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INTRODUCTION

Linear poroelastic models of granular and porous materials are constructed 
primarily for the description of acoustic and seismic waves in soils. Such models 
are rather useless in foundation engineering design where irreversible deformations 
must be incorporated. Acoustic waves used in testing of soils possess a small 
amplitude and, for this reason, their modeling with linear equations yields very 
good results (e.g. compare [3], [4]). However, in order to evaluate experimental 
results one has to know relations between amplitudes, speeds of propagation and 
attenuation of waves and morphological properties of the material such as porosity, 
degree of saturation and tortuosity. In addition, it is useful to connect macroscopic 
parameters of the model with real (true) properties of components. This concerns, 
in particular, partial mass densities, macroscopic compressibility moduli, coupling 
parameters on the one hand-side, and real (true) mass densities, real 
compressibility parameters and, again, porosity, on the other hand. Such relations 
for a very simple static model of soils were derived by Gassmann ([1]).For the 
famous Biot model, similar considerations were presented by Biot and Willis ([2]). 
These considerations are purely macroscopic and heuristic. It was only very 
recently that a systematic micro/macro derivation was constructed ([7]). Similar 
ideas as these in the last quoted paper can be also found in the work of 
Abousleiman and Cheng ([8]).
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It should be stressed that a systematic derivation of micro/macro relations for 
parameters of the linear model could be as yet constructed only for bulk 
compressibilities. The shear modulus, particularly for sands and similar granular 
materials, must be constructed in a different way. A statistical approach, even 
though rather sophisticated, was not very successful (e.g. [3]) and the problem 
remains unsolved. In many practical applications, one tries to overcome the 
problem by changing the set of macroscopic parameters in such a way that the 
Poisson number rather than the shear modulus is being used and the former can be 
considered to be independent of porosity for many soils (see: [5]). Recently, an 
attempt is made to extend the procedure presented in ([7]) of constructing 
micro/macro relations on problems of wave propagation in unsaturated materials 
(see: [11]). This extension is complex and very cumbersome and requires a clear 
understanding of each step in the procedure. The purpose of this work is the 
presentation of the "flow chart" for the two-component model as a guiding line for 
more complex models.

We use the two-component linear model of poroelastic material following from 
general thermodynamical considerations (e.g. [6]). This model reminds Biot’s 
model but it contains an additional material parameter describing an influence of 
spatial changes of porosity on partial stresses.

2. GOVERNING EQUATIONS OF THE MODEL

The model is based on the assumption that a porous material is described by a 
two-component mixture-like continuum. We consider isothermal processes and this 
limitation means that the following set of fields is chosen for the description of a 
porous medium:

1) partial mass densities of the solid skeleton and of the fluid respectively, 
FS  , ,

2) partial velocities of the solid skeleton and of the fluid respectively, FS v,v ,
3) porosity,  n.
All these fields are defined on a common domain B of the porous medium, and 

are functions of time. Sufficient smoothness assumptions are made which we do
not discuss here in details.

Field equations for these fields follow from the balance equations whose linear 
form is as follows
1) partial mass balance equations

0div,0div 00 

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2) partial momentum balance equations

pTvpTv ˆdiv,ˆdiv 00 
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tt
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3) porosity balance equation

  .,ˆdiv En
SF n-nn

t



 vvn (3)

In these equations, FS
00 ,  are initial (constant) partial mass densities, 

FS TT , are partial (Cauchy) stress tensors in the solid skeleton and the fluid, 
respectively, p̂ is momentum source while n̂ is porosity source,  is a material 
parameter of the porosity flux, and En is the porosity in thermodynamical 
equilibrium. As we neglect temperature changes the latter appears when there is no 
diffusion, i.e. for FS vv  .

We assume the medium to be linearly isotropic which means that macroscopic 
constitutive relations have the following form

 1,-11e1TT 0n
SSSS

0
S n-nNQe   2

 ,000 nnNQepppp n
FFFFF  1,T

 ,10 ennE  (4)

 SF vvp  ˆ ,

.ˆ


nn




In these relations, 00 ,, np FS
0T are the initial partial stress in the skeleton, the 

initial partial pressure in the fluid, and the initial porosity, respectively. The 
quantities

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describe partial volume changes of the skeleton and of the fluid, respectively. 
Hence, the model contains the following set of macroscopic material parameters

.,,,,,,,,,  NQSS (6)

Obviously, the first two parameters are Lam� constants of the two-component 
model,  is the macroscopic compressibility of the fluid, NQ, are coupling 
constants,  describes equilibrium changes of porosity, and  ,,, are 
nonequilibrium parameters related to the porosity flux, the coupling of stresses to 
nonequilibrium porosity changes, to diffusion (proportional to the classical 
diffusion coefficient) and to relaxation properties of porosity. All these parameters 
are functions of the initial porosity n0 and some other initial quantities. We return 
later to this point.

The micro/macro transition procedure which we discuss in this paper is based 
on the analysis of an initial state and of a current state which may vary only due to 
stationary processes (i.e. constant fluxes). It does not refer to any temporal 
behavior of the system. Such an approach is possible if the system does not possess 
a memory. It can be shown (e.g. [9]) that the only source of memory in this model 
is the relaxation of porosity which means that, for the purpose of this paper, we 
assume

 (7)

Then the porosity balance equation can be easily integrated. Substitution of mass 
balance equations (1) in (3) yields
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or, equivalently,

  
0

0 ,1
n

eenn 
  . (9)

Simultaneously, the partial mass balance equations imply that in the 
thermodynamical equilibrium

. e
E

F
E

S vv (10)
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Bearing the above remarks in mind, we can skip the porosity from the list of 
fields.

In order to simplify our considerations, we neglect also the coupling parameter 


.0 (11)

It can be shown that this is indeed justified in linear models. Parameter  plays an 
important role in the analysis of nonlinear waves but it does not influence sound 
propagation in porous media (see: [10]).

There exists a good deal of confusion concerning the denotation of material 
parameters. In this paper we use also the following combinations

  .,,,,,1,,
3
2

2
0

0
0

0

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n
MQ

n
CvK

F
FSS  (12)

Obviously, K is the bulk compressibility modulus and  is the Poisson number.
Further, we consider only spherically symmetric configurations in which 

parameters  and  do not appear. The list of independent fields reduces to ,e  
and the conjugate partial pressures satisfy the following macroscopic constitutive 
relations

     ,, 0000   eennnnnNQKepp SS

(13)
  SSFFF pnnNQeppp Ttr,000   .

3. MICRO/MACRO TRANSITION PROCEDURE

In theories of porous materials macroscopic models are related to microscopic 
relations of such media by means of the volume averaging. By the choice of a 
domain of averaging for each point x of the macroscopic domain of the porous 
medium and at the instant of time t which is called the representative elementary 
volume,  tREV ,x , one constructs macroscopic fields by the integration over this 
domain. Obviously, REV must be sufficiently small from the macroscopic point of 
view and sufficiently large from the microscopic point of view. The former means 
that all properties described locally by microscopic fields are prescribed to a single 
macroscopic point x and this usually yields the necessity of introducing additional 
macroscopic fields such as porosity, degree of saturation or tortuosity.
The latter means, for example, that microscopic properties may be consider as 
random. On the microscopic level of the two-component system (a saturated 
porous medium), the domain REV consists of two nonoverlapping subdomains 
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characterized by the function  t,z which is zero for the point  t,REV xz if 
this point is occupied by the true skeleton and it is one if this point is occupied by 
the true fluid. By means of this function one extends real (true) fields of mass 
densities, momenta, etc. on the whole domain. These extensions are continuous but 
otherwise arbitrary.
In the case of mass densities the construction of volume averages is as follows

           ,,1,
,vol

1,
, ztREV

SRS dVtt
tREV

t zz
x

x
x

  
(14)

          ,,,
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, ztREV
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t zz
x

x
x

 

where FRSR pp , are extensions of real (true) mass densities of the skeleton and of 
the fluid. At points which are indeed occupied by the corresponding material these 
mass densities are such as they were in the one-component situations. Extensions 
on parts of the domain in which this material is not present are finite but otherwise 
arbitrary. They do not contribute to macroscopic quantities due to the definition of 
the characteristic function  . If variations of real mass densities within REV are 
small then one can write approximately (the zeroth order approximation)

             ,,,,,,,,1, tREVttttnt SS
SRSRSRS xzzxxxx  

            ,,,,,,,,, tREVttttnt FF
FRFRFRF xzzxxxx   (15)

         ,,
,REVvol

1,
, ztREV

dVt
t

tn z
x

x
x 

where Sz is an arbitrary point of the skeleton within  tREV ,x and Fz an 
arbitrary point of the fluid within  tREV ,x . Obviously, the last relation defines 
the porosity.

Similar relations hold for the initial values of mass densities

  .,1 000000
FRFSRS nn   (16)

If we introduce real volume changes rather than real mass densities then we have 
for the skeleton and for the fluid, respectively,

FR
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R

SR

SRSR
Re

0

0

0

0 ,






 




 . (17)



7

Simple combination of the above relations and the linearity of the model, i.e.

  1,,,max RRee  (18)

yields the following kinematic compatibility conditions

.,
1 0
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nn
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nn
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
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  (19)

Corresponding definitions of momenta are less obvious due to their vectorial 
character. We skip here detailed considerations and present further only those 
results which are essential for our problem of determination of some material 
parameters. Even more complicated are constructions of averages of fluxes. We 
assume that the transition for the momentum fluxes reduced to the contributions of 
pressures has the form

    ,1,1 000
SRSSRS pnppnp 

(20) 
FRFFRF pnpnpp 000,  ,

where SRp is the real current pressure in the skeleton, FRp is the real current 
pressure in the fluid (called also the pore pressure), etc. These relations are far less 
obvious than (15), (16) and do not account for cohesive forces, capillary pressure, 
surface tension, etc. At the best, we may consider them as a rough approximation. 
We accept this approximation for the purpose of this work. 

Combination of relations (20) yields in the linear model the following 
dynamical compatibility conditions

      SRSRSRSS pnnppnpp 00000 1  ,

(21)
    FRFRFRFF pnnppnpp 00000  .

In addition to the above relations, we assume that both real components have 
definite mechanical properties. For pressures they have the form of the following 
microscopic constitutive relations

R
f

FRFRR
s

SRSR KppeKpp  00 , , (22)
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where sK is the real compressibility of the skeleton and fK of the fluid. Let us 
note that for gases the second relation must hold for pressures and not only for 
pressure differences. This property yields certain difficulties for unsaturated 
materials (see: [11]) which is immaterial for our considerations.

4. FUNDAMENTAL EQUATIONS FOR COMPRESSIBILITIES

Let us collect the unknown quantities of a spherical problem which we have 
introduced above for both levels of description. They form the following set of 9 
functions

 00000 ,,,,,,,, nnppppppppee FRFRSRSRFFSSRR  . (23)

Simultaneously, we have 9 homogeneous equations at the disposal: three 
macroscopic constitutive relations (13), two kinematic compatibility relations (19), 
two dynamical compatibility relations (21) and two microscopic constitutive 
relations (22). As these equations are homogeneous with respect to the fields (23), 
we must impose a condition of the zero value of the determinant of this set. We 
proceed in a different way. In order to see clearly the situation, we repeat all 
equations

0

0

0

0 ,
1 n

nn
n
nn

ee RR 





  ,

      SRSRSRSS pnnppnpp 00000 1  ,

    FRFRFRFF pnnppnpp 00000  , (24)

   00000 , nnNQepppnnNQKepp FFFSS   ,

    eennnKppeKpp R
f

FRFRR
s

SRSR
0000 ,, .

By the linear combination of the first 8 equations we obtain the following 
relation for the changes of porosity

        

   .
11
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
(26)
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Instead of the condition on the determinant of the set (24) we can require that the 
last equation (24) is a linear combination of the remaining 8 equations. 
Consequently, we impose the condition that (24)9 and (26) are identical. If fully 
exploited this yields a single condition for material parameters. We strengthen this 
condition and require that coefficients of e and  are identical in both relations. 
This sufficient condition for the existence of solutions of the set (24) yields the 
following relations

 
 

fs

f
F

fs

V
KK

KnQp
n

KKn
KK









 00
0

0
,


 ,

(27)
fSV KnKnK 00 )1(  .

We have neglected the influence of the difference FRSR pp 00  as this is, obviously, 
much smaller than fs KK  .

The remaining equations can be solved with respect to a chosen unknown. We 
choose

   FRFSS ppppp 00  . (28)

Then it follows for macroscopic volume changes
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
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, (30)
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Substitution in the last relation (24) yields the formula for 0nn  while the 
subsequent substitution in the remaining relations (24) yields formuli for 

FRFRSRSRRR ppppe 00 ,,,  . All of them contain the linear homogeneous 
dependence on .p

Field equations are in the present case satisfied identically because the above 
fields are time and space independent and velocity fields are identically zero. In 
order to find the solution of the problem we have to formulate the boundary 
conditions. It is easy to check that due to the symmetry the system requires two 
such conditions. One of them is common for all cases which we consider further in 
this work. Namely, we assume that the system is loaded by the increment of the 
external pressure. As the system must be in equilibrium with the pressure carried
by both component we have the following equilibrium condition

    ppppp FFSS  00 , (31)

where  p is now a given change of external pressure.

Consequently, we obtain the explicit solution of the problem – volume changes 
e and  as well as all other quantities are given in terms of the known increment 

p . However, this solution is only formal. It is easy to see that relations (29), (30) 

contain both the macroscopic parameters NQpK F ,,, 0  as well as the 
microscopic compressibilities fs KK , and the porosity 0n . Hence, we must find 
conditions which reduce this set of parameters. This is done by the second 
boundary condition, formulated for various boundaries. We discuss this problem in 
the next Section.

5. GEDANKENEXPERIMENTS

Gedankenexperiments are theoretical considerations referring to experiments 
which are in principle possible but usually require ideal conditions difficult to 
achieve in laboratories. Biot and Willis [2] proposed three such experiments which 
would yield a solution of problem presented at the end of the previous Section:

1) Jacketed undrained experiment, performed on a sample of a two-component 
porous material, for which locally in time the following condition must be 
satisfied
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      0div
V

SF

V

SF dVdS vvnvv


(32)
 e

where V is the volume of the sample and V its surface. This means that the fluid
remains within the sample and, consequently, the homogeneity yields the condition 
of equal macroscopic volume changes.

2) Jacketed drained experiment, for which the fluid may flow through the 
boundary of the sample to the external world. This yields the condition that 
the external loading cannot change the pore pressure

FRFR pp 0 (33)

3) Unjacked experiment in which a heap of the porous material is immersed in 
the fluid which, in turn, carries to the sample the external change of 
pressure p . Consequently, the pore pressure must change on the same 
amount

.0 ppp FRFR  (34)

Substitution of the results of the previous Section in these conditions yields 
three relations between material parameters. For instance, in the first case, we have

.22212212 aaaa  (35)

In addition to these relations, one usually assumes that in the second 
experiment, jacketed drained, one can indeed measure the so-called drained 
compressibility modulus dK , defined by the relation

e
pKd


 . (36)

This gives rise to the fourth relation. Hence, we obtain four equations for four 
unknown macroscopic material parameters: .,,, 0 NQpK F They are given in 
terms of fs KK , and 0n .We have shown in [7] that these nonlinear equations 
possess two solutions. One of them yields the coupling parameter N unequal zero 
and the order of magnitude of this parameter is the same as Q . There exists as well 
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the solution in which .0N This solution is identical with the classical Gassmann 
relations
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We skip here the presentation of numerical examples which can be found in the 
paper [7]. However, it should be stressed that in the range of parameters appearing 
for soils saturated with water the compressibilities K and M are of more than one 
order of magnitude bigger than coupling parameters NQ, and that sum NQ  for 
the solution with 0N is approximately equal to Q for the solution with 0N . 
These are important conclusions for the linear wave analysis of poroelastic 
materials.

6. CONCLUDING REMARKS

The above presented "flow chart" of the micro/macro transition for saturated 
porous materials is rather straightforward. It consists of the solution of a 
homogeneous "field" problem and the subsequent use of boundary conditions 
following from Gedankenexperiments. In cases of multicomponent systems it 
becomes, for many reasons, much more complicated. The main problem is the 
formulation of boundary conditions. These are complex because the flow of two 
different components through the boundary requires some additional assumptions 
on the physical structure of the boundary. Simultaneously, as the number of 
unknowns is much higher – in addition to these which appear for two components 
we have the compressibility of the second fluid component and various coupling 
parameters – the analytical solution seems to be almost impossible and the 
numerical analysis requires a particular aptitude. The work [11] contains the first 
results in this direction.
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