximate relation between this parameter,
the porosity ng, and the tortuosity parameter a € [1,00), is proposed

1/1

plgng(l—a), a——(—+1) (200)
2 Mo

We return to the problem of the contribution of relative accelerations described by the

parameter p;o in the next Section of these notes.

In order to compare the relations derived in the previous Subsection with Biot’s
relations we have to linearize the model. The Almansi-Hamel deformation measure e°
used in the Biot model is given by the relation

g 1

e = (1- B>, (201)

The linearity follows from the assumption that deformations of the skeleton are small,
and that changes of porosity are small

max {|A(]} < 1, det(e® — A1) =0, (202)
n—"ng

ls] < 1, ¢:= :
o

a=1,2,3

where A(®) are eigenvalues of e, and they are called principal deformations while ng
denotes the reference constant value of porosity.
We construct the linear version of the (C')-model. In this model, also in its fully
nonlinear version, the porosity is related to the mass density by the relation (151),, i.e.
_ e
P

(203)

The variable ¢ can be now coupled to changes of the partial mass density p!” and to
volume changes of the skeleton J° ~ 1 + tre®. We have

F a
_n _ Pt —Po
§=——1lr——F—

+tre®, pb=nepl®. 204
o o 0 0 (204)

The first contribution describes the macroscopic volume changes of the fluid component,
i.e it is the (macroscopic) negative fluid dilation e while the second contribution describes

changes of the macroscopic volume e. Hence

F_ F
cre—e, e:=tre’, z—:::—'otpiF'O0 — (= nsS. (205)
0
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Let us note that the macroscopic model constructed in this way does not require any
reference to the microscopic description.

Before we proceed with the linearization of constitutive relations it is convenient to
change the variables in (193) from (pF ,Jo ) to (pf ,Jo ) Bearing identities of the previous
Subsection in mind we obtain

o’ o’ o’ o’ pF
s _ s} s s sl t
T = p; {J 575 +2( BT —l—IaII B 28[IB nONpoFl,

awF ,OF
T = —(pF2 +noN=% ) 1. 206
] (206)

Obviously the stress tensor in the skeleton possesses already the structure desired in
the comparison to Biot’s model. The last contribution can be written in terms of the
variable € which reflects the coupling with the fluid. Such a contribution does not appear
in the stress tensor for the fluid. However the free energy 1 may be still dependent on
both variables (pf ,JS ) Consequently we can choose this dependence in such a way that
the symmetry required by the Biot’s model remains preserved. It is easy to check that
the following choice

¢F = zeaz (,Of) + nONpiw N = const., JS=1+ e, (207)
¢

indeed yields the desired coupling and it is compatible with the relation (186) provided
the coupling coefficient N in the fully nonlinear model possesses a specific dependence on
volume changes of the skeleton J°
No
75
This yields indeed the relation (207) because in the linear model we do not have to
distinguish between N and Ny in the above relation. Such a dependence is solely motivated
by the requirement of the linear model and cannot be derived from any thermodynamical
relations.

Let us make an important observation that the coupling in the partial stress tensor
T¥ cannot be corrected any more because the contribution %, is independent of volume
changes of the skeleton. Hence the coupling constant must be of the order of the constant
N.

The standard linearization procedure leads now to the following linear constitutive
relations for partial stresses

T = T§ + Mel +2u°e” + ngNel,

N = Ny = const. (208)

T" = —p"1, p":=py — (Re +noNe), (209)
where T3, pl are initial values of the stress in the skeleton: F¥ = 1, or equivalently
e’ = 0, as well as ¢ = 0, and of the partial pressure in the fluid, respectively. The

material parameters A%, %, R, N may depend solely on the initial porosity 7.
In order to obtain Biot’s stress relations we have to identify ) = ny/N and to assume
that initial stresses are zero (stresses in Biot’s relations are the so-called excess stresses).
We have considered in this Section the simplest version of a linear higher gradient
model but it is almost obvious that either contributions of relative velocities to free ener-
gies or nonlinear contributions of the gradient of porosity do not change anything in the
structure of a linearized model.
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8 Thermoporoelastic two-component materials with
an influence of relative accelerations

8.1 Objective relative acceleration

Apart from the question of contribution of interactions in partial stress tensors there is
another question connected with the classical Biot model of poroelastic materials. As
proposed by Biot it is often assumed that momentum balance equations contain a con-
tribution of relative accelerations. This yields the consequence that the matrix of partial
mass densities is not diagonal. The off-diagonal part is assumed to be symmetric, i.e. this
additional contribution is described by a material parameter p;5. It is easy to check that
such a contribution violates the principle of material objectivity [65]. We show in this
Section that one may construct a nonlinear model in which such a contribution becomes
materially objective and reduces in the linear limit to the Biot contribution (for details
see: [72]).

Such a nonlinear objective model with a contribution of relative accelerations is ther-
modynamically admissible if we add some nonlinear contributions to partial stresses and
to the free energy. They reflect in the simplest manner the existence of fluctuations of the
microstructural kinetic energy caused by the heterogeneity of momentum in the repre-
sentative elementary volume. The existence of such fluctuations as a result of tortuosity
of porous materials has been indicated by O. Coussy [16]. Kinematic considerations con-
cerning a structure of such fluctuations are presented in the article of W. Kosinski, J.
Kubik and K. Hutter [30]. Further quotations concerning this issue can be also found
in this work. However the constitutive part of a model based on such considerations has
not been presented. There exist some attempts to derive Biot’s model with the contri-
bution of relative acceleration by means of Hamilton’s principle based on the fluctuation
kinetic energy. As the true variational principle does not hold for dissipative systems the
dissipation through fluctuation and diffusion is accounted for by a pseudo-potential and
a pseudo-variational principle. This does not seem to be the right way of handling irre-
versible processes. For this reason we rely rather on the nonequilibrium thermodynamics
in our considerations.

We consider a two-component continuum consisting of a solid skeleton and of a fluid.
The motion of the skeleton is assumed to be described by the following twice continuously
differentiable function

x=x"(X,t), Xe€By, tecT, (210)

where B, denotes the reference configuration of the skeleton and 7 is the time interval.
The velocity, acceleration and the deformation gradient of the skeleton are defined by the
relations

s .S
45 . ox .5 OX

ox- S ._ s
% X = F” := Grad x”. (211)

Certainly, the value F¥ = 1 corresponds to the reference configuration for, say, t = ¢, in
which x* (X, to) = X.
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The motion of the fluid is described by the transformation of the Eulerian velocity
field vi' = v (x,t) defined on the space of current configurations x*° (B, t) of the skeleton.
We have

v =vP (X (X,t),t) = %7 (X,1). (212)
The acceleration of the fluid is then given by

or_ X7 g (F o F S—1 (¢F _ 48

X :W+X -Gradx”, X" =F""(x"-%"), (213)

where X7 is the Lagrangian velocity of the fluid with respect to the skeleton.
We proceed to determine the transformation rules for the above quantities specified
by the Euclidean transformation rule

x*=0(t)x+c(t). (214)
The relations (211) and the time differentiation of the relation (214) yield the following
quantities in the new reference system

FS* — OF°, %% —0%5+Ox+¢&, %5 — 085+20%° + Ox + &, (215)

where the dot denotes the time derivative.
We assume that the transformation rule for the velocity field of the fluid component
has the same form as it does for the skeleton

£ = 0%F + Ox + ¢. (216)
Consequently
=0 (%" -%%) = X=X (217)

Bearing these relations in mind we can now easily derive the transformation of the
acceleration of the fluid. We obtain immediately

M = % (Och +Ox + é) + X . Grad (Och + Ox+é> = (218)

— 0% +20%" +Ox +¢,

where the definition of the Lagrangian velocity has been used.
Due to the presence of contributions dependent solely on the choice of the frame we
say that velocities %%, % and accelerations %°, %" are nonobjective. Consequently, their

difference is also nonobjective. We have
%™ — %5 = 0 (% - %5) + 20 (%" - %9). (219)

For this reason the difference of accelerations cannot be used as a constitutive variable in
a construction of the macroscopic model of a two-component system.

In the paper [18] a method has been proposed to overcome these difficulties in the
Eulerian description of suspensions. We shall use a similar way in the Lagrangian de-
scription. If we take the gradient of the transformation relations for velocities we obtain

Grad %% = O Grad%® + OF° = O =Grad (£ — O%%) F¥,
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Grad%'* = 0 Grad%" + OF° = O =Grad (¥ —O0%")FS1.  (220)
Consequently, we can write

20 (%" —%%) =(2—3) O (¥ —%%) +;0 (x" — %) =

= (2 —3) Grad (™ — 0%") X* + ; Grad (x** — 0x") X7, (221)

where 3 is arbitrary.
Substitution of this relation in (219) yields

%P — %5 — (2 —3) XF . Grad ™ — 3XF - Grad x5* = (222)
-0 (xF — %5 (2 5)XF . Grad ¥ — ;X7 . Grad>’c5> .

It means that the quantity

a, = % (% — %%) + X' Grad %" — (2 — 3) X¥ - Grad %" — ;X - Grad %° =
= % (%" —%%) — (1 - 3) X" Grad £ — ;X" - Grad %°, (223)

is objective, i.e.
a; = Oa,. (224)

We call this quantity an objective relative acceleration. As an objective variable it can be
incorporated into the set of constitutive variables. Obviously, there exists a class of such
accelerations specified by the constitutive coefficient j.

It is easy to see that a linear momentum source p in an isotropic material would
contain a term p{,a, ~ p(fQ% ()’(F — %9 ) as required by the relations of Biot’s model. The
open question is if the second law of thermodynamics admits this type of contribution in
a fully nonlinear model.

8.2 Thermodynamical admissibility

As we have already mentioned the nonlinear poroelastic two-component model requires
the formulation of field equations for the following fields

V= {pf %% %" FS T\n}  for (X,t) € BoxT, (225)

where p’ is the partial mass density of the fluid per unit volume in the reference con-
figuration of the skeleton, i.e. in the current configuration it is given by the relation
pE = pF'J5=1 J% := det F¥. T is the absolute temperature of the medium common for
both components, and n is the current porosity. Other symbols have the same meaning
as before.

The partial mass density of the skeleton in the reference configuration, p°, does not
appear among the fields because it is constant in a homogeneous material without mass
exchange between components.
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These fields are assumed again to fulfil the following set of balance equations

F._ ap” . F~;FY _
%S
M5 = pS% —DivPS—p=0, (227)
F F 8)'(F a2 +F . F ~
M" :=p W—FX -Gradx” | —DivP" +p =0, (228)
0 ,
B : =5 +DivQ— P’ Gradx® — P"- Grad%” — (F*'p) - X" = 0, (229)
pooo=p"+0",
OFS
F .= e Grad %° = 0, (230)
A
N = a@tn +Div)—-n=0, A,:=n-—ng, (231)

where P¥ P denote the first Piola-Kirchhoff partial stress tensors, p is the momentum
source, ¢ is the specific internal energy per unit mass of the mixture, Q is the heat flux
vector, ng describes the so-called equilibrium porosity, J is the porosity flux, and 7 is the
porosity source.

The porosity balance equation (231) yields the model essentially beyond the frame
of Biot’s model due to the contribution of relaxation source n. It has been introduced
some years ago [57| and analyzed in numerous papers. For instance, the applicability in
the theory of abrasion has been discussed by N. Kirchner (e.g. [28]).

As we show in Section 10 changes of porosity predicted by the linearized porosity
balance equation are identical with those following from Biot’s model and Gassmann
relations provided the relaxation time of porosity goes to infinity (i.e. 7 = 0). However,
it should be mentioned that many other approaches to the problem of evolution of volume
fractions, porosity, etc. appear in the literature. One of the most popular forms of such an
evolution equation follows from the so-called principle of equilibrated pressures introduced
by Goodman, Cowin, Nunziato, Passman and others (e.g. see [28] for references and
discussion). Even though in some applications such an approach may by advantageous to
the porosity balance, we do not discuss it any further in these notes.

In order to obtain field equations from the above balance equations we have to specify
constitutive relations for these quantities, i.e

F:={P% P’ peQngJ n}, (232)

must be functions of constitutive variables. In this Section the set of constitutive variables
is chosen as follows

¢ = {p" F5, X" A, T,G,a, ), Gi=GradT. (233)
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Hence the gradient of porosity does not appear among the variables. It means that we
can expect only a simple mixture model to follow from thermodynamic considerations.
We do so on purpose to avoid technical difficulties of accounting simultaneously for two
new contributions: due to a, and due to N :=Gradn. In the full model in which both
contributions are present we use the results of thermodynamic considerations for two
models considered separately. One can show that the combined model satisfies the second
law of thermodynamics.
Once the function

F=F(C)), (234)

is given, we obtain a closed system of differential equations for fields V.
We say that constitutive relations (234) satisfy the second law of thermodynamics
if the following entropy inequality
0
%‘FDiVH >0, 77:77(C)> H:H(C)a (235)
is satisfied by all solutions of field equations. In this inequality 7 is the specific entropy
and H its flux.
This requirement is equivalent to the following inequality which must hold for all
fields

% +DivH-A""RF — A" . M® — A" . MF — A°E — AF.F — A"N>0, (236)

where
AT AYT AT NS AT AT (237)

are Lagrange multipliers dependent on constitutive variables C.

The exploitation of the second law of thermodynamics in the general case is tech-
nically impossible. Therefore we make simplifying assumptions sufficient for the second
law to be satisfied and yielding explicit limitations on constitutive relations. They are as
follows:

1° The material is isotropic. Consequently, scalar constitutive functions, for instance,
depend on vector and tensor variables solely through invariants. This assumption will be
applied in some steps of our proofs. Some relations are simpler in a general form and then
we do not introduce this limitation.

2° The dependence on the relative velocity XF is at most quadratic. This assump-
tion is related to the structure of the nonlinear contribution to the objective relative
acceleration. We motivate its form further.

3° The dependence on the temperature gradient G is linear. We could skip this as-
sumption on the cost of some technicalities but the experience with the thermodynamical
construction of poroelastic models shows that it does not yield any undesired results.

4° The dependence on the deviation of porosity n from its equilibrium value ng,
A, =n — ng, is quadratic.

5° The dependence on the relative acceleration a, is linear.

6° Higher order combinations of variables G, XF ,A,,a, can be neglected.
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As we see further these assumptions limit thermodynamical considerations to a vici-
nity of the thermodynamical equilibrium similar to this appearing in the classical Onsager
thermodynamics.

Bearing these assumptions in mind we can write the following representations of
constitutive functions

— partial stresses

1 . ,
P = PJ (Cp, A,) + 503 Cp)F*X" @ XF, Cp:={p" F° T},

1 , .
P =P[ (Cp, A,) + §0F (Ce)FXF @ X, ng=ng(Cg), (238)

— internal energy and entropy

pe = peo (Cry A,) + %z—:d (Cg) (FSXF) . (FSXF) ;

1 . .
pn = pio (Ci Bn) + 514 (Ce) (FSXF) - (FSXT), (239)
— fluxes of energy, entropy, porosity

Q = QX' — KG+Q.F*a,,
H = H,X" + H/G+H,F"a,, (240)
J = X + JrG+J,Fa,,

where all coefficients are functions of variables Cg,
— momentum source

F57p = Iy X + 11;G — p%,Fa,, (241)

with coefficients dependent again on variables Cg.

The notation of some coefficients in the above relations corresponds to this which is
customary in the literature.

The contributions with the coefficients €4, ng to the energy and entropy are motivated
by fluctuations of the microstructural kinetic energy caused by the tortuosity. We do not
introduce any additional microstructural variable describing changes of tortuosity. For this
reason a macroscopic influence of tortuosity can be solely reflected by the seepage velocity
which in our model corresponds to the Lagrangian velocity X¥. The classical kinetic
energy in this model is given by  (p°%% - X5 + pf%F - £¥"). Consequently, the correction
€d (XF — x5 ) : (XF — x5 ) may be considered as an added mass effect resulting from
tortuosity.

As we see further, the dependence of partial stresses on this velocity, introduced in the
simplest form by (238), is then required by the consistency of the model with the second
law of thermodynamics. In other words, we show further that coefficients o, o in the
stress relations (238) and the coefficient £4 in the energy relation (239) are connected (see:
formula (281)).

The exploitation of the second law of thermodynamics (236) is standard (e.g. see
[34]). We apply the chain rule of differentiation to constitutive laws. We skip here rather
cumbersome technical details.
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Linearity of the second law of thermodynamics with respect to time derivatives

{apF OFS AN, 9%5 0%F T ae}

ot’ ot ot ot ot ot ot

yields
A=A % _ e Qe (FSXF) : (FSXF) (242)
0 opF pF ’
r Opno dpeo
A = — A°
0 opF 0p¥
dpno dpeo 1 [ Ong Ogq .
AT = — A° S ==L AL ) (FIXT) L (FOXE 24
orr Ao+ 5 (gpr A gpr ) (FX7) - (X))
n_ Opmo . Opeo
A = 7A. —AaA, (244)
(pS - /)(1)2) A"+ P12Av = — (1 — Aeq) FYXF + P?QAEFSXF -
— Div (H,F®) + A° Div (Q.F®) + A" Div (J,F®) = 0, (245)
(PF - P(l)z) A+ P12A = (n4 — A°€q) F9X" — P?QAaFSXF +
+ Div (H,F®) — A°Div (Q,F®) — A" Div (J,F®) =0, (246)
8:0770 8/750 877(1 85d S~rF S~ F
— A® — A° FSXT) . (FSXF) = 0. 24
o7 8T+ a1 A5 ) (F°X7) - (FX0) =0 (247)

These identities still contain linear contributions of Grad F®, A,,, quadratic contri-
butions of the latter as well as quadratic contributions of Lagrangian velocity. As they
should hold for arbitrary fields coefficients of these contributions must vanish separately.
After easy analysis we obtain

H,=0, Q,=0, J,=0, (248)

na — ANeqg — A°p,
pS = Pl (1 + %)

S

pSAv :—pFAvF:I]FSXF, pi=—

(249)

The second law of thermodynamics is also linear with respect to the following spatial
derivatives

Grad %°, Grad %I, Grad p*’, Grad F®, Grad G, Grad A,,. (250)

We have listed them in the order of the further analysis and, simultaneously, skipped the
derivative Grad a, because it does not contribute to the second law due to the relations
(248). The linearity with respect to (250) yields a set of identities and leaves a residual
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inequality which is essentially nonlinear. It defines the dissipation in the system and
has the following form
H )
oo (U 00

_ n— 'F.
5 57 A8T+HT)X G+

0H 0K aJ
n < T T

AT XE - XE + A" > 0.

Hence the state of thermodynamical equilibrium defined by D = 0 appears if
G=0 X"=0 n=0, (252)

i.e. the temperature gradient, relative motion (diffusion), and the relaxation of porosity
cause the deviation from the equilibrium.
Clearly the assumption 4° yields the linearity of n and A™ with respect to A,. In
addition, the above inequality yields homogeneity of these functions, i.e. we can write
A,
n=—-——, A'=\"A,, (253)

T

where 7, A\ can be solely functions of variables Cg. Consequently, we obtain as well

0P 0Jr
37 = 0, T = 0. (254)
It is worth mentioning that due to (248) the relative acceleration does not contribute
to the dissipation. This property of the model follows from the fact that the model does
not possess any independent field of tortuosity which could relax to the thermodynamical
equilibrium.
Now we return to the coefficients of spatial derivatives of fields. The vanishing coef-
ficient of Grad %” yields the following results

9 o
APSFST 4 <ﬂ —A° pgo) FST+(—HV +AQy + A"+ pFAgF) 1 =0,(255)

OF* OF*
Ona .0a _ ong .04
or “ar =% o Mo =" (256)
aﬂd € a5d F and . agd B g pS »
2(3[[[ A 8[[[) HI+p dpF A OpF =n\o +,0Fa , (257)
1 USAE—U(JS+Z—§0F>
3= : (258)

201 ) (1 + %) + A
where
1
I:=trC% II:= 3 (I —trC%), III:=detC® C°:=FF” (259)

are main invariants of the Cauchy-Green deformation tensor C°.
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The coefficient of Grad %! yields

. opn .Ope
A (P§+P§’)=—<6FS°—A 6F3)’ (260)
and e 85(1 .
arrr Yo Y (261)
1 S
51\5 (0% +0") = —pl, (1 + Z—F) b — p°p — plHA°. (262)

Consequently, bearing (256) and (261) in mind,

Ona c0eq

Next we consider the coefficient of Grad p*. We have

— A A= AT ) X g FSXE — FSXF =0, (264
<6‘pF Ip* Ip* ) g Y05 0pF 0. (264)
OHr 0K dJr

LN =0, ZL=0. 2

Similarly, the coefficient of Grad F° yields

OHy aaQV naq) < F AP pS-T FF =S =F
sym{(aFS A SFS A 6FS)®X +p" AN F ®@ X" +p9E° +p=

— sym {(HV A A" F5 T XF} —0, (266)
oHy 0K 0y

T a2, 2T 2
ors T aps =0 Gps =Y (267)

=5 =F

where the components of tensors Z”, 2" in Cartesian coordinates are given by the rela-

tions
OPy, ; 5 0Py
=S 0L S Y F —F P 0lL 1S
FruXar,

SkKL — aF,fK M SkKL — _p_F aF,fK lMXJ\IZ- (268)

Under our assumptions the contribution of Grad A,, does not yield any restrictions.
Finally, the last condition follows from the vanishing coefficient of Grad G and it has
the form

Hr+ AN°K =0, Jp=0. (269)
Inspection of the results (265), (267) for thermal coefficients yields

1 K
N =A(T) = AN =g, de Hr=-—o, (270)

where the ideal wall argument been used.
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It is not quite clear what limitations on partial stress tensors are imposed by condi-
tions (264), (266). Derivatives of partial stresses with respect to the mass density p" as
well as with respect to the deformation gradient F° seem to restrict elastic properties of
the system in equilibrium. This does not seem very plausible. Hence we assume that the
coefficient y vanishes, i.e.

p=0. (271)

Then the multipliers of momentum equations vanish as well. As the consequence of

(247), (249), (257), (263) we obtain
—p% =¢eq—Tng = const. = g4 = const., ng = 0. (272)
It is convenient to introduce the following notation
:=¢e—Tn, (273)
piio = pib — ea (FSXF) - (FSXF).

Then, for Lagrange multipliers we have

ApF — lap¢0 _ ApF AF — lap¢0 An _ _lapdjo — )\nAny (274)

ST 9pF 0 T OFS’ T T OA,
and the relation (247) implies the following classical formula for the internal energy
oy
= —T—. 2
=y -Toh (275)
Simultaneously the relations (264), (266) yield
OHy 0Qv F 0P
—A° —AN =0, —5=0
opF opF To9pF 7
OHy . 0Qv F A pF R B
znfa—q) —d=0 = &=JD;, &= t (277)
oIl = = 0, 0 — const.

These relations yield the following integrability condition for the multiplier AP"

ONP" ONP"
F S
VYT

=0 = AN =N (T,0F), pf=J51p" (278)

Consequently, integration of (274); leads to the following additive splitting of the free
energy
1 1 e L
pi = PO+ 05T — CNTAL + ey (FSXF> : (FSXF) , (279)
W' o= 9 (Tp), ¢7=v° (T.F°).

The above separation property is characteristic for the so-called simple mixtures.
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In addition, integration in (276); yields

QV PF¢F
Hy, — <Y — _
Voor T

e H—% (Q—szpFXF), (280)

where we have accounted for the relations (269) and (270).
Inspection of relations (272), (258) and (262) leads immediately to the following
identification of constitutive coefficients coupled to the relative acceleration

ca=—ply 0% ==2ph, o ==2(1-3)p (281)

Simultaneously, relation (255) with (273), (274), (279) and (280) for partial stresses
P35 and relation (260) for partial stresses P{ yield

apSwS
PS = o+ BALTFTT 5l XS @ XS, = TN (282)
PF = 8¢F JSFST — BA,JSFST — (1 — 3) p%,F5X5 © X5.

Hence, as mentioned in the introduction, the partial stresses do not possess a coupling
term characteristic for Biot’s model and this fallacy of the model can be removed by
additional constitutive variables.

For practical purposes it is convenient to transform equations of the model to Eu-
lerian coordinates. We write them in an arbitrary noninertial reference system. The
set of balance equations (226) has then the form

— mass balance for the fluid component

a F

W +div (p; v") =0, (283)

— momentum balance for the skeleton

ov S
pf <W +v° gradvs) = divT® + p; b + J5 I, grad T+n (VF — VS) —

—pP12 [% (v =v®) = (1—3) (v = v7) - gradv" — 3 (vF = v¥) -gradvs} ,(284)

— momentum balance for the fluid

0
pf <% + vt - grad VF) = divTF + prF J5 Iy grad T—m (VF — VS) +

+p12 [% (VF — VS) —(1-13) (VF —VS) cgradvi —3 (VF — VS) -gradvs] ,(285)

— energy balance

Opse
ot

+ div (ptsv + q) —T5 . grad v?—TF - grad vi— (286)
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— (VF — VS) . {7T (VF — VS) + J5 Iy grad T—
P2 (VF — VS) —(1-13) (VF — VS) ~gradvi —3 (VF - VS) -gradvs] } ,
— porosity balance

oJ5LA,
ot

JS_lAn

+div (J5TALVT +§) + = 0. (287)

The external forces pyb®, pf'bl" called apparent body forces, contributing to mo-
mentum balance equations have the following structure

pib® = p? (bs+1), Fpf' = (bF+1)
i":=&4+2Q (v —¢ ( )(x—c)7 (288)
Fi=t420 (v —¢ ( )(x—c), Q::OOTE—QT,

where pPby | pI'bE are true (e.g. gravitational) body forces, and pPi®, pf'if’ are called in-

ertial body forces In order of appearance in the above relations, they consist of the
inertial force of relative translation, Coriolis force, Euler force, centrifugal force. They
depend on the matrix of angular velocity €2 of the noninertial system with respect to an
inertial one. Certainly, the inertial body forces vanish in an inertial reference system. It
should be mentioned that the partial accelerations appearing in the above partial momen-
tum balance equations combined with apparent body forces are objective, i.e. invariant
with respect to the Euclidean transformation.
The remaining notation used above is as follows

P =T =gl pe=ppdt T m=1y T (289)

while the Cauchy stress tensors T, T are given by the following constitutive relations

3 anS 8@/}5 ¢S
TS = J5IPFST = 2% | ———B°+ I1-B%)B°+ ——JII1 2
J Pe | "or oIl ( ) oITl (290)

+06A,1 — 3p10 (VF — VS) ® (VF — VS) ., BY =FF7,

T" = J5'PFF = —p"1 - BA 1 — (1—3) pro (v = v®) @ (v — v®)(291)

oF = sza@/JF
" opf

with the free energy given by

pp = ppp® (T, 1,11, I11) + pf 9" (T, pf ) — pr2 (v = v%) - (v = 7). (292)
The energy € and the energy flux vector q are given by

9

=T

q=J""FQ=J5"Qy (v = v®) — JS 'K gradT,  (293)
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and the porosity flux has the form
j=J"FT = @ (v —vF). (294)

It is easy to see that the linearization of the above set for isothermal processes without
the source of porosity leads to Biot’s equations (194) without the coupling constant Q.

There remains the question of practical estimation of additional parameters p%, and
3. The added mass coefficient p?, has been extensively studied in literature concerning
Biot’s model. The parameter 3 is new. There seem to exist various possibilities for its
estimation connected to the fact that it appears in contributions which may be time
independent. As an example let us consider a stationary isothermal process in which, in
a chosen inertial frame of reference, the skeleton does not move (i.e. v¥ = 0). Such a
flow of the fluid through a porous material is described by the mass balance and by the
momentum balance for the fluid. For simplicity we neglect changes of porosity. Then we
have

div (p; v") =0, (295)

[pf +2(1=3)pia] v - grad v’ = —gradp” — [7+ (1 —3) pr2divv’] v7,
" = p"(of).

The correction of the permeability coefficient 7 driven by volume changes of the fluid
div v seems to be very small. However the correction of mass density appearing on
the left-hand side of this equation may be essential and measurable. For instance, in an
irrotational flow (rot vI" = 0) we have approximately

1
grad [ng (p — po) + 3 (pf +2(1=3) pro) vi v | +avF =0, (296)
where p = p!'/n is the pore pressure and py its constant reference value. If the pressure
increment is of the order of, say, 10 kPa the velocity of the fluid must be of the order of

1 m/s to make both contributions of the similar order. Practically measurable would be
the influence of 3 for much smaller velocities which seem to be plausible at least for rocks.
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9 On macroscopic compressibility coefficients, Gass-
mann-like relations of linear poroelastic models

9.1 Introduction

In this Section we rely on an extended linear model of two-component poroelastic ma-
terial and compare it with Biot’s model [70]. This extended model contains the balance
equation for porosity discussed in previous Sections of these notes as well as the constitu-
tive dependence on the porosity gradient. We show that the balance equation of porosity
can be solved approximately and the solution agrees with rather intuitive results of soil
mechanics. Bearing this in mind, one can exploit certain Gedankenexperiments and the
following generalization of Gassmann relations shows that Biot’s model is one of the ad-
missible solutions of the micro-macro transition problem for the thermodynamical model
with the gradient of porosity. In addition, it follows as well that a ”simple mixture” model
of porous materials, developed earlier (e.g. [59], [74], [7], [4], [73]) is a reasonable approx-
imation of both Biot’s model and the thermodynamical model with porosity gradient in
application to analysis of acoustic waves.

We proceed in the following way.

In Subsect. 2 we present a macroscopic linear poroelastic model of fully saturated,
two-component media. All quantities appearing in this model have purely macroscopic,
smeared-out interpretation. They are fields defined on a certain chosen constant domain
of the three-dimensional configuration space. This means that they are functions of two
variables: spatial position x and time t. As in the classical theory of mixtures, in each
point x there appear both components of the system. This issue is important particularly
in connection with frequent misunderstandings between those, who work in the frame of
continuum approach and those, who work within classical soil mechanics with real grains
and real fluids filling the channels. We return to this point in Subsect. 3.

Subsect. 3 is devoted to a particular class of static deformations described by the gen-
eral two-component model — spherical deformations. In such cases components change
solely their partial volumes but there is no shearing. This class is important for the
exploitation of the so-called Gedankenexperiments. In the same Subsection we intro-
duce Biot’s notation for material parameters. The most important issue discussed in
this Subsection is the micro-macro transition. Under the assumption of homogeneity of
the microstructure we demonstrate two classes of compatibility relations of a continuum
macroscopic two-component model and a microscopic model of two true components.
We show that a condition for partial stress tractions yields two dynamical compatibil-
ity relations and the homogeneity of microstructure yields two geometrical compatibility
relations.

The set of relations consisting of a single equilibrium condition (static equilibrium in
spherical deformation processes), four compatibility relations, two constitutive relations
on micro- and two on macrolevel yields the solution of any static spherical homogeneous
problem.

In Subsect. 4 we present the so-called Gedankenexperiments. These are jacketed un-
drained, jacketed drained and unjacketed simple tests. They give rise to three additional
relations. Together with the definition of the drained compressibility modulus Ky which
is assumed to be given either experimentally or heuristically, we obtain four relations
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which specify a dependence of four macroscopic material parameters {K, M,C, N} on
two microscopic compressibility moduli { K, K¢} as well as on the initial porosity ng and
the drained compressibility modulus K,;. Here we use Biot’s notation and denote by K
the bulk compressibility modulus of the skeleton, M is the compressibility modulus of
the fluid, C is the coupling parameter which characterizes the influence of partial volume
changes of one component on the pressure of the other component, and, finally, N denotes
the parameter responsible for the coupling through the porosity gradient.

By means of the micro-macro transition procedure we obtain four algebraic relations
for four material parameters which we solve numerically. One of those solutions contains
the value N = 0 which corresponds to classical Gassmann relations derived for the Biot
model.

The most important conclusion of the work is that, in spite of flaws of both Biot’s
model and classical Gassmann relations, they follow from the full thermodynamical model
in the linear approximation as an admissible possibility. This statement should be quali-
fied by the fact that Gedankenexperiments may be the right way to describe the mi-
crostructure of granular materials but it does not seem to be appropriate for rocks. In
such materials the coupling through the porosity gradient may be stronger and this would
be a reason to ignore models in which the coefficient N vanishes. This is, certainly, also
the case in nonlinear materials such as clays or biological tissues where one should rather
apply the full thermodynamical model.

The procedure of micro-macro transition used in the present work as a method of
derivation of Gassmann-type relations has an advantage in comparison with classical ad
hoc methods that it can be easily extended to more complicated problems. In particu-
lar, we investigate in a forthcoming paper similar relations for unsaturated poroelastic
materials.

9.2 Linear model

The linear poroelastic two-component model of isothermal processes in porous materials
is based on the following set of unknown fields

{ps,pF,vS,vF,eS,n}, (297)

where p°, pf' are macroscopic current partial mass densities of the skeleton and of the
fluid, respectively, v, vF" are macroscopic velocity fields of these components, e is the
macroscopic deformation tensor and n denotes the current porosity, i.e. the fraction of the
volume of voids in a chosen representative elementary volume (REV) to the corresponding
total volume of REV. These fields must satisfy the following conditions which are the basis
for the linearization of a nonlinear thermodynamical model

max{uesu,m,

n —"no

1 298
o }<<, (298)

F __F
o = max (AL DL N, eom B (209)
0

where A(M, A®) AG) are eigenvalues of the deformation tensor e”.
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Fields (297) are functions of the spatial variable x €B, and time ¢ € 7. They must
satisfy field equations which follow from partial balance equations by a linear closure.
The partial balance equations appropriate for the chosen model are as follows

- mass conservation laws

8p° p"
%+p§dwv5:0, %—i—pgdivvF:O, (300)

- momentum balance equations

ov® , . ovF : .
pg% = divTS + p, pg—gt = divT" - p, (301)

- balance equation of porosity

d(n—ng)

T +divJ = n, (302)
- integrability condition for the deformation tensor
o S
% = symgrad v°. (303)

This condition is related to the existence of a displacement vector u®. In the linear model
such a vector leads to relations

ou’
v = a0 e® = symgrad u®.

Then the relation (303) becomes the identity. If we do not introduce the displacement
vector, which is convenient in the wave analysis, then the relation (303) becomes the part
of the set of field equations.

The partial stress tensors satisfy the following constitutive relations

T = T35+ Nel +2p%e’ + Qe1+8(n —ng)l, e:=tre’, (304)
T" = —p"1, p" =p§ — (pi ke + Qe) + B(n — ng),
ng = ng(1+de),

where ng denotes values of the porosity in the thermodynamical equilibrium which cor-
responds to vanishing sources p,72. The constant tensor T3 is the initial partial stress in
the skeleton, p{” — the initial partial pressure in the fluid, and these quantities as well as
the material parameters \°, 1%, k, Q, 8, 3 are functions of an initial porosity ng. Certainly
the parameters \°, u° correspond to classical Lamé constants while » corresponds to the
classical compressibility coefficient of an ideal fluid. The contribution with the parameter
[ is related to nonequilibrium changes of porosity and it may have an important bearing
in the theory of nonlinear waves. It can be shown that it yields small contributions to
volume changes of both components. We account for its presence only in the first part of
our considerations.

The prime is used in the above relations to indicate a form of constitutive relations
which follows directly by the linearization of the full nonlinear thermodynamical model.
These relations shall be modified in the sequel.
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The linear constitutive relations for the flux of porosity and for the sources have the
following form
n—ng

Jz@o(vF—VS), f):W(VF—VS)—Ngradn, n=— — (305)

In the linear model the material parameters ®, m, N, 7 are constants depending solely on
the initial porosity ng. Due to this property the contribution of the gradient of porosity
can be incorporated into the partial stresses. Namely if we define modified constitutive
relations by

TS :=T% - N(n—-no)1l, TF:=T%+N(n—ngl, (306)
then the source in the equations (301) contains solely the contribution of the diffusive
force m (vI" — v¥).

It is easy to see that the mass density p° can be eliminated from the set of fields by
integration of the mass balance equation (300);. According to (303) we have

Oe ) op° Oe o5 — p°
= _divyS =~ 2 s o = o ) 307
ar Y a Mo ‘T (307)

Simultaneously we can solve the porosity balance equation. We have
on—ng) n—ng d(e —¢)
= . 308
TR Y (308)
Hence

=no[l + e+ —(e — &) — — — /7 ds]. 309
n=mfl oot Ue—e) = 20 [ o)l elay (309)

The last contribution describes memory effects which are similar to these caused by the
viscosity. In the first approximation they can be neglected in models describing acoustic
waves in soils which corresponds to the assumption 7 — oo. We shall rely on this
assumption in this Section.

Summing up the above considerations we see that the full linear thermodynamical
model without memory effects contains the following essential fields

{VS,VF,eS,E}, (310)

which have to satisfy the field equations

S
pg% = div{\el +2p%e” + Qel+3(n — ng)l — N (n —mng) 1} +
“+m (VF—VS),
pOvVE F
p—gr = —erad{=(pgre +Qe) +Bn—np) = N(n—no)} - (311)
—T (VF—VS)7
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and

oe® 0
% = symgradv®, G_i:diVVF’ e=tre°, (312)
P
n = n(l+dée+—(e—¢)]).
o

If we assume § = 0, N = 0, then the set of equations (311) coincides with the set
of Biot’s equations in which the coupling through the added mass was neglected. The
classical Biot’s model does not contain any counterpart of the relation (312), for porosity.
In soil mechanics one uses a kind of hybrid extension of Biot’s model in order to specify
n?. Results are identical with those following from (312) provided the parameters 6, @
are given by the relations (326) which we derive by means of the micro-macro transition.

We proceed to investigate relations between the above introduced macroscopic ma-
terial parameters and real properties of materials constituting the porous medium.

9.3 Spherical static deformations

Description of granular materials by means of a macroscopic model is particularly easy
when a deformation is homogeneous, spherically symmetric and the mechanical reactions
of the system reduce to pressures. We consider such a system in this section in order to
construct a simple micro-macro transition procedure for identification of some macroscopic
material parameters.

In our notation we have for such a deformation

eS:%el, psz—%trTs, pF:—%trTF, (313)

and the macroscopic constitutive relations for partial pressures are as follows
p° =15 = — (X + 3% —noB6) e — Qe + (N — ) (n — ny) (314)
pF —pd = —plke — (Q +neB8) e — (N — B3) (n —ng).

Here we have already eliminated the equilibrium porosity ng = ng (1 + de).
In the static case the full pressure change must be in equilibrium with a given excess
pressure Ap, i.e.

Ap=(p°—p5)+ (" —nf). (315)

Clearly the problem to find volume changes e, ¢, partial pressures p°, p¥', and porosity n
cannot be solved yet even if we account for the relation for porosity (312)4. We have only
4 equations at the disposal and we need an additional equation specifying, for instance,
a flow of the fluid through the boundary of the medium provided the problem remains
homogeneous. This is natural for a two-component system and we present such equations
in the sequel.

3assuming that the partial fluid mass density p’, and the true fluid mass density p’? are given one

can calculate the porosity from the relation n = p'/pf". However such a statement is useful under the
assumption of incompressibility of the real fluid: p% = const. A similar statement can be formulated
under the incompressibility assumption of skeleton. Both of them are useless in acoustics.
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However we proceed with the closure of the above problem in a different way. Namely
we specify properties of the microstructure and relations between microscopic and macro-
scopic models. Then the problem can be solved and additional equations mentioned above
serve solely the purpose of relating microscopic and macroscopic properties (compatibility
conditions!). Such an approach is possible for static problems due to the homogeneity.
Then solutions of partial momentum equations are trivial and the problem becomes alge-
braic.

The microscopic model for spherical deformations is specified as follows. Volume
changes on this microscopic level are denoted by eft,e®. Then ef describes relative true
volume changes of grains, and e describes changes of the true mass density of the fluid in
channels of the granular material. The corresponding pressures are denoted by p°f, pf'®
and, of course, the latter is identical with the pore pressure ps. For these quantities the
following microscopic constitutive relations are assumed

pF — pgR = —K,eft, pf'ft —pkt = —KfeR. (316)

In these relations K, K; denote real (true) compressibility moduli of the solid compo-
nent (granulae) and of the fluid, respectively. In contrast to material parameters of the
macroscopic model, these can be measured independently of a current morphology of the
granular material. They are not influenced by a porosity, cohesivity, or any other property
characteristic for the texture of the medium.

The above presented macroscopic and microscopic properties are related through two
sets of compatibility conditions.

On the one hand we have dynamic compatibility relations which for pressures have
the form

p® =1 —n)p,  p"=np™ (317)

where n denotes the current porosity of the medium. On a boundary of the porous
material we require the following equivalence of local partial stress tractions

T ndA = TfndA®, TFndA =T ndA", (318)

where T, TR denote true partial stresses in the skeleton and in the fluid, respectively,
n is the unit outward normal to the surface, dA is an infinitesimal area of the surface,
and dAS, dAF are contributions of the skeleton and of the fluid to this area: dA = dA® +
dAF. If the surface fractions and volume fractions are the same, which follows under the
assumption of randomness of the microstructure, we have dA°/dA =1 —n,dA" /dA = n.
Then (317) follows from (318) if the partial stresses reduce to pressures.

On the other hand we have the following relations between partial mass densities

1
PP (xt) = = p* (z,) H (2,1) dV, (319)
14 REV (x,t)
1
ph(x,t) = = p" (2, t) H (2,t) AV,
V' JREV (x)

where REV (x,t) is the representative elementary volume located in the point x of the
macroscopic continuum at the time ¢, V denotes its volume, H® is the characteristic
function of the microstructural skeleton, i.e. it is equal to 1 when the point is occupied
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by the solid and zero otherwise, and similarly for the characteristic function of the fluid
HF =1— HS. If the microstructure is homogeneous we can write these relations in the
form

p® = (1=n)p,  pf =np™, (320)
no— — JL[F(z,t)dez1—l HS (z,t)dV,.
V' JREV(xt) V' JREV(x)

Relating changes of mass densities to volume changes introduced earlier we obtain
—1 -1
P’ = py(l+e) ", pl=p(l+e), (321)
-1 -1
PSR = pSR (1 4 eR) , pFR = pfR (1 +8R) .

Through the combination of these relations and linearization we arrive immediately
at the following geometrical compatibility relations
n —no R n—mno

=g’ — . 322
=g E=¢ - (322)

e:eR+

Consequently for the 9 unknown quantities of spherical homogeneous deformations

{6, €,p5,pF, €R, €R,pSR,pFR, n} ’ (323)
we have 9 equations at the disposal: 1 equilibrium condition (315), 2 macroscopic constitu-
tive relations (314), 2 microscopic constitutive relations (316), 2 dynamical compatibility
relations (317), and 2 geometrical compatibility conditions (322). This simple algebraic
problem can be solved.

As an intermediate result we obtain the following relations between geometrical mi-
croscopic quantities n, e and ¢ and macroscopic geometrical quantities e, e

+[(Q+pgm)—noKf}5},
= (KS_Kfl)(l_no){[(AS+§MS+Q)—(1—nO)Kf}e+
1@+ ) —noky) <}
et = —;{[()\S—F%/JSJrQ)—(l—nO)KS] e+ (325)

(Ks - Kf) L
1@+ pER) oK) o).

Consequently, comparing (324) and (312) we see that the material parameters 6, @, ap-
pearing in the relation for porosity can be expressed in terms of the other material pa-
rameters. We obtain

Ky — K (@ + pi k) — no Ky

D) =

§=—b —
no(KS—Kf)’ KS—Kf ’

(326)
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K =X+ %us + 0k +2Q, Ky = (1—ng) Ks+noK;. (327)

The material parameter K denotes the bulk compressibility modulus and Ky is the Voigt
compressibility modulus.

Now, for the determination of e and ¢ we have the following two equations. The
dynamical compatibility conditions (317) yield the following relation between the macro-
scopic volume changes

{Q+M[(AS+§MS+Q)—(1—no)Ks} -5

(Q+poK) —mofy|
K,— K; B

K,— K;

- { = moks) + = [(@+ o) = molc] 4+

F _
© o a Kf%Kf } -.(328)

Simultaneously the equilibrium condition (315) yields
Ap=—(N+24°+Q)e— (pir+Q)e. (329)

Hence substitution of € calculated from (328) in (329) leads to e given in terms of
the excess pressure Ap and, by means of (328), (325), (324), this determines in turn
g,eft e® n in terms of the excess pressure. Consequently, the constitutive relations give
rise to partial pressures in terms of the excess pressure. This completes the solution of
the problem. We shall not quote these simple results in this work due to their lengthy
form.

In the next Subsection we present various forms of an additional equation which we
have mentioned at the beginning of this Subsection.

In the Biot model it is customary to use a different field replacing the macroscopic
volume change of the fluid . This variable, (, is called the increment of the fluid content.
Its presence is related to the fact that, in contrast to the solid component, the represen-
tative elementary volume is not material for the fluid component. It means that REV
consists always of the same particles of the real skeleton but the fluid may open and leave
this domain due to the diffusion. The instantaneous mass of the fluid per macroscopic
volume dVj is given by p!" (1 + €) dVj because e is the macroscopic measure of volume
changes. Simultaneously in the same volume material with respect to the skeleton the
initial amount of fluid mass was pfdVy. Consequently the change of the fluid mass con-
tained in this volume is given by the difference of these two quantities. We introduce the
dimensionless measure of this quantity

C:—pg,%[(1+e)pF—pﬂ%no(e—a). (330)
This is the increment of the fluid content. We refer to this variable frequently in the further
considerations. However it is clear that the transformation (e,e) — (e, () is smooth and
one-to-one and it can be done whenever convenient.

As mentioned before we neglect further the influence of nonequilibrium changes of
porosity described in constitutive relations by the material parameter 3. A justification
of this simplification is based on the analysis of linear acoustic waves and it seems to be
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indeed well found for soils. This parameter cannot be found by means of simple static
experiments anyway.

Let us rewrite basic constitutive relations for spherical deformations (314) and the
intermediate results (324), (325) using the material parameters introduced by Biot (e.g.
see [41]). We have

=0 =

p—po:=p"—p5)+ (" —p)) =— (K —noC)e —ngCe = —Ke + C(,

prR—plt = pf—p?c::nio(pF—pg):—noMs—(C—noM)e—Nn;OHOE
= M(-Ce— N0
No
n—nyg = —K+Kf{[([(—n00)—(1—n0)KS]e+n0[C—Kf]€}E (331)
1
= —m{[K—KV]G—[C—Kf]C}y
1
R _ _ (1 _ =
e = (KS — Kf) (1 _no) {[(K TL()C) (1 no) Kf]e+n0 [C Kf] 8} =
- 1
= (KS_Kf)(l_nO){[K_Kf]e_[c_Kf]<}>
1 R
RO _m{[(K—nOC)—(1—nO)KS]e+n0[C—KS]5}:
. 1
= —m{[K—Ks]e—[C—KS]C}y
where K, Ky are defined by (327) and in addition
1 F
Ci= = (Q+si%), M:—%. (332)

This notation simplifies the comparison of the present results with those appearing in the
literature on soil mechanics.

Making use of the relations (331) and (316), for the pore pressure py —p§ = p"# —pi"
we obtain immediately the relation between volume changes e and increments of fluid
content ¢

{C Ky (K — K,) MK—KW}_

no(Ks — Ky)  no(Ks — Ky)

no(Ks — K;) no(Ks—Kp) [ e 0 (333)

(&

oy Ok NGO\ €

which must hold for all spherical static deformations.
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9.4 Gedankenexperiments for compressibilities
9.4.1 Jacketed and unjacketed tests

As we have indicated earlier the macroscopic deformation problem of a two-component
medium requires an additional boundary condition. In the case of static, homogeneous,
spherically symmetric problems such a condition can be easily formulated. In Figure 2
we show schematically three simple tests considered commonly in soil mechanics which
shall be considered in details.

Figure 2: Schemes of Gedankenexperiments: 1) jacketed undrained, 2) jacketed
drained, 3) unjacketed.

The additional conditions for those tests are as follows

1) jacketed undrained test in which the boundary of the sample is impermeable

it means that there is no flow through the boundary and, consequently, macro-
scopic volume changes of both components must be equal,

2) jacketed drained test in which there is a drainage of the sample connecting
the fluid component directly with the external world; then

prR=pft = =0 (335)

3) unjacketed test in which the pore pressure and the external fluid pressure
must be the same, i.e.

p™ —py T = Ap, (336)
where Ap is a given excess pressure.

These tests are called Gedankenexperiments because they can be principally per-
formed under ideal conditions (e.g. when capillary effects, viscosity, temperature changes
etc. can be neglected), and, simultaneously, they lead to relations between physical pro-
perties — in our case, between macroscopic and microscopic material parameters.

Such procedures were proposed often for materials with microstructure. For instance,
macroscopic properties of polycrystals were calculated by means of properties of grains
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by W. Voigt [48] (consistent stresses), A. Reuss [40] (consistent strains) or by means of
some fully consistent micro-macro transition procedures, properties of composites were
calculated by means of some homogenization procedures, etc. The above described simple
tests appear in the literature on granular materials in a more or less explicit form since the
works of F. Gassmann [21], J. Geertsma [22], M. A. Biot and D. G. Willis [13], and many
others. The problem is still investigated and we refer to modern review works of J. E.
White [50], R. D. Stoll [41], or J. G. Berryman [11] who present also various applications
of the results of such an analysis.

The approach presented in this work differs from the previous presentations because
the model contains an additional material parameter N. Simultaneously this systematic
approach to the micro-macro transition enables generalizations to such systems in which
we cannot assume full saturation or neglect capillary or viscous effects.

The jacketed undrained test described by (334) yields immediately the first com-
patibility relation between material parameters

Kj(K — K,) = N(K — Ky)

Cl :C+ no(KS—Kf)

= 0. (337)

We proceed to investigate the jacketed drained test.

It is commonly assumed that in addition to microscopic tests which deliver compressi-
bilities K, Ky one can measure the so-called drained compressibility modulus Kq. This
is defined as the negative fraction of the excess pressure Ap to the macroscopic volume
change e in the drained jacketed test. Hence we have for 3 =0

Ap (07 —w8) + (" —pf)
(& e

1
= —E{—(K—noC)e—noCa}EK—C

Kq
¢

=, 338
" (339)
We can eliminate the fraction % either by means of the macroscopic condition for
pore pressure (335); or by means of the microscopic condition on volume changes of the
fluid (335)2. Bearing the relation (331); in mind we obtain in the first case the following

second compatibility relation between material parameters

C.:n_g_ﬁl_(l_no)% _M -0 (339)
UMK, 1- Ll noMEK, ’

CQ
Kb::K_Ma

where we have used the relation (331)3 for the porosity.
In the second case we substitute (331)5 for €® and obtain the third compatibility
relation between material parameters

C-N
Cyi= K~ Ky~ Cr—yx =0. (340)

no
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Finally, for the unjacketed test, we have due to the equilibrium condition (315) the
equality of the full pressure given by (331); and the pore pressure (316),. This yields the
fourth compatibility relation between material parameters

(1. _o_pNEiTmC
Cy:= <1 Kw) (M C—-N - Ks>+ (341)

C 1—?10 K 1 1—?10 o
1——— K—-C-—-N 1—— =0 = —.
+< KW) < no ( Ks)) " Kw K +Kf

The set of relations

{61,02703764} =0 (342)

forms four equations for four material parameters {K,C, M, N}, or equivalently for
{)\S + %MS,/@,Q,N} in terms of the material parameters {K;, K, K4} and the initial
porosity ng. It is nonlinear and, consequently, possesses more than one solution. As
it cannot be solved analytically we present further some typical numerical results. For
data used in the example there exist two physically reasonable solutions in which all four
quantities K, M,C, N are real and nonnegative.

However one analytical solution can be constructed in the fully general case. Namely,
substitution of the parameter N = 0in {C;,Cs,Cys} = 0 yields the following set of equations

K,— K C?
K—Ks+nochf—o, Ki— K+ -2 =0,
C MK,
K(lil-=)-Cc+M- = 0. 343
(1-%)-crmv-F (343)

We see further that this set possesses two real positive solutions. One of them can be
found analytically and it has the form

K, — K;)? K, (K, - K K2

g Rl g o Kl m Ry K (344)
ki K K K K K
Ky  xd Ky  xd Kw  d

These are the famous Gassmann relations appearing in Biot’s model (e.g. [41]). It is
rather amazing that they satisfy identically the equation Cy = 0 with N = 0. Conse-
quently {K,C, M} given by (344) and N = 0 constitute a solution of the full system of
compatibility conditions. It yields the important conclusion that

Biot’s model whose material parameters satisfy the above Gassmann relations
is thermodynamically admissible in spite of the fact that its constitutive rela-
tions for partial stresses do no contain a dependence on the porosity gradient.

This property follows solely for the linear model in which the contribution of the
porosity gradient can be incorporated in constitutive relations for stresses.

Let us note in passing that in the usual derivation of Gassmann relations the com-
patibility of these relations with the jacketed drained test is ignored — this test is solely
used as a motivation of the definition of the drained compressibility modulus Ky — and, in
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addition, it is assumed that the porosity in the unjacketed experiment is constant. Details
can be found, for instance, in the book of Stoll [41]. Substitution of Gassmann relations
in the formula (331) for changes of porosity shows that n = nyg, i.e. the porosity follows as
a constant in this experiment and does not have to be assumed to be constant as claimed
by Stoll.

Let us comment on the condition C, = 0. This condition is violated by the second
solution of the set (343). We demonstrate it in the next Subsection on a numerical
example. However this solution can be used as a first step of an iteration procedure for
calculating a solution with N # 0. It is essential in the full model with an additional
contribution of the porosity gradient. If the parameter N is small in comparison with other
material parameters of the model we can iterate the solution of the full set {Cy,Cs, C3,Cs} =
0 assuming that the second solution of Gassmann equations forms a zeroth step of iteration
and Cy = 0 serves the purpose of determining N in this iteration level. Then we can
proceed to the second step of iteration and so on. It is easy to show that such a procedure
indeed converges to the full solution of the system. We shall not pursue any theoretical
analysis of this method in this work and present rather a numerical example.

9.4.2 A numerical example

As mentioned above the set of equations {Ci,Cs,C5,C4} = 0 for material parameters
{K,M,C, N} cannot be solved analytically. However, it is a rather simple algebraic
system which can be handled numerically with any standard package. Below we show
such numerical results calculated by means of the package MAPLE 7.0. We have chosen
the following data for these calculations

K
1+ gng’

K, =48 x 10°Pa, K;=2.25x10°Pa, K4;= (345)
where the last empirical relation is proposed after Geertsma (e.g. see: [50] where it is
claimed that g = 50 gives a good fit with experimental data for many soils). We choose
the values g = 30 and 50 for the illustration of Gassmann equations and solely g = 50 for
the full model.

In Figures 3 and 4 we show numerical solutions of Gassmann equations (343). So-
lution 2 (denoted as sol.2 in Figures) satisfies relations (344) and, simultaneously, the
equation Co = 0 with V = 0. Consequently, this solution is also a solution of the full
general set of compatibility relations. Solution 1 (denoted as sol.1 in Figures) in Figure
3 satisfies equations (343) but not the compatibility condition Co = 0. Hence, it is not
a solution of the full set and has no practical bearing. It is interesting to observe that
solution 1 yields negative values of the coupling parameter () for high values of porosity.
This would yield instabilities (expansion under pressure). In addition to the violation of
the compatibility relation this would eliminate an applicability of this solution.
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Figure 3: Compressibility modulus K (left) and compressibility modulus M (right)
according to Gassmann equations (343) for two values of Geertsma parameter g = 30, 50.
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Figure 4: Coupling parameters C (left) and Q (right) according to Gassmann equations
(343) for two values of Geertsma parameter g = 30, 50.

Let us make two observations essential for the further analysis. It is seen that the
change of Geertsma parameter does not yield any qualitative changes in the behavior of
the parameters. The model becomes stiffer for smaller values of g. For this reason we
present further results for the full model choosing only one value of Geertsma parameter:
g = 50. Secondly, it is seen in Figure 4 that values of the coupling parameter () are much
smaller than values of compressibility moduli K, M. This is an important conclusion for
the construction of acoustics by means of the model without any coupling between stresses
at all (e.g. [63], [59], [7]).

We proceed to the presentation of results for the full model. The set of compatibility
relations has been solved by iteration with respect to the parameter N. It has been
found that the iteration converges very fast for small values of porosity and it slows down
with growing porosity until, at approximately ny = 0.58, the procedure is not convergent
anymore. One would have to use a different iteration procedure in order to find solutions
for higher values of porosity. This has not been done because such results would have no
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physical bearing. Namely, for such values the coupling parameter () becomes negative and
this yields constitutive instability. Such an instability does not appear in Biot’s model.

Let us inspect the numerical results. In Figure 5 we compare all material parameters
K,M,C,N for the Biot model (left) and for the full model (right). Clearly N = 0 in
the case of Biot’s model. It is seen that there is a good qualitative agreement of both
models and quantitatively both models agree quite well for porosities bigger than 0.2. It
is essential to notice that the curves for C' and N intersect each other for the full model
at ng ~ 0.58. As we see further this appears in the point of loss of stability. At this point
the iteration was terminated.

701 70
1
I

60 | 60 |-

compressibility K
= = = = compressibility M
‘‘‘‘‘‘‘ coupling C

50 3
\
[y e COUPHING N
\

50

compressibility K

— = = = compressibility M
——————— coupling C

4 = BAeEy coupling N

40

material parameters for Biot's model
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Figure 5: Comparison of material parameters for Biot’s model (left) and the full model
with the porosity gradient (right) with Geertsma parameter g = 50.

On the left hand side of Figure 6 we compare directly compressibilities K, M for
both models. Obviously the compressibility modulus of the skeleton K is higher (app.
20%) for Biot’s model than it is in the full model but it is the other way around for the
compressibility of the fluid M.

The coupling coefficient () agrees qualitatively for both models and for the porosity
no < 0.58 (Figure 6, right) but the quantitative differences are essential. This coupling is
much stronger in Biot’s model and it becomes negative in the full model for ny = 0.58.
It means, as we have already mentioned, that an increment of pressure would lead to an
increment of volume (i.e. a nonconvex potential of stresses) which, according to classical
arguments of continuum mechanics, yields an instability .
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Figure 6: Comparison of the compressibilities K, M (left) and of the coupling parameter
Q (right) for the full model and Biot’s model with Geertsma parameter g = 50.

We proceed to present results for the coefficients ¢ and ®, describing the behavior of
the current porosity n (see: relation (312)3). These are shown in Figure 7. It is clear that
equilibrium changes of porosity proportional to volume changes of the skeleton e are much
bigger than nonequilibrium changes proportional to the difference of volume changes e —¢
(i.e. to the increment of fluid contents ¢). The parameter ¢ is app. 20 times bigger than
the nonequilibrium parameter ®y/ng. Changes of porosity are apparently more significant
in the range of small initial porosities than for large initial porosities.
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Figure 7: Coefficients of porosity relation: equilibrium part 6,
and nonequilibrium part v = ®g/ng with Geertsma parameter g = 50.
9.5 Concluding remarks

The results presented in this Section demonstrate the position of the classical Biot model
for linear poroelastic media among thermodynamically admissible models following as
limit cases from a fully nonlinear model with a balance equation of porosity.
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The most important conclusion of the above presented analysis of the micro-macro
transition is that Biot’s model follows as a special case of the full thermodynamical model
in which the coupling with the porosity gradient vanishes (N = 0). Simultaneously the
micro-macro transition yields compatibility relations which possess two solutions for ma-
terial parameters. One of them coincides with classical Gassmann relations for Biot’s
model. The other yields a model in which the coupling with the porosity gradient is
present. These two models seem to be possible due to the linearity assumption. The ex-
tension of the classical nonlinear two-component model of immiscible mixtures by adding
a dependence on the porosity gradient is necessary for the existence of coupling between
partial stresses and this dependence survives in nonlinear models not covered by the
micro-macro transition applied in this work.

In order to obtain Biot’s constitutive relations for stresses it is necessary as well to
leave out relaxation properties of the porosity (memory effects) which may appear in the
general thermodynamical model.

In the full thermodynamical model there appears a material instability for initial
porosities higher than app. 0.58 — at least for the data used in the numerical analysis.
This may be related to a real instability indicated by J. Dvorkin (e.g. [36]) which he
assigns to the fluidization.

The numerical results presented in the previous Subsection show that in practically
relevant cases of analysis of acoustic waves both couplings — Biot’s coupling of stresses
with the parameter @) as well as the coupling through the porosity gradient with the
parameter N — can be neglected without any qualitative consequences and very little
quantitative influence on propagation conditions. The last conclusion is presented more
extensively in the work [7].

Moreover, at least for granular materials for which the above micro-macro transition
analysis is better justified than for rocks, changes of porosity in the wave analysis of linear
acoustic waves can be assumed to be caused solely by volume changes of the skeleton.
An influence of the increment of fluid content on these changes is of the order of a few
percent of this following volume changes of the skeleton.
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10 Fundamentals of acoustic waves in linear poro-
elastic media

Theory of propagation of acoustic waves is one of the main reasons of construction of
poroelastic models. In many applications, particularly in geophysics, an assumption on
the elastic, reversible, character of deformation cannot be made as real processes are
irreversible and contain viscous, plastic deformations, damage, creation of cracks, etc.
However, a dynamical disturbance of small amplitude may propagate without considerable
irreversible changes of the material. For this reason, it can be used in nondestructive
testing. This is indeed the most important application of the poroelastic models.
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Figure 8: Schemes of wave tests in soil mechanics. The left panel: longitudinal waves,
the right panel: surface waves.

In Figure 8, we show schematically the two most typical nondestructive tests per-
formed in soils. As the result, one obtains speeds of propagation and attenuation of
different waves and these are used for the determination of various parameters of the ma-
terial. Waves are induced in these tests by an impuls created by a small explosion in the
borehole, by a vibrator, by hammering on the plate, or by some other means controlled
by the technician. However, one uses also natural sources of waves. The main source of
data on the earth structure are earthquakes (of course, also atomic explosions!), and a
geological structure on the depth of a few kilometers is investigated by means of measur-
ing waves stemming from microearthquakes created by propagation of small cracks near
boreholes.
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Figure 9: Speeds of propagation of longitudinal (cpy) and transversal (cs) and the
resulting porosity in the vicinity of Pisa tower.
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In Figure 9 we show a typical result of such a measurement (compare the article of
Carlo Lai in [31]).

In this Section we present the main features of the theory of linear waves in poroelastic
materials.

10.1 Wave front

Let us remind a few elementary properties of the description of wave fronts in continua.
Acoustic waves in continua are related to the propagation of a nonmaterial singular surface
— the wave front S — on which acceleration fields are discontinuous but the velocity fields
remain continuous. If the latter does not hold we deal with either shock waves or with
vortex sheets.

Let us assume that the instantaneous geometry of the front S is given by the following
equation

f(x,t)=0, xeB, CcR teT, (346)

which is at least of the class C? with respect to x, and of the class C! with respect to time
t. B; denotes the current configuration of the skeleton. The smoothness requirements
mean that changes of the normal vector to the surface are differentiable, and changes of
curvatures are continuous. Simultaneously there exists a smooth speed of propagation of
the surface. In order to see these properties we use the identity
of

df = dx-grad f + dta = 0. (347)
As the gradient of f is orthogonal to the surface (f is constant along the surface, i.e. the
vector grad f may possess solely an orthogonal component) we can define a unit normal
vector by the relation

n o grad f
~ [grad f|

The second gradient of f, i.e. a quantity proportional to grad n is related to curva-
tures. Bearing the relation (347) in mind we obtain for the speed of propagation

(348)

dx %
ci=—ron= erad 7|’ (349)
It is easy to see that the relation (346) does not impose any conditions on the tangen-
tial component of the velocity of the surface. This means that kinematics of slip motions
cannot be described by such a relation. However this is immaterial in the theory of waves.
If the speed of propagation c is given then the relation (349) is the nonlinear differ-
ential equation for the function f

% + clgrad f| = 0. (350)

With an appropriate initial condition for the position of the front (i.e. f(x,t=0) —
given) this equation forms a nonlinear Cauchy problem.
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10.2 Propagation of fronts of acoustic waves in Biot’s model and
simple mixture model

We proceed to present an example of analysis of weak discontinuity (acoustic) waves for
Biot’s model as well as the ”simple mixture” model in which both the coupling () and the
tortuosity coefficient (a — 1) are assumed to be zero. Similarly to Biot’s model the latter
model has already a rather extensive literature (for the review of results, see: [59], [7]).

The main aim of this analysis is to show that differences between these two models are
solely quantitative. This has a particular bearing in applications to such complex problems
as the propagation of surface waves which play an important role in nondestructive testing
of porous materials.

Let us repeat the set of equations of Biot’s model (194), (195) with a small modifi-

cation of the notation. For the fields v, vF', e ¢, we have the field equations
ov® ovt
pn% + p12% = N gradtre® +2u° dive® + Qgrade + 7 (VF — VS) , (351)
ovr ov®

P22=5 + P2 = kpl grade + Q gradtre® — 7 (vF — VS) ,

where

s
8@% = symgrad VS, % = div VF7 (352)

pu = poll—r(1—a), po=r(l—a)p], po=rap;,

1/1 v
a = —<——|—1), r:p—%.
2 \no Po

We begin the analysis of this system by proving its hyperbolicity. To this aim we
consider the propagation of the front S of the weak discontinuity wave, i.e. of a singular
surface on which

[Vl =0 [V =0, (353)

where [[...]] denotes the jump of the quantity. On such a surface the accelerations may
be discontinuous and we call their jumps the amplitudes of discontinuity

e [B7]) - [])

Then the following compatibility conditions hold*

[[gradv*]] = —%as @n, [[gradv"]] = —%aF @n, (355)

4The behaviour of various kinematic quantities on singular surfaces has been studied since 150 years
and the modern theory follows the way proposed by Hadamard. An excellent presentation of this subject
can be found in the classical book of C. Truesdell and R. A. Toupin [46] (Chapter IV). We use further a
particular case of these kinematic compatibility conditions following under the assumption of continuity
of both motions and velocities.
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o)) = -2 [ ]] om flgaae) =2 [[5] ]

where c is the speed of propagation of the surface S and n its unit normal vector. The
latter gives, of course, the direction of propagation of the wave.
Bearing (352) in mind we obtain immediately

[[erade®]] = 33 (a ®n+n®a’)@n, (356)
1.s

llgrade]] = -

- nn.
We evaluate the jump of field equations (351) on the surface S. It follows immediately
[pnc21 —Xnen— 14+n® n)] a’ + [,012021 —Qn® n} al’ =0,
[p12¢*1 — Qn @ n] a° + [paec®l — kpin @ n] a" = 0. (357)

This is clearly an eigenvalue problem. We say that the system (351) is hyperbolic
if the eigenvalues c are real and the corresponding eigenvectors |a [ S af } linearly indepen-
dent. We prove that this is indeed the case.

It is convenient to separate the transversal and longitudinal parts of the problem
(357). The transversal part follows if we take the scalar product of the equations with
a vector n; perpendicular to n. We obtain

(p1ic® — ) af + prac®a’l = 0,
P12GL + 92261{ = 0,
af :=a®-n;, af:=a" n,. (358)

Hence we have for the speed of the front

E=—Tr2 s (359)
P11P22 — P2

As pay > 0, p® > 0 it follows the first condition for hyperbolicity of the set (351)
a—r(l—a)>0. (360)

This condition is obviously fulfilled because a is not smaller than 1.

The speed of propagation (359) describes the shear wave. It is easy to see that in
the particular case without the influence of tortuosity a = 1 this relation reduces to the
classical formula

¢ =cs=\/u%/pf (361)

In this case, according to (358)s, the amplitude in the fluid a! is zero, i.e. the shear
wave is carried solely by the skeleton.

We proceed to the longitudinal part. To this aim we take the scalar product of the
relations (357) with the vector n. It follows

[p1i® — (X +2p%)]a” n+ [pad® —Q]a" -n = 0, (362)
[p1262 - Q} a’ - n+ [,02202 — /ﬁpg] a-n = 0,
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and the dispersion relation is as follows

2
r[(1=r(1—a)c®—cp| [ac® = chy] — [r (1—a)c®— %] =0, (363)
Po
where
Chy =5, Cpy =k (364)

0

The eigenvalues of this problem have the form

& ! [A + \/E} , (365)

:27“[&—7"(1—&)]

where
L 2 2 Q
A=rach +[1—r(1—a)|rchy —2-%r (1 —a), (366)
p
0 0
B:=A%—4rja—r(1—a) [0%310%27' - 52] :
Po

It can be easily shown that under the condition (360) B > 0 for all a > 1, @ > 0.
However, ¢? defined by (365) is positive solely if the additional condition on @ is satisfied

Q < pS\/repicps = \/pgn (A5 +2p%). (367)

This is the second condition for hyperbolicity.

In the particular case a = 1, (Q = 0 we have ¢ equal to either cp; or cpy which means
that the set is unconditionally hyperbolic.

The two solutions for ¢? define two longitudinal modes of propagation, P1 and P2.
The P2-mode, called the Biot wave or the slow wave in the theory of porous materials, is
also known as the second sound and it appears in all two-component systems described
by hyperbolic field equations. For instance, it is known in the theory of binary mixtures of
fluids in which it is applied to describe dynamical properties of liquid helium as discovered
by L. Tisza in 1938 [42]. For porous materials, it has been discovered by Ya. Frenkel in
1944 [20].

10.3 Biot’s model vs. the simple mixture model on the example
of monochromatic acoustic waves

The above analysis yields solely the propagation properties of the wave front S. We do
not learn anything about, for instance, the attenuation of the waves. For this reason we
proceed to analyze monochromatic waves. As we see the speeds of propagation obtained
above follow in the limit of frequency w — oo.

We seek solutions of equations (351) which have the form of the following monochro-
matic waves

vi=VS¢E, vI=VFg e =E°E, e=EFE, (368)
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E=expli(k-x—wt),

where V5, VI ES EF are constant amplitudes, k is the wave vector, w real frequency.
This should be understood in the following way: the wave number, £ = vk -k =
Rek + iImk, is complex and the direction of propagation n := k/k real which yields
exp (ik - x) = exp(—Imk (n-x))exp[i (Rek (n-x) —wt)], i.e. contributions of the at-
tenuation and of the progressive wave.

Substitution of this ansatz in field equations yields the following compatibility con-
ditions

[p1w?1-Mk @k — 4 (A1 + k@ k) + inwl] VI+
+ [p12w®1 — Qk ® k — imwl] VI =0, (369)
[p12w21 —QQk®k — im,ul] \VAuE [p22w21 — /ﬁpgk Rk + z'mul} Vi =0.

As usual, the problem of existence of such waves reduces to the eigenvalue problem
with the eigenvector [VS ,VE } As before we split the problem into two parts: in the
direction k; perpendicular to k (transversal modes) and in the direction of the wave
vector k (longitudinal modes).

For transversal modes (monochromatic shear waves) we have

[p11w2 - uSk‘Q + imu] Vf + [p12w2 — iww] Vf = 0, k*=k-k,
[p12w? — imw] VP + [poow® + imw] VI = 0, (370)
VEi=Vvo.k,, V=V k.

The dispersion relation can be written in this case in the following form

WA 2
w {(Pnpm — pia) (E) - MSP22} +

. w2
+ur {(,011 + pog + 2/)12) (E) — /LS} = O, (371)
i.e.
WA 2 wra + i% ) ) S
Z) = =, 372
(k) wr[a—r(l—a)]+z’%(1+r)cs’ s o5 (372)

Consequently, neither the phase speed w/ Re k nor the attenuation Im k of monochromatic
shear waves is dependent on the coupling coefficient Q).
In the two limits of frequencies we have then the following solutions

lim (=) i lim (Im k
w—20: wlg(lJ(Rek) = LL}li%(m)—(),
wooo :  lim ( d )2— LECA— (373)
w—oo \Rek P11P22 — Pia

T 1 a
li Imk) = — .
wgrolo(m ) 2/pSpSa?\ a—r(l—a)
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The first result checks with the results of the classical one-component model com-
monly used in soil mechanics. The speed in the second one is identical with this of formula
(359). Hence the propagation of the front of shear waves is identical with the propagation
of monochromatic waves of infinite frequency. Let us notice that the attenuation in this

limit is finite.

We demonstrate further properties of these monochromatic waves on a numerical

example.
For longitudinal modes we obtain the dispersion relation

[p11w2 — ()\S + Zus) E* + iww} [p22w2 — kph k* + imu] —
- (p12w2 — Qk‘2 — z'7rw)2 =0,

or, after easy manipulations,

w{[l —ri-a) (£) —ci,l} {a () —c§,2}+

—%w {r(l — a) (%)2 - p%}z 0.

Let us check again two limits of frequencies: w — 0, and w — oo.
In the first case we obtain

w
0: =li ( ) ;
L= =01 \Re k

s {(1+r)cg — TChy — Cpy —1—2%} =0, lim0 (Imk) = 0.
0 v

Obviously, we obtain two real solutions of this equation

cfpl—i—rcfpz—i—Q% AS+2u5+p0F/<;+2%
= Gp1 =

lim (=)’
wlir(l) (Rek)
w

2

- N L+r - P+ pb

2
= Copy = 0.

2

(374)

(375)

(376)

(377)

These are squares of speeds of propagation of two longitudinal modes in the limit of zero
frequency. Clearly, the second mode, P2-wave, does not propagate in this limit. Both
limits are independent of tortuosity. The result (377) checks with the relation for the
speed of longitudinal waves used in the classical one-component model of soil mechanics

provided @ = 0.

In the second case we have

) w
W—00: Cu :=Ilim ,

w—oo \Rek
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r{[l —r(1—a)]c —c?;l} {acgo —0%2} — {7‘(1 —a)c’ — ,0%} =0. (378)

This coincides with the relation (363). Consequently, the limit w — oo gives indeed the
properties of the front of acoustic longitudinal waves in the system.
Simultaneously we obtain the following attenuation in the limit of infinite frequencies
7TF1

1 Q
I = ¢ {1+T—§(cil+rc%2+2p—s)},

(o) 0

2 2
2 ) 2 €p1 Q Q
I'y = cp; (a—CT) + Cpy (1—T(1—a)—CT)+2§ (1—a—rpgcgo).

e.o] e.o]

Hence both limits of attenuation for the P1-wave and P2-wave are finite.
We proceed to the presentation of a numerical result in the whole range of frequencies
w € [0,00). We use the following numerical data

cp1 = 25002, cpy=10002, cg=1500 2,
py = 2500%%  r=01 w=10%2L (380)

m3s?

Q = 08GPa, ny=04, a=175.

Speeds cp1, cps, cs, the mass density p3 (i.e pg® = 4167 % for the porosity ng = 0.4)
and the fraction r = pl'/p5 possess values typical for many granular materials under a
confining pressure of a few atmospheres and saturated by water. In units standard for soil
mechanics the permeability 7 corresponds to app. 0.1 Darcy. The coupling coefficient @)
has been estimated by means of the Gassmann relation (see: Section 9). The tortuosity
coefficient a = 1.75 follows from Berryman formula (352)s.
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T T T T T T T T T T T 1
~N

1.0x107° 1.0x107°

5.0x10™ 5.0x10™
frequency [1/s] frequency [1/s]

Figure 10: Speed of propagation and attenuation of monochromatic S-waves for two
values of the tortuosity coefficient a : 1.75 (Biot),1.00 (simple mizture).

Transversal waves described by the relation (372) are characterized by the following
distribution of speeds and attenuation in function of frequency (Fig. 10). The solid lines
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correspond to the solution of Biot’s model and the dashed lines to the solution of the
simple mixture model.

It is clear that the qualitative behavior of the speed of propagation is the same in
both models. It is a few percent smaller in Biot’s model than this in the simple mixture
model in the range of high frequencies. A large quantitative difference between these
models appears for the attenuation. In the range of higher frequencies it is much smaller
in Biot’s model, i.e. tortuosity decreases the dissipation of shear waves.

attenuation of the front of shear waves [1/m]

[l ] 1 J
0 5

2 3 4
tortuosity coefficient a

Figure 11: Attenuation of the front of shear waves in function of the tortuosity
coefficient a.

The latter property is illustrated in Fig. 11 where we plot the attenuation of the
front of shear waves, i.e. lim Imk, as a function of the tortuosity coefficient a. This

wW—00

behavior of attenuation indicates that damping of waves created by the tortuosity, which
is connected in the macroscopic model to the relative velocity of components, is not
related to scattering of waves on the microstructure. It is rather related to the decrease
of the macroscopic diffusion velocity in comparison with the difference of velocities on the
microscopic level due to the curvature of channels and volume averaging. Fluctuations
are related solely to this averaging and not to temporal deviation from time averages (lack
of ergodicity!).

The disastrous character of attenuation presented in Figure 11 indicates that an
influence of tortuosity must be placed in the model somewhere else. This has been known
already to Biot who speculated on the dependence of the diffusion coefficient on the
frequency. This would be clearly an indication of some viscous effects or rather an influence
of the microstructure on damping as the effect is present even in the case when the fluid
in pores is inviscid. Such corrections are introduced until today rather ad hoc and have
not been yet justified satisfactory by formal arguments of modeling.

We proceed to longitudinal waves. The solid lines on the following Figures correspond
again to Biot’s model, the dashed lines to the simple mixture model. In order to show
separately the influence of tortuosity a and of the coupling () we plot as well the solutions
with @ = 1 (dashed dotted lines) and the solutions with = 0 (dashed double dotted
lines).

Even though similar again the quantitative differences are much more substantial for
Pl-waves (Fig. 12). This is primarily an influence of the coupling through partial stresses
described by the parameter (). The simple mixture model (Q = 0,a = 1) as well as Biot’s
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model with @ = 0 yield speeds of these waves different only a few percent (lower curves
in the left diagram). The coupling @ shifts the curves to higher values and reduces the
difference caused by the tortuosity. This result does not seem to be very realistic because
the real differences between low frequency and high frequency speeds were measured in
soils to be rather as big as indicated by the simple mixture model. This may be an
indication that Gassmann relations give much too big values of the coupling parameter
(@ with respect to these indeed appearing in real granular materials.

Both the tortuosity a and the coupling () reduce the attenuation quite considerably
as indicated in the right Figure.
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Figure 12: Speed of propagation and attenuation of monochromatic P1-waves for
various coupling parameters () and tortuosity coefficients a.

In spite of some claims in the literature the tortuosity a does not influence the exis-
tence of the slow (P2-) wave (Fig. 13). Speeds of this wave are again qualitatively similar
in Biot’s model and in the simple mixture model. The maximum differences appear in the
range of high frequencies and reach some 35 percent. The same concerns the attenuation
even though quantitative differences are not so big (app. 8 percent).
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Figure 13: Speed of propagation and attenuation of monochromatic P2-waves for
various coupling parameters () and tortuosity coefficients a.

The above examples yield the following conclusions.
1° We have demonstrated on the example of acoustic waves that tortuosity a and
the coupling parameter () have a quantitative but not qualitative influence on results.
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Comparison of results for Biot’s model with these for the simple mixture model in which
the tortuosity a = 1 and the coupling parameter () = 0 shows that both models are
hyperbolic provided the parameter () satisfies a condition bounding this parameter from
above. In particular, both models predict the existence of the P2-wave. Speeds and
attenuations of monochromatic P1-, P2- and S-waves are qualitatively the same but there
are quantitative discrepancies.

2° Tortuosity introduced to the model through the relative acceleration yields dissi-
pation solely due to the modification of the relative motion. Namely if we assume the
permeability coefficient m = 0 the dissipation in isothermal processes without relaxation
of porosity vanishes. This is due to the fact that tortuosity, in contrast to porosity, is
not introduced as a field described by its own field equation. This is an explanation of a
rather unexpected behavior of attenuation of monochromatic waves. Inspection of figures
shown in this Section makes clear that the presence of tortuosity a # 1 yields a smaller
attenuation rather than bigger as it would be in the case of a dissipative field. This
may be explained by the fact that tortuosity reduces the relative velocity v — v and,
consequently, it reduces the contribution to dissipation 7 (VF — v ) . (VF — v )

3° We have demonstrated that a rather moderate value of the parameter () suggested
by the classical Gassmann relation for granular materials leads to an unreasonable in-
crement of speeds of propagation and reduction of attenuation. In addition, the speed
of propagation of monochromatic P1-waves becomes very flat as a function of frequency.
This contradicts observations in soil mechanics and geotechnics and indicates that the
Gassmann relation predicts too big values of this parameter.

10.4 Introduction to surface waves

The bulk waves presented above are the basis for the theory of surface waves. These
waves are created due to the interaction of bulk waves with the boundary. The typical
theoretical problem which yields such waves is the two-dimensional half-space problem of
the classical elasticity. It is known (e.g. [47]) that in the case of the boundary between
an elastic material and vacuum there exists a single surface wave — Rayleigh wave whose
speed is a bit lower than the speed of transversal (shear) wave. In the case of an elastic
layer on the elastic half-space, there may exist another surface wave — Love wave. On
the other hand, if the elastic half-space is in contact with an ideal fluid, there exists a
so-called Stoneley wave. A detailed review of this theory can be found in the book [31].

The fundamental problem of the theory of surface waves is the form of boundary
conditions. As usual in theories of multicomponent systems with diffusion the problem of
formulation of boundary conditions is connected with many additional physical problems
stemming primarily from the fact that a relative motion of components leads to the cre-
ation of boundary layers. For isothermal processes in two-component models one expects
two vectorial conditions on the boundary 0B,. If the boundary is impermeable we have
either purely kinematical conditions

S S _ ‘dd _
X (X> t) - X (Xa O)‘XEBBO - 07 X (X> t)‘XeaBO - 07 (381)
or mixed conditions
S F _ 7 F _
(P + PPNy s = Pear X (X, t)’xmo — 0. (382)
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The physical interpretation is obvious. In the first case we require that the bound-
ary which is identified with the boundary of the skeleton does not move (the clamped
condition), and that the velocity of the fluid component is identical with the velocity of
the skeleton (lack of permeability). In the second case the second condition is identical,
and the first one follows from the dynamic compatibility conditions. The right hand side
of (382); contains either an external, and given boundary loading p.,: (in its Lagrangian
form) or a total stress vector of the other body (continuity of stress vector following from
dynamical compatibility conditions).

In the Eulerian description the conditions (382) have the form

(T® + T") n| vi—v8| . =0. (383)

xXEIB: = tel“t 5 xXEOB;

The situation is different in the case of permeable boundary. It was demonstrated by
von Terzaghi in a Gedankenexperiment that the external loading cannot be distributed
among components a priori on a permeable boundary, and we can solely require the con-
dition of the form (382); to hold. Consequently we need an additional vectorial condition
in the case of two-component systems.

According to considerations connected with this Gedankenexperiment it is assumed
that the flow of the fluid component through the permeable boundary is proportional to
the real pressure difference on both sides of a boundary or interface between two different
porous materials. According to the mass compatibility condition we have

. - ” +
pFXF-N’ :pFXF-N) . (384)

For this reason we do not use any signature for the boundary value of the mass flow.
According to the above described assumption we have

n

pFXF N =aq HP—F” - FS. (385)

In this relation the product —3 J*'P¥ . F5 = —1J5 1 tr PFF7 is identical with the
partial pressure in Eulerian description. The coefficient oy denotes the surface permeability
coefficient related to the Lagrangian image of the boundary or interface. Its existence is
connected with the fact that the flow of the fluid component from the negative side of
the surface to its positive side must overcome obstacles connected withe the change of
geometrical properties of the neighboring media. In our model this is reflected primarily
by different porosities on both sides of the surface. It is reasonable to assume that such
a change of flow conditions yields the existence of a boundary layer which is replaced by
a jump condition (385) with a phenomenological coefficient «.

It is easier to appreciate the structure of condition (385) in the Eulerian description

pi (v =v%) n=a <pF_ — Z—+pF+) , Q= % (N - Csle)_% , (386)
where n is the unit normal vector of the surface in its current configuration.

If the surface is an external boundary we have n*t = 1, and p** is an external pressure
which must be given on the surface in addition to the external loading appearing in (383).

The above condition for permeable boundary has been introduced by Deresiewicz in
1962 [17] in the analysis of surface waves.
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Let us mention in passing that this art of boundary conditions can be introduced
in multicomponent models based on partial momentum equations in contrast to scalar
models following from the application of Darcy’s law in mass balance equations alone.
Models of the latter type leading to nonlinear parabolic reaction-diffusion equations dom-
inate in the mathematical literature on porous materials, they are frequently considered
to be the theories of porous materials per se, and usually require rather artificial boundary
conditions like a continuity of the pore pressure.

The boundary condition (386) has been tested in classical problems of consolidation
as well as in processes of coupling between diffusion and adsorption. It has been found
out that it checks very well with expectations. Another class of problems in which this
condition plays an important role are surface waves.

Certainly the condition (386) determines only one component of the vector (in the
direction of the normal n) which we have to prescribe on the boundary. We have to add
a condition on the tangential component of the relative velocity. In the case of viscous
fluids the problem is similar to that which we discussed above and we have to account for
the boundary layer. We consider in these notes solely ideal fluids and in this case we deal
with a sticking condition

(vF* = v . nn) — (v® —v® - nn) =0, (387)

for the interface. It reduces to the single condition on the external boundary.

Conditions (386), (387) together with the conditions (383); and (384) form the full
set of boundary conditions for the two-component porous material filled with an ideal
fluid.

Let us mention that the additional porosity balance equation does not require bound-
ary conditions and it yields effects similar to these of usual evolution equations for internal
(microstructural) variables.

10.5 Surface waves for the contacts: porous body/vacuum, porous
body/liquid; asymptotic properties of the dispersion rela-
tion

10.5.1 Preliminaries

We have seen in Subsection 10.3 that the two-component model of porous materials
considered in these notes yields three modes of propagation of bulk waves. It means that
we must expect instead of a single Rayleigh surface wave of a classical single component
elastic continuum a higher number of surface modes of propagation. We show that this
is the case.

Let us first briefly recall the construction of classical Rayleigh waves in linear elastic-
ity. These follow from the superposition of longitudinal and transversal waves which are
solutions of two wave equations

0? A+2

a;L = AAug, = P /~07 rot uy, = 0, (388)
6211T 1% .

2 cAuy, = ;, divur =0,
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where A\, u are Lamé elasticity constants, p denotes the mass density, and the displacement
u =1uy + uyr. If we consider now the boundary value problem for the half-space y > 0
with the free boundary y = 0 then we can easily show that there exist solutions of the
following general form

u = (u"exp (—y"y) + u" exp (—"y)) sin (k (z — Ugt)) e, + (389)

L k
+ <uL% exp (—"y) + uTV—T exp (—’yTy)) cos (k (x — Ugt))e,, Ug < Ur,
where e, e, are unit base vectors in directions of z and y axes, respectively, u”, u” are

real amplitudes and %, y7, k with % =0(1), % = O (1) are real constants following
from the dispersion relations

2 2
0 N S 0 R
k 2’ k &’

G ()

which are, in turn, a result of solvability of equations (388) and of the homogeneity of
boundary conditions, respectively. It is clearly seen that the wave described by (389)
propagates with speed cg, and it attenuates very fast with the depth y. This is the reason
for calling it a surface wave. Obviously the displacement u = u,e,+uye, describes ellipses

2 2
ua: uy

2 2
Lo—ty T —va) L L T
(“ € tu'e ut-e™ y+uT7iTe—7 Y

=1. (391)

These are local trajectories of materials particles.

It is important that surface waves do not attenuate along the boundary. A simple
geometrical argument shows then that their dispersion in the case of the point source is
much slower than this of bulk waves. Namely bulk waves are spherical and, consequently,
their amplitudes decay as %3, r being the distance from the source while surface waves are
cylindrical, and for this reason their amplitudes decay as T% This makes surface waves

very attractive in practical applications.

10.5.2 Governing equations

We proceed to describe surface waves in poroelastic materials saturated with a fluid. The
detailed analysis both theoretical as well as numerical can be found in contributions of B.
Albers and K. Wilmanski to the book [31]. We present here only a brief summary of this
complex problem.

As mentioned above the theory of surface waves in two-component systems differs
qualitatively from such a theory for one-component continua. Such waves are produced in
linear models by a combination of bulk waves. In the case of a one-component continuum
there are two bulk modes of propagation which yield a single Rayleigh wave. For two-
component systems we have three bulk modes: P1l-waves, P2-waves and S-waves which
produce two surface modes in the case of impermeable boundary. For the permeable
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boundary, i.e. for the case of an additional system — a fluid in the exterior, there may
exists three surface modes, etc. In addition, as all these waves are dissipative and there
may exist additional so-called leaky modes.

In this Subsection we consider surface waves in two-component homogeneous poroe-
lastic materials with an impermeable boundary. However, we indicate as well some prop-
erties related to the permeable boundary condition. This condition has been proposed in
1962 by Deresiewicz [17]. The analysis is based on the simple mixture model. We limit
the attention solely to high and low frequency ranges. A much more extensive article of
B. Albers in the book [31] contains also a numerical analysis of the problem in the full
frequency range. We leave entirely open the problem of existence which is at least as
complicated as in the case of single component materials.

To the end of this Section we quote a few results obtained within Biot’s model. As
this model is much more complicated than the simple mixture model results are limited
only to some special cases.

10.5.3 Compatibility conditions and dispersion relation

As discussed in [67] we seek a solution of the set of fields equations which we obtain
from Biot’s equations by the substitution ¢) = 0,a = 1. It is convenient to introduce the
displacement vector u® for the skeleton, and, formally, the displacement vector u’” for the
fluid. The latter is introduced solely for the technical symmetry of considerations and it
does not have any physical bearing. Then

o S
u’ = grad¢® +roty®, v°¥= %, e’ = sym grad u®, (392)
p_ Ou”

u’ = grado® +rotypt, v ETR

where % 1% F ' are two pairs of potentials analogous to those which we were using
in the classical elasticity model.

We choose the axes with the downward orientation of the z-axis and the x-axis in the
direction of propagation of the wave. As the problem is assumed to be two-dimensional
we make the following ansatz for solutions

©° = AS(2)expli(kx —wt)], ¢ =AY (2)exp[i (kx — wt)], (393)
@Df = B%(2)expi (kx — wt)], vy = BY (2) exp [i (kx — wt)],
¥ = uS=uf =uf =

and

p°—p5 = AS(2)expli(ke —wt)], p" —pf = AL (2)expli(kz — wt)], (394)

n—ny = APexpli(kz —wt)].

Substitution in field equations leads after straightforward calculations to the following
compatibility conditions for z > 0

i nowt [ d?
) L—— s — k) (AT — A° 395
pEw+imr i+ wr \dz? ( ) (395)
AS _ S d2 ]{2 AS AF _ F d2 k2 AF
o — —Po @ - ) p — —Po @ - )

103



as well as
d? noBwT d? T
— — K 2| AF 0 (= -k — AF — A%) =0, (396
[K(dZQ )—i—w} +{pg(i+w7) dz? +pgw ( ) =0, (396)

S 9,5 / g2 § '
o () v o[ () + ] o a0 =g
Po

dz2 dz?

I (i + wr) 1%

S 2 . F

w d 2 2 S 1Py 218

P2 g BS4+ P 2pS_y. 398
L§<W2 )+w} +p§@@Hﬁﬂw (398)

It is convenient to introduce a dimensionless notation. In order to do so we define
the following auxiliary quantities

Cg Cp2 wa un
o = —<1, ¢g=—, 7=—75>0, = Sg > 0, (399)
cp1 cp1 Po PoCp1
F
z
r = '0—% <1, 2= . K =kepim, W =wr
0 cp1T

where the velocities cpy, cpg, cg are defined by (361), (364) and, in the simple mixture
model, they describe the velocities of fronts of bulk S-wave and P1-, P2-waves, respectively.
These are, of course, identical with the limits of bulk phase velocities for w — co. As we
neglect processes of relaxation of porosity, the reference time 7 can be chosen arbitrarily.

As we have already mentioned, we neglect further the influence of the nonequilibrium
changes of porosity, i.e. § = 0. In the compatibility relations derived in this Subsection
we still keep it in the relations in order to show the way in which this influence enters the
model if not ignored.

Further we omit the prime for typographical reasons. Substitution of (399) in equa-
tions (396),(398) yields

() s () o -

d? d?
[(@ — k2) +w2:| AS — [if—ww (@ — ]CQ) + imu] (AF — AS) = O,

2 .
[ci(d——k2>+w2+ Y }BS = 0
w

dz? +1iZ

This differential eigenvalue problem can be easily solved because the matrix of coef-
ficients for homogeneous materials is independent of z. This is different from the case of
waves in heterogeneous materials (see: [31]). Consequently, we seek solutions in the form

AF = Abem® 4 2077 AS = Alem 4 A%, BS = B, (401)

where, due to the chosen direction of the z-axis, the exponents 71,7, must possess
negative real parts. This is the existence requirement for surface waves. Substitution in
(400) yields them in the form

() =12 (o) ) )

104



and

s (e D) 2] (@ ]+ [ (e D) T )

+ {1+c§c+ (1+%) Z,iww + <c§c+ %) Zﬂ {(%)2 - 1} (%)2 —0. (403)

Simultaneously we obtain the following relations for eigenvectors

R! = (B, AL AY", R?= (B, A2, A%)" (404)
where
A} =8p AL, A2 = 5,47, (405)
Lo (@) -1) + 25
6f::1 1;+w (k)2 wk2 — (406)
TG+ ) () -1+ () 2
p_w [ 72 2 _ 1] + EW_Q
5, = itw k ) w k2 ‘ (407)

L+ @) )+ (@) + 25

The above solution for the exponents still leaves three unknown constants By, A3, Al
which must be specified from boundary conditions. This is the subject of the next Sub-
section.

For technical reasons, we limit the attention solely to the limit problems in the range
of high and low frequencies.

In the case of high frequency approximation we immediately obtain from relations
(402) and (403)

s (@)l
(408)
2 2 2 1 2
)=t ) =r-2@)
and
§;=06,=0 = R'=(B,AL0)", R?=(B,0,42)". (409)

For the case of low frequency approximation the equation (403) becomes singular.
It can be written in the following form

e a2
+{w(1—|—c§)+z’7r (cfc—ki)}w[(%y—l] (%)2—0. (410)
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Making the following substitution

W[ (2) ) v (8) st )

we obtain a quadratic equation for W

w

AW? +in | e + B <y wW— (412)
! Py ) \k

; { G+ 0sd) (H;)] (%)4}w+0(w2) o,

which for small w can be solved by the regular perturbation method

W =W +wW; + 0 (v?). (413)

After easy calculations we obtain

1+c2 1 2
5t — 55| (),
W = . (414)
1+c? +1 2 . rci41 2
- [ 2c?f - r£?+1:| (%) W —am f2 (E)

Bearing the relation (411) in mind we arrive at the following results for the exponents

et (%)2_1_r£1<%)2’
(F) =1 () (15)

(72)2_1 ch%—i—l (w>2 i?TTC?c‘f‘l(w)Q
k) cff (Tc?c—i—l) k w rc? k)’

and for the coefficients of amplitudes

1—c2 1—c}
Of = el & 552—7"0?( -z f)- (416)

Obviously due to the singular character of the equation (410) the last contribution

to % becomes singular for w — 0.
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10.5.4 Boundary value problems for surface waves

In order to determine surface waves in saturated poroelastic medium we need conditions
for z = 0. We discuss in some details the problem in which this boundary is imperme-
able, and a poroelastic medium is in contact with vacuum. According to Subsection
10.4 boundary conditions have then the form

oud  ous
Tiloco = T8,y = (G + 38)

Tssl,_ o = (Tég:a - pF)}z=0 -

=0, (417)
z=0

ouf  ouy ouy
2 S 1 3 2 g0U; 2 (F _F
= Cp1Po (— + —) —2¢5pg - —Cp2 (P — PO =0, (418)
ox 0z ox ( ) 0
g (ug — ug,?) =0, (419)
t z=0

where Ty3, T, Tss, Tay are components of stress tensors and the first two conditions mean
that the surface z = 0 is stress-free (far-field approximation), and the last condition means
that there is no transport of fluid mass through this surface (impermeable boundary).
u?,us denote the components of the displacement u® in the direction of z-axis and z-
axis, respectively, while uZ is the z-component of the displacement u’".

In the case of a permeable boundary neither the condition (417) nor the condition
(419) would hold.

The first condition would have to possess the right-hand side reflecting the external
pressure p,; appearing in the fluid outside of the porous material. This change would
appear as well in the case of impermeable boundary when we did not have the vacuum
outside.

Condition (419) which reflects the fact that the impermeable boundary is material
for both the solid and fluid component would have to describe mass transport through
the surface specified by a relation to a driving force. According to the proposition of
Deresiewicz and Skalak [17] such a driving force is proportional to the difference of pore
pressures on both sides of the boundary

Fa

P 57 (15 = u5) —a (P = nopess)| =0, (420)

2=0
where o denotes a surface permeability coefficient and p.,; is an external pressure.

The coefficient « is an overall macroscopic description of a boundary layer which
is created by the flow of the fluid component from conditions specified by the porous
material (i.e. by the permeability 7, porosity n, a geometry of the microscopic vicinity
of the boundary such as a shape of openings of channels, their average orientation with
respect to the surface normal, etc.) to the free space of a pure fluid. It is clear that the
limit & — 0 corresponds to the impermeable (sealed) boundary, and the limit o — oo
corresponds to the continuity of pressure in the fluid: p!" = ngpess. Such a boundary
condition is used, for instance, in theories of porous materials with a rigid skeleton which
are used in the description of various geotechnical diffusion and seepage processes.
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In addition, for the permeable boundary we have to account for the continuity of the
mass flux through the boundary. This additional boundary condition is necessary with
respect to the existence of an additional constant in the solution for the exterior (in the
range z < 0).

Substitution of results of the previous Subsection in boundary conditions (417)-(419)
yields the following equations for three unknown constants B, A?c, Al

AX =0, (421)
where
()" +1 2126, 212
2)2 1 4 202] 85+ 142
A = —2205,5 [( 2 9 ’ G Al ; (422)
walr-1] -1
e -6 -DF (6 = 1) %

X:= (B, A% Al)"

This homogeneous set yields the dispersion relation: det A = 0 determining the
w — k relation. We investigate separately solutions of this equation for high and low
frequencies.

10.5.5 High frequency approximation

In the case of high frequencies % < 1 we have 65 = 6y = 0 and the dispersion relation
follows in the form

-5 G+ 5 ()i G o =

7311:—(2—(312 d ) —4,/1— 1/ —0—2 d (424)

Hence for r = 0 the relation (423) reduces to Pg = 0 which is the Rayleigh dispersion
relation for single component contlnua. Otherwise we obtain the relation identical with
this analyzed by I. Edelman and K. Wilmanski [19] in the limit of short waves (i.e. + < 1).
Consequently, the conclusions for this case are the same as well. As shown in the paper
[19] the equation (423) possesses two roots defining two surface waves: a true Stoneley
wave which propagates with the finite attenuation and with the velocity a bit smaller
than ¢y as well as a generalized Rayleigh wave which is leaky (i.e. it radiates the energy
to the P2-wave) and propagates with the velocity cg: ¢y < cg < ¢s. The Rayleigh wave
is leaky because its attenuation is unbounded, i.e. such a wave cannot exist in the range
of high frequencies. Immediately after the initiation, it transforms into bulk waves.

where
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These results are not very surprising because the dispersion relation (423) is identical
with the dispersion relation in for the so-called Stoneley-Scholte wave [47]. The only
difference is that the real Stoneley-Scholte wave propagates on both sides of the interface
and the above presented wave propagates solely below the boundary (z > 0) in the porous
medium.

The detailed description of these waves can be found in the article of B. Albers in
(31].

10.5.6 Low frequency approximation

If we account for the relations (415) and (416) in the condition det A =0 then we obtain
the dispersion relation reflecting a dependence of ¥ on w. The expansion with respect to
J/w yields the identity in the zeroth order and the following relation for the higher order

G O G R ey 0N R

+0 (Vw) =0.

Clearly we obtain two solutions:

1. Rayleigh wave whose velocity is different from zero in the limit w — 0 and whose
attenuation is of the order O (y/w). The relation for the velocity reminds the relation
(424) with the velocities of bulk waves replaced by the low frequency limits. Namely

we have
r+l_ o pite G T+l o pite  _ Ch (426)
R R B C RN VN A
Consequently

2 ron2) 2 A fw\2 c? w\ 2
C-2Q) RO R
oS oS oP1

2. The Stoneley wave has the velocity of propagation of the order O (y/w). Hence, it
goes to zero in the same way as the velocity of propagation of the P2-wave.

10.5.7 Remarks on modelling surface waves by Biot’s model and the simple
mixture model

The results for a two-component model of porous solid-fluid mixtures presented in this
Section should be compared with those obtained by means of the Biot’s model and with
experimental observations. We shall not go into details of such a comparison in this
work. However, as mentioned before, there is a very good qualitative agreement of both
models as far as propagation of acoustic waves is concerned. Velocities of bulk waves
are influenced by the coupling parameter () but this influence reflected in high frequency
— low frequency relations seems to be too strong for values of this parameter following
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from the classical Gassmann relations. The influence of tortuosity a on the velocities of
propagation is rather small and, simultaneously, essential changes of attenuation do not
correspond to the physical inside, particularly to mechanisms of scattering of waves, of
the morphology of porous materials in spite of some claims in the literature.

Neither bulk waves nor surface waves reveal any qualitative differences between Biot’s
model and the simple mixture model. It can be expected that ranges of existence of
different surface modes are different for both models but results of analysis of this problem
are not yet available.

It should be mentioned that results for surface waves within the Biot’s model are often
limited to high frequency limit. Some early results of Deresiewicz for low frequencies do
not depart from those obtained within the simple mixture model.

Certainly, it should be born in mind that the simple mixture model must be quan-
titatively a worse approximation than Biot’s model because it does not contain natural
physical couplings. However, it is known from the theory of mixture of fluids that many
results of the simple mixture theory are good enough for some practical purposes. This
seems to be also the case for porous materials as far as a qualitative analysis of acoustic
waves is concerned.

11 Mass exchange in porous materials

11.1 Adsorption for large channel diameter

Mass exchange between components of porous, and granular materials belongs to the
most important problems of practical bearing within theories of such materials. This
is connected primarily with a very large internal surface per unit volume on which the
exchange takes place. For instance in sandstones it reaches the value of 1.5 x 10° Z—i in

comparison with 6:2_2 for the external surface. This property is used in many technological
processes. For instance in the growth of SiC crystals by sublimation the vapor of silicium
flows through a porous graphite wall in which it forms various carbite connections. A
charcoal granular material is also used in gas masks. Lungs, many filters and chemical
reactors are made of porous materials for the same reason. Transport of pollutants by
ground water in soils is an important example of such processes appearing spontaneously
in nature.

(Classically processes of mass exchange in porous materials were divided into two
classes of chemical and physical adsorption. This classification seems to be not very
sharp but it is still useful by construction of various macroscopic models. In the case
of chemical adsorption we deal with exchange of mass between skeleton and one or more
fluid components in which particles build chemical bindings. In contrast to such processes
in a physical adsorption particles of skeleton and of a fluid component form weak van der
Waals bindings. The first type of exchange is connected with essential thermal effects
connected with a release or absorption of energy, i.e. with the latent heat of reaction. On
the other hand the heat of reaction by physical adsorption is very small and we use the
approximation of isothermal processes. We discuss such a model in this Section.

The physical adsorption model of a mass exchange between a fluid component, and
a solid in porous, and granular materials is based on the classical work of Langmuir (see:
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[1], [3] for references). In the original works of Langmuir the theory of adsorption was
limited to flat solid surfaces interacting with a gas. However for porous materials whose
pores are large - their diameter is greater than app. 500 A = 50 nm - one can still rely on
the assumption that the influence of the curvature of the surface is small. We discuss the
influence of the curvature in the next Subsection. This is why we say that we describe
materials with a large diameter of channels.

We assume as well that the fluid component consists of two phases. The bulk phase
does not exchange mass, and it is solely a carrier of the adsorbate. The second phase -
the adsorbate - moves with the velocity of the bulk fluid and its concentration is small

PP
where p#, pf" denote current partial mass densities of the adsorbate, and of the fluid
carrier, respectively.

According to Langmuir a transfer of particles of adsobate from the fluid phase to the
surface of the solid depends on the number of available bare sites on this surface. The
notion of bare sites is introduced in connection with the landscape of interaction energy
between adsorbate and the solid skeleton. This landscape depends on a crystallographic
or structural symmetry of the skeleton and it has the form of a regular pattern with dis-
tributed spots of a maximum interaction energy. On these spots one can expect particles
of adsorbate to settle down most frequently. This process is controlled in the first place
by the partial pressure of adsorbate in the fluid phase. Certainly there are also particles
which desorbate again if they overcome an energy barrier through thermal fluctuations.
In the equilibrium one expects these two processes to have the same rate.

Such an adsorption process is called the monolayer adsorption. If in a certain domain
all available bare sites on the surface of the skeleton are already occupied the adsorption
may take place due to interaction of adsorbate particles in their fluid phase and those
which are already bound to the skeleton. We deal then with the multilayer adsorption.
In the case of a small concentration of the fluid adsorbate such exchange of mass between
the two phases may be assumed to be less important. We limit attention in these notes
solely to the monolayer adsorption model.

In order to construct a continuous model in the spirit of this work we have to construct
the mass sources in partial mass balance equations. On the semimacroscopic level (i.e.
in the representative elementary volume (REV) of a porous or granular material) the
normalized fraction of bare sites per unit volume is denoted by 1—x, i.e. x is the fraction of
occupied sites. 1f the area of the internal surface contained in the representative elementary
volume is denoted by f;,:, and the mass of adsorbate per unit area of the internal surface
by m# then the amount of mass which is already adsorbed in the representative elementary
volume is in average equal to the product mAz fi;.

Let us denote by V' the volume of the representative elementary volume. Then the
amount of mass of adsorbate transferred in unit time from the fluid phase to the solid
skeleton is given by the macroscopic balance relation

pA = _mAd(xy) y = fint
‘ dt -’ v
where pf denotes the current intensity of mass source per unit time, and unit macroscopic
volume.

(429)
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In order to construct the model we have to specify the rates in this relation. The
quantities x,y play in the model the role of additional microstructural variables. Field
equations for these quantities are assumed to have a form of evolution equations which
are specified by relations for the above mentioned rates.

For the rate Z—f we assume that changes of the fraction x are described by the Langmuir
relation

dv _ a(l—xz)pt— bme‘f_ib“, (430)
dt

where p# denotes the partial pressure of the adsorbate in the fluid phase, E is the energy
barrier for particles adsorbed on the solid surface due to the van der Waals interaction
forces, and it is assumed to be constant, a, and b are material parameters which within
the present model may depend solely on the temperature, k is the Boltzmann constant,
and T is the absolute temperature. In the case of full phase equilibrium in which the
adsorption rate (the first contribution with coefficient a), and the desorption rate (the
second contribution with coefficient b) are equal but of opposite sign we obtain from the
equation (430) the following relation for the equilibrium fraction of occupied sites

p

P b _E

— — ‘= —e kT, 431
TS AT P e (431)

This relation describes the so-called the Langmuir isotherm. It begins in the origin
A A
’;—O = 0 with the zero value of occupied sites and saturates at the value 1 for ’;—O —

0o. At any given partial pressure p# the fraction z is uniquely determined and it may
change its value if we vary the pressure. This corresponds to a slow transition from one
thermodynamical equilibrium to another one. In reality such processes are conducted
through nonequilibrium states which are described by the rate equation (430) and are
connected with the dissipation.

In the mass source (429) we have also another contribution connected with the change
of the internal surface. Consequently we must formulate a relation for the rate ‘(11—1;. We
make the assumption that changes of the internal surface are coupled with dissipative
changes of the porosity n which in turn describe relaxation processes of semimacroscopic
changes of volume of the skeleton.

First of all let us notice that for sufficiently smooth internal surfaces of porous, and
granular materials with a random geometry of pore spaces a change of an average char-
acteristic linear dimension of the internal surface, and this of pores in the elementary

representative volume can be assumed to be proportional: ¢ fjlt ~ 0 (nV)% Simulta-
neously dissipative changes of the porosity are given by a source n which describes the
intensity of these changes per unit time and volume of the porous material. Bearing the
above assumption in mind we obtain immediately

, (432)

where the proportionality factor ¢ is assumed to be constant for the purpose of this work.
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Obviously in a thermodynamical phase equilibrium n = 0, and the equilibrium frac-
tion z is connected with the partial pressure p# through the relation (431). Then the
mass source (429) vanishes identically.

The behavior of the continuous model based on the above assumptions has been
checked on a simple bench-mark homogeneous problem [62]. It was found that results are
indeed qualitatively in agreement with observations.

We present here the set of field equations which covers a much more extensive class of
problems. In particular we can describe couplings of adsorption and diffusion as well as we
can incorporate boundary conditions on permeable boundaries which are characteristic for
the majority of practical problems. According to the above remarks we have to determine
the following fields

{pt 7:0t e V eS VF n,xT y} IOtL = pf +IO;€47 (433)
where the concentration ¢ is defined by (428). The velocity of the third component does
not appear because the adsorbate in the fluid phase moves with the same velocity as the
other fluid component. Therefore we use only two momentum balance equations, for the
skeleton and for both fluid components together.

Field equations follow from three mass balance equations, two momentum balance
equations, the balance equation of porosity, integrability condition for the deformation of
the skeleton, and two evolution equations for two additional microstructural variables. In
the case of small deformations of the skeleton, small changes of the fluid mass density,
small concentrations of adsorbate, and small changes of porosity, i.e.

e < 1, ptp_po <1, 0<e<l, |A<1, (434)
0
they have the form
e mass balance
0 i b) L
% +div (pv%) = —pfe, % +div (p;v") = pie, (435)
Oc .. P m4 d (zy)
a—l—v cgrade = (1—c¢)¢, ¢:= ,Ot_ ,0—(]); T

e momentum balance

dpp v div (pEvE F oLy F 5y —
o + IV(ptV KV +p )+7T(v —V)—
ovS
pf%:diVTS—F?T(VF—VS), (436)

e porosity balance
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aaAtn + g div (VF — VS) = —%,

where
TS = T3+ X treS1+2p%e® + BA,1, (437)
p' o= ph (ol = pb) + 80, T =(1—0)pt pt =t

with material parameters \°, u°, s¢, 3,7 being constant. They depend parametrically on
the constant initial porosity ng. In addition we have

e integrability condition

He’
% = sym grad v°, (438)

e cvolution equations for microstructural variables

dng A fint (= 0)
Yo - =n t = O _ = nt
dt gnEv y( ) Yo Vv ;
dx 1 ep” copg
o o) ], z=0=—2 (439)
dt Tad Po 1+ CoPy
Po
Tad & = 56%, co:=c(t=0),

Again the material parameters ¢, pg, 7,4 are assumed to be constant.

General results for this system of equations have not been obtained as yet. However
some important particular problems have been solved under the assumptions of negligible
accelerations, and a negligible explicit time dependence of porosity. Their discussion
can be found in the Ph-D Thesis of B. Albers [1]. The most important results have
been published [2], [3]. We quote here solely the most important conclusions of these
works. The latter assumption yields the following relation for changes of porosity, and
the constitutive relations for partial stresses

A, = —1Pydiv (VF — VS) ,
T° = Tj+ M tre®14+2,%° — Broydiv (vF — v¥) 1, (440)
i pé + %(ptL — ,05) — B1dy div (VF — VS) .

Hence changes of porosity appear in equations of motion in a similar way as con-
tributions of bulk viscosities in mechanics of fluids. Relation (440); allows to eliminate
dynamical changes of porosity from field equations.

Let us note that the initial value problem has been already formulated in the above

relations. It remains to add boundary conditions. In the two-component case it has the
following form

(T% —p"1) n’aBt = teat,
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p (VF - VS) : n}azst = (pL — NPeat) ’8& ; (441)
(VF —VS) — (VF —VS) -nn‘aBt =0.

It is easy to check that these conditions are of the third art.

Such a problem has been analyzed for a 1-D case in the above quoted works of
B. Albers. Most important results for applications of the model are connected with
couplings of adsorption and diffusion. For instance, it has been shown that the mass
source as a function of relative velocity of components possesses a maximum. It is zero
for the relative velocity equal to zero and it tends again to zero when this velocity goes to
infinity. In the first case the system is in equilibrium and the number of bare sites remains
constant and determined by the partial pressure p. The internal surface is also constant
because the porosity does not change. In the second extreme case relaxation times for
internal variables: Tad,% are too long for adsorbate to settle down on the skeleton. This
indicates the way for an optimal design of filters. Particularly useful is a dependence of
the relative velocity from the surface permeability coefficient a because this parameter
can be controlled.

11.2 Adsorption for small channel diameter; capillarity

As we have already mentioned processes in materials with the so-called mesopores, i.e.
in materials in which the diameter of channels lies in the range 20 — 500 A are connected
with the appearance of hysteresis loops in adsorption isotherms. Measurements of their
size are used in practical application to find microgeometrical properties of such materials.
The reason for the appearance of loops is a capillary condensation. In contrast to the
previous case a macroscopic multicomponent model for adsorption with hysteresis has not
been constructed as yet.

We proceed to explain the notion of capillary condensation in terms of semimacro-
scopic description by means of the Kelvin equation.

We begin with mechanical and thermodynamical equilibrium conditions on an inter-
face between two different phases of a liquid. These conditions determine properties of
an interface between a fluid and its vapor in the analysis of condensation.

Let us consider a surface in a three-dimensional Euclidean space described by the
position vector r

r=r (¢, &), (442)

where (£1,£?) are surface coordinates. Base vectors, a normal vector, and the first and
second metric tensors of this surface are defined by the relations

Or g1 X &2
==, ni=—— 443
Ba s g1 X g (443)
b 9%r
a M pr— . s = — 1
AA gA - 8A AA GEA(%A

It can be shown that the normal component of the mechanical equilibrium condition on
such a surface has the following general form

[Tn]] - n = —5%%ban, (444)
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where T denotes the Cauchy stress tensor in bulk substances on both sides of the surface,
and S are components of the surface stress tensor, both on the level of semimacroscopic
description.

In the case of ideal fluids on both sides of the interface which is itself a membrane
we have T = —pl, and S?* = ga®*, where o is a surface tension. Then relation (444)
reduces to the following one

2
p¢ —pf' = UZ kg . g (445)
a=1

where k(% are eigenvalues, and [3(0‘) eigenvectors of the second metric tensor

(bAA — KGAA) ﬁA = 0. (446)

On the left hand side of (445) we have the difference of pressures between the gaseous
phase, and the fluid phase, respectively.

In addition to the mechanical equilibrium condition (445) an equilibrium on the
interface is determined by the thermodynamical condition of equal chemical potentials
(Gibbs free energies) of both phases

p (T4, p%) = u" (T7,0"), (447)

where p©, p!" are pressures in the gaseous phase, and in the fluid phase, respectively. We
assume the temperatures to be equal and constant: 7¢ = TF = T = const.
We apply the above conditions to a small change of the equilibrium. We have then

du® = VOedp® = dut = vFapt, (448)

and, hence, by substitution in (445)

Ve Ve 11
dp® —dp" = (1 - — | dp® = ——=dp® =0d | — + — 449
p” —dp < VF)p yrdp” =od{—+ (449)
where ﬁ, % denote the main curvatures. It was assumed that the volume of fluid phase

is much smaller than this of the gaseous phase: V¥ <« V¢ and that the surface tension o
is constant. For ideal gases we have

RT 1 1
Wdlnpa = —od <E + 72) , (450)

where R is the gas constant.
Integration of this relation yields the Kelvin relation

p oVE /1 1
ImE£L = —— (=4 = 451
np() RT <T1+7’2)’ (5)

in which pq is the integration constant which we identify with the saturation pressure.
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We demonstrate the properties described by relation (451) on a simple example of a
cylinder open on both ends.

D
@ ap

Figure 14: Scheme of capillary condensation and evaporation in a cylinder

Imagine a carrier of adsorbate filling the cylinder in the initial state with the partial
pressure p of the adsorbate given by (451) for r1 = r,ry = oo, where r denotes the
radius of the cylinder (Figure 14). The process of condensation may occur below the
saturation pressure pg if there is a thin film of adosrbate on the internal wall of the
cylinder. This yields the existence of a surface tension and, according to Kelvin formula,
the partial pressure p at which condensation occurs is lower than py. Once the nucleation
on this thin meniscus begins the partial pressure of adsorbate decreases and this yields
a decrement of the radius of the cylindrical space still filled with the gas (upper part of
Fig. 14). This process is, of course, unstable and it means that it terminates when the
cylinder contains solely a condensed fluid form of the adsorbate.

A
- 16

CH, at 323K
- 8

amount adsorbed /cm3

| | )
04 0.8

relative pressure, p/p,

Figure 15: Condensation and evaporation on a sodium-rich montmorillonite [25]
In Figure 15 it corresponds to the lower curve of the hysteresis loop reflecting the pro-

cess of condensation. On the other hand the evaporation does not require a nucleation. It
proceeds from the heads of the cylinder by moving hemispherical meniscus from both ends
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of the cylinder to its interior (lower part of Fig. 14). In this process = ro = r, which
means that the partial pressure is lower than in the case of condensation. Consequently
we observe a hysteresis shown on the example of Figure 15.

Processes in channels of real materials with mesopores are similar to this described
in the above example. However the appearance of hysteresis loops is connected with
various geometrical properties and their macroscopic description usually requires essential
modifications of the model for particular materials.

12 Perspectives

Continuum multicomponent theories of porous materials which we presented in these
notes are still in a rather early stage of development. They require essential physical
modifications as well as investigations of their mathematical properties. Let us list a few
most important questions which should be answered in near future.

1. Nomnisothermal processes.

We have mentioned already problems arising in connection with a macroscopic defi-
nition of thermodynamical temperature or multiple temperatures. There may be a way
out of this problem if we work with some alternative notion such as an internal partial
energy itself. One of the problems which can be solved easily in such a formulation is a
transfer of energy by convection (relative motion) with negligibly small contributions of
heat conduction. Such a problem may clear some couplings of diffusion and of a heteroge-
neous temperature distribution. But the main question of measurable thermal quantities
cannot be answered in this way.

2. Entropy condition and entropy flux.

These problems arise in general thermodynamical considerations as well as in con-
nection with the selection criterion for weak solutions, satisfying Rankine-Hugoniot con-
ditions.

All thermodynamical results which were presented in these notes and which led to es-
sential constitutive restrictions were based on the assumptions that the partial heat fluxes
and entropy fluxes are proportional to each other with the inverse of the absoulte temper-
ature as the proportionality factor, and that processes are isothermal. Such assumptions
are too restrictive for both thermodynamical purposes and for a theory of shock waves in
porous materials.

3. Nonelastic and nonlinear elastic behavior of the skeleton.

These problems are primarily connected with practical applications of theories of
porous materials in soil mechanics of clays, thermomechanics of spongs and other fil-
ters undergoing large deformations, etc. The way seems to be straightforward because
there exist already one-component models for such a behavior, and methods of extended
thermodynamics seem to be apropriate to incorporate those results in the scheme of mul-
ticomponent models.
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4. Extensions of microstructure and multiscaling problems.

Some of these problems are being approached already. This concerns particularly
systems with a double porosity, materials with a heterogeneous initial porosity, but also
problems connected with mass exchange which require additional microstructural vari-
ables. A big open question is a transition between various levels of observation and
averaging techniques in the derivation of macrsocopic constitutive laws from microscopic
and semimacroscopic relations.

5. Chemical reactions and phase transitions. Capillarity and hysteresis.

The first group, chemical reactions, can be approached in a way suggested by classical
continuum theories of mixtures. The condition for a successful construction of such models
is an answer on the first question listed above.

On the other hand, problems connected with the description of phase transitions,
such as condensation and evaporation, capillarity, melting etc. follow primarily from the
lack of transitions between various scales of description. A commonly used mathemat-
ical model of capillarity in porous materials which follows from the diffusion-reaction
equations is physically very doubtful due to physical notions appearing in macroscopic
description (such as pressure, saturation pressure, temperature) which are taken over from
semimacroscopic models without any justification by, for example, averaging procedures.

6. Nonlinear waves in porous materials.

There exists no systematic research of this question. The reason is that nonlinear
multicomponent models are not sufficiently developed as yet. Apart from nonlinearities
connected with constitutive laws for the skeleton which we have mentioned above, laws
for fluid components should go beyond simple linear compressible and ideal fluids. Such
problems arise, for instance, in modelling of fluids containing bubbles of vapor. Anal-
ysis should concern not only strong discontinuity waves but also, due to their practical
importance, surface waves. This research has been already initiated.

7. Weak solutions, numerical methods.

There is a considerable progress in recent years within the second part of this prob-
lem. Some multicomponent models of porous materials, particularly these based on the
assumption of incompressibility and commonly used in soil mechanics, have an extensive
numerical literature. We shall not quote it here because it concerns a different class of
models. For nonlinear models of compressible components as presented in these notes,
there exist only few numerical works.

From the point of view of analytical properties of these models first steps have been
made and some of the results were indicated in this work. From the purely mathematical
standpoint properties of weak solutions for the model presented in these notes are not
available as yet.
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8. Granular materials, unilateral constraints.

We have mentioned that certain classes of processes in granular materials can be de-

scribed by continuous models identical with those for porous materials. However a natural
condition which should be incorporated into constitutive models of granular materials not
carrying tension has never been investigated with a tacit assumption that solutions should
not be extended so far. A proper constitutive model should rely on additional mechanical
unilateral constraints.
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