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Abstract

This review article consists of two parts. The first part concerns the admissibility of four contributions characteristic for Biot’s model

of poroelastic materials: coupling of partial stresses, presence of relative accelerations in equations of motion, dependence of permeability

on frequency and changes of porosity. The second part is devoted to the demonstration of those contributions in the analysis of acoustic

waves. Propagation of fronts, monochromatic waves and surface waves are considered.

r 2006 Elsevier Ltd. All rights reserved.
1. Preliminaries

1.1. Linear models of saturated porous materials

Multicomponent continuous modeling of saturated
porous materials begun some 80 years ago with the
description of consolidation processes in soil mechanics.
Terzaghi (e.g. [1,2]) in his works relies on the classical
elasticity theory supplemented by Darcy’s law for the flow
of the fluid in pores. This two-component approach to
consolidation has been continued in works of Biot [3],1 the
first one published in 1941, by Frenkel [5] (1944) and by
Heinrich and Desoyer [6] (1955–1956). The culmination of
this research were the works of Biot published in the years
1955–1956 (e.g. [7,8]). These works form until today the
foundation for the linear acoustics of porous media, and
their importance for the field of poroelasticity can be only
compared with the role played by works of Hooke
and Lamé in the classical theory of elasticity. The
fundamental equations proposed by Biot can be written
e front matter r 2006 Elsevier Ltd. All rights reserved.
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n of Biot’s papers on porous materials has been published
in the following form:
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where

TS ¼ TS
0 þ ðP� 2NÞðdiv uÞ1þ 2Nsymgrad uþQðdivUÞ1,

pF ¼ pF
0 �Qdiv u� RdivU. (2)

In these equations u and U denote displacements of the
skeleton and of the fluid, respectively. The choice of
material parameters P;N;Q;R describing constitutive
relations for partial stresses is arbitrary. In Section 3.1,
we show some other choices. Biot himself was changing his
notation from one work to the other. An essential
extension of the set of parameters which characterize
separate components (i.e. P;N for the skeleton and R for
the fluid) is the parameter Q which introduces a coupling
between stresses. The operators div; grad refer to differ-
entiation in Eulerian x-coordinates and symgrad �
1
2
ðgradþ ðgradÞTÞ.
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Initial partial mass densities rS0 and rF0 were denoted in a
different way by Biot. We introduce them here in order to
expose the presence of the relative acceleration which
appears with the material parameter r12. This contribution
was introduced by Biot in order to account for added mass
effects which he expected to have in diffusive processes due
to a complex geometry of microstructure of porous
materials.

The permeability coefficient p was also introduced in a
different form by Biot. It was argued that this coefficient
describing a reaction on relative motion of components
should be dependent on viscosity of the fluid and,
primarily, on the frequency of waves. The latter was
attributed by Biot to the tortuosity.

Finally, Biot was considering increments of stresses with
respect to constant initial stresses but he never mentioned
this in an explicit form. For this reason, relations (2)
contain initial stresses TS

0 ; p
F
0 .

Numerous theoretical and experimental papers based on
Biot’s model prove that Biot’s intuition was right and that
he included in his model in a correct way the most
important effects appearing in porous materials. However,
the experience of the last 50 years in continuum thermo-
dynamics gives rise to the following questions:
(1)
 Is the coupling of stresses described by the material
parameter Q admissible from the thermodynamic point
of view?
(2)
 Is the contribution of relative accelerations admissible
from the point of view of material objectivity?
(3)
 How are changes of porosity described by this model?

(4)
 How should one write in the mathematically correct

form the frequency-dependent permeability?

(5)
 Can one extend in a consistent way Biot’s model to

large deformations of the skeleton and other nonlinear
effects?
The first question is motivated by the experience with the
theory of mixtures of ideal fluids. For such a mixture the
coupling between partial pressures cannot be incorporated
into the model in a thermodynamically admissible way if
one does not account for a constitutive dependence on the
so-called higher gradients [9]. The second law of thermo-
dynamics yields without those gradients a model which is
called the simple mixture in which there is no interaction
term in constitutive relations for partial pressures.

One of the fundamental principles of any macroscopic
continuum model is the so-called material frame indiffer-

ence or material objectivity [9–12] which states that
constitutive relations should be invariant with respect to
the change of the observer. The relative acceleration
appearing in the Biot model violates this principle [13]
and yields existence of terms in equations of motion which
depend simultaneously on the choice of the reference
system (i.e. observer) and on the material.

Biot did not make any contributions to describe changes
of porosity. There were even claims in the literature that
the model does not account for such changes. The question
arises if this is indeed the case.
The form of the permeability coefficient in which a

dependence on a frequency of waves is incorporated cannot
appear in general equations of motion which contain as
well a dependence on time. Many papers on this subject
avoid this problem by writing Eqs. (1) after Fourier
transformation [67]. The question arises how to incorpo-
rate such a dependence in a general case when, for instance,
a complex impulse is applied as a loading and the temporal
form of equations is more convenient for the formulation
of the problem.
In a series of recent papers I have addressed these

questions. In order to find an answer a model in a fully
nonlinear form had to be constructed and then linearized.
As it is frequently the case with linear models, it has been
shown that Biot’s model indeed follows from some
nonlinear extensions which satisfy both the second law of
thermodynamics and the principle of material objectivity.
In this review article, these results are demonstrated

without going into technical details. The new contribution
concerns the admissible form of permeability which leads
to the frequency dependence of this contribution in its
Fourier form. Processes are assumed to be isothermal, i.e.
an influence of temperature is neglected. This was an
assumption made by Biot as well. It may not be
particularly good in some problems of acoustics of porous
materials and it is, of course, not good at all in problems of
energy transfer but we want to limit attention only to Biot’s
model in its original isothermal form. The second part of
the article dealing with acoustic waves demonstrates some
basic features of linear acoustic waves in juxtaposition of
the full Biot model and the simple mixture model which
follows from Biot’s model by neglecting the influence of the
coupling of stresses and tortuosity. In this analysis a
dependence of permeability on the frequency (hereditary
effects) is neglected, i.e. p ¼ const. This may have a small
influence on the quantitative behavior of speeds of
propagation and a bigger influence on the quantitative
behavior of attenuations. However, no qualitative differ-
ences are expected. Finally, some remarks on boundary
conditions and surface waves are subject of the last part. In
this part only the simple mixture model is considered.
Unfortunately, the list of references contains only a few

representative works. There exist a few thousand publica-
tions on Biot’s model and it is even difficult to point out the
priorities.

1.2. Macroscopic fields and their relation to microstructure

Description of porous materials based on the theory of
mixtures is purely macroscopic and its fields do not have to
be related to any true quantities characterizing components
of the mixture. In such a heuristic approach one can rely on
experimental observations of the mixture as a whole, and
no micro–macro transition procedure is needed in order to
solve problems. However, in the case of porous materials
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such a separation is not practicable. Data for true materials
are easily available, and they are used in the construction of
macroscopic field models. This yields, of course, advan-
tages but also some confusions. The typical example are
mass densities which appear in the form of partial mass
densities of the mixture as well as true mass densities of real
components. The same concerns the partial pressure of the
fluid component and the so-called pore pressure. It is often
the case that these two sorts of quantities are so mixed
together that confusions arise.

In this work we try to keep these two classes of quantities
separated from each other. The formal description of the
system is based on the continuum theory of mixtures and
only fields appropriate for such a description appear in the
field equations. Relations to true quantities are discussed
separately and are not part of the mathematical model.

The model of porous saturated materials is based on the
two-component mixture theory. In a fully nonlinear theory
formulated on a reference configuration (Lagrangian
description) the isothermal model must contain the
following fields:
1.
 Partial mass densities rS; rF which are functions of the
spacial variable X and time t; integrated over a finite
domain they give the mass of a particular component
(the skeleton or the fluid) contained in this domain.
2.
 The function of motion of the skeleton (of the solid
frame) fS which specifies the position of a chosen point
X at any instant of time t. Its derivatives with respect to
X and t define the deformation and the velocity of the
skeleton, respectively.
3.
 The velocity of the fluid vF which specifies the velocity of
the fluid particle which instantaneously occupies the
same position as the point X of the solid frame.
4.
 The porosity n which describes the fraction of voids of
the solid frame. This is a microstructural variable
characteristic for the theory of immiscible mixtures.

We present some details of this Lagrangian description in
Section 2.1. but in linear theories the set of fields is chosen
in a different way well known from the classical linear
elasticity. They are formulated on the current configuration
(Eulerian description) and, due to linearity, this description
is identical with Lagrangian description (for details, e.g.
see: [11]). The fields are as follows:
1.
 Current mass densities rSt , r
F
t . The subscript t indicating

the reference to the current location is usually dropped
as in the linear model there is no distinction between
Eulerian and Lagrangian description.
2.
 The displacement of the skeleton uS. Its derivative with
respect to x defines the deformation tensor. In the linear
theory this is the Almansi–Hamel deformation tensor,
eS. The time derivative gives the velocity of the skeleton
vS. Volume changes are specified by the first invariant of
the Almansi–Hamel tensor, e ¼ tr eS. If there is no mass
exchange between components this, in turn, determines
uniquely changes of the partial mass density and the
field of mass density rSt becomes superfluous.
3.
 The velocity of the fluid vF. It is customary in Biot’s
model to work with the displacement of the fluid U.
However, as in fluid mechanics in general, this quantity
does not have any physical meaning and it is not sought
in solving boundary value problems. It plays only an
auxiliary role in the model and defines the velocity of the
fluid vF ¼ qU=qt as well as its volume changes � ¼ divU.
As in the case of the skeleton, through the partial mass
balance equation the latter determines uniquely changes
of the partial mass density, rFt , if there is no mass
exchange between components.
4.
 The porosity n (denoted by f in many works on Biot’s
model). In Biot’s model this quantity does not appear in
explicit form. However, its changes can be calculated in
terms of volume changes of both components and
material parameters (compressibilities) appearing in the
model. Hence, even though not constant, the porosity is
not listed among the fields of Biot’s model.

The above list does not contain any ‘‘true’’ quantities such
as true mass densities of components or pore pressure
because they do not belong to the macroscopic description.
However, on mass densities we illustrate reasons for not
choosing these quantities as fields. For porous materials a
common way to transfer quantities from the ‘‘micro’’-level
of true substances to the ‘‘macro’’-level of the mixture
(continuum) theory is to perform averaging over the so-
called representative elementary volume (REV) which is
large in comparison with microstructural dimensions (e.g.
radius of channels or true stream lines) and small in
comparison with macroscopic dimensions. Fields on the
‘‘micro’’-level are localized in their own components, i.e.
they are defined only on subdomains in which a particular
component is instantaneously located. If we denote by
rSRmicro;r

FR
micro the true (real) mass densities of the solid phase

and the fluid phase then averaging over REV has the
following form:

rSðx; tÞ ¼
1

V

Z
REVðx;tÞ

rSRmicroðz; tÞH
Sðz; tÞdV ,

rFðx; tÞ ¼
1

V

Z
REVðx;tÞ

rFRmicroðz; tÞH
Fðz; tÞdV , (3)

where REVðx; tÞ denotes the domain of the representative
elementary volume located at point x at instant of time t, V

is its volume, usually assumed to be constant, HS;HF are
the characteristic functions of the domains of the skeleton
and of the fluid, respectively. This means that HSðz; tÞ is
equal to 1 when the point z is occupied at the instant of
time t by a particle of the skeleton and zero otherwise. HF

has the same structure for fluid particles and it means that
HS þHF ¼ 1 everywhere. The quantities may substantially
fluctuate within the representative elementary volume. If
this is not the case and we can assume approximately that
they are constant within REVðx; tÞ and possess values, say,
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rSRðx; tÞ;rFRðx; tÞ then we have

rS � ð1� nÞrSR; rF � nrFR,

n:¼
1

V

Z
REVðx;tÞ

HFðz; tÞdV , (4)

where n is the porosity which is the fraction of the volume
of voids to the full volume of REV. Clearly, the true mass
densities rSR, rFR may approximately and locally coincide
with partial mass densities of the real skeleton and of the
real fluid, but they do not possess the property that
multiplied by a macroscopic volume they give the mass of
the corresponding component within this volume. The
results must be corrected by taking the product with the
corresponding volume fraction: n for the fluid and 1� n for
the skeleton. This is indeed being done in the works on
Biot’s model in which these true mass densities are used.
They are then usually denoted rs � rSR, rf � rFR.

On the other hand, the notion of the pore pressure p

seems to be physically more important than its partial
counterpart—the partial pressure pF—which is one third of
the negative trace of the partial stress tensor in the fluid. It
appears, for instance, as an important part in the definition
of effective stresses in theories of plasticity of soils, it
contributes to the definition of material parameters for
granular materials depending on the so-called confining

pressure, etc. Consequently, the transition from the
microlevel to the macrolevel is in this case much more
essential. Unfortunately, it is also much more complicated.
In an arbitrary cross-section of a porous material with the
orientation n (a unit vector perpendicular to the surface of
the cross-section) the resultant force acting on a macro-
scopic small surface dA carried by the inviscid fluid in the
normal direction is pFndA. The true fluid is carrying on
this surface the force pndAF, where dAF denotes the part of
dA on which the cross-section cuts the voids. The
equilibrium condition yields

p

pF
¼

dA

dAF
. (5)

According to the Delesse Theorem [14] the fraction of
surfaces is identical with the volume fraction n if the
microstructure is random. Consequently, for such porous
materials

pF ¼ np. (6)

This relates the macroscopic partial pressure pF and the
pore pressure p. The above condition may hold in the bulk
but it is rather doubtful that it also holds near boundaries
of porous materials where as a rule there exists a boundary
layer in which one has to account for different flow
conditions. This is one of the reasons that volume
averaging indicated above predicts a structure of balance
equations for two-component porous materials but it does
not yield macroscopic constitutive relations. This problem
is presented in the article of Gray in [15, pp. 67–130]. It is
only exceptional that such relations can be found for, e.g.
compressibilities. They are given by Gassmann relations
for Biot’s model and we discuss them further in this article.

1.3. Thermodynamics, simple mixtures, dissipation

Recent developments of continuum thermodynamics
(e.g. [9,11,16,17]) allow to construct a fully nonlinear
theory of immiscible mixtures. The strategy of thermo-
dynamic modeling relies on the second law of thermo-
dynamics. After construction of general field equations one
imposes the condition that the entropy inequality

qrZ
qt
þDivHX0 (7)

should be satisfied for all solutions of field equations. In
this inequality Z is the entropy density per unit mass of the
mixture in a reference configuration and H is the entropy
flux. Both these fields are assumed to depend on the same
constitutive variables as all other constitutive quantities of
the model. The choice of constitutive variables defines the
specific model. For instance, for poroelastic materials
constitutive variables should contain at least the following
variables:
1.
 partial mass densities of components, rS;rF,

2.
 deformation of the skeleton, eS,

3.
 relative velocity, vF � vS. This combination is necessary

with respect to the principle of material objectivity,

4.
 porosity, n,

5.
 temperature, T,

6.
 temperature gradient, GradT .

In the above relations, operators Grad and Div refer to
differentiation in Lagrangian X-coordinates.
The last two variables do not appear if we assume that

processes are isothermal.
As consequence of the second law of thermodynamics we

obtain two classes of relations: (i) thermodynamic identities
and (ii) the residual inequality which specifies the dissipa-
tion in the system. It is remarkable that for nondissipative
systems thermodynamic identities coincide with results of
the variational principle. For instance, one obtains the
result that partial stresses are specified by derivatives of a
thermodynamic potential which replaces the Lagrangian
density of the action functional in the variational formula-
tion. However, in contrast to the variational formulation
thermodynamic identities hold true also in nonequilibrium
when the dissipation is unequal to zero.
For poroelastic materials numerous nonlinear thermo-

dynamic models were investigated (e.g. [18–21]). The
common conclusion of these investigations is that the
above choice of variables is not sufficient to produce Biot’s
model of poroelastic materials. The second law of
thermodynamics eliminates from the model a coupling
between partial stresses and yields the so-called simple

mixture model. Such models are known for fluid mixtures
[9]. For a simple mixture of ideal fluids, for instance, the
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partial pressure of a chosen component depends on its own
volume changes but does not react to volume changes of
other components. In order to account for such couplings
one has to introduce a constitutive dependence on higher
gradients of fields. Physically they reflect the reaction of a
particular component to changes of states of other
components in a small spatial vicinity of a chosen particle
(weak nonlocality). For mixtures of fluids it means that
gradients of partial mass densities must be constitutive
variables. The same requirement can be applied to
poroelastic materials. A dependence on the gradient of
porosity is already sufficient to produce the coupling
between partial stresses proposed by Biot [19]. We
demonstrate this result for a linear model.

The dissipation which follows from the entropy inequal-
ity gives hints on the modeling of the evolution of those
quantities which yield the dissipation and, consequently, a
relaxation of the system to the thermodynamic equilibrium.
For isothermal processes in poroelastic materials the
dissipation inequality has a very simple form

D :¼ p̂ � ðvF � vSÞX0, (8)

where p̂ denotes the momentum source (the diffusive force)
in the partial momentum balance equations. In Section 3.3
we present the details of this concept. Obviously, the
dissipation D is zero if the velocities of components are
equal: vF ¼ vS. Processes in which this condition holds are
called equilibrium processes. In equilibrium processes there
is no relative motion—diffusion—of components. Simul-
taneously, inequality (8) demonstrates that equilibrium
processes minimize the dissipation. Hence, the matrix of
second derivatives of D with respect to relative velocities
(Hessian) must form a positive definite matrix. In the linear
model p̂ is linear in relative velocities and the material
parameters entering the definition of p̂ must fulfil this
restriction. In the simplest case it means that the diffusion
coefficient has to be positive.

Let us mention in passing that the structure of the
momentum source, p̂, determines the form of Darcy’s law
in the simplified model in which we neglect the inertial term
in the momentum balance for the fluid. Linearity of p̂ with
respect to the relative velocity vF � vS may be acceptable as
a first approximation in the theory of acoustic waves but,
in general, it is not well justified by experiments. There exist
various nonlinear corrections (e.g. see [22] for a critical
review and some possible corrections) but we shall not
enter this problem as it goes beyond the Biot model.

2. Governing equations

2.1. Mass balance, volume changes

As indicated in the previous section two-component
mixture models deal with macroscopic fields defined in
almost every point of the system, i.e. in all points except a
set whose volume is zero. Consequently, one cannot speak
about such quantities as volume of the fluid or volume of
the skeleton, true mass densities, etc. These notions do not
belong to the macroscopic model. This means that, in
particular, the motion of the skeleton (the solid frame of
the porous material) is described by the function

x ¼ fSðX; tÞ; X 2 B0 � R3, (9)

which assigns a position x to a material point X at any
instant of time t. This function describes the trajectory of
the point X. Its deformation gradient FS ¼ Grad fS de-
scribes changes (rotations and elongations) of vectors
tangent to arbitrary material curves from the reference set
B0 and the time derivative vS ¼ qfS=qt is the velocity of the
point X. Arbitrary large deformations of the skeleton can
be, for instance, described by the following Almansi–Hamel

deformation tensor

eS ¼ 1
2
ð1� F�TF�1Þ, (10)

where T denotes the transpose of the matrix. For small
deformations, when the following conditions are satisfied:

keSk51; keSk:¼maxfjlð1Þj; jlð2Þj; jlð3Þjg,

detðeS � l1Þ ¼ 0, (11)

i.e. lð1Þ; lð2Þ; lð3Þ are eigenvalues of eS (principal stretches),
there is no distinction between Lagrangian variables X 2

B0 and Eulerian variables x 2 fSðB0; tÞ and one can
introduce the displacement of the skeleton

fS ¼ Xþ uS; uS ¼ uSðx; tÞ¼) eS ¼ symgrad uS,

vS ¼
quS

qt
, ð12Þ

where ‘grad’ means the differentiation with respect to the
Eulerian variable x.
Volume changes are described by the Jacobian JS of the

deformation gradient FS as for a usual change of variables
of integration. For instance, the mass of the skeleton of an
arbitrary portion P0 � B0 changes due to the motion in
the following way:

MSðP0Þ ¼

Z
P0

rS0 dV0 ¼

Z
fSðP0;tÞ

rS dV ; dV ¼ JS dV 0

¼)rS ¼ rS0JS�1; JS:¼ det FS40. ð13Þ

The above formula is the solution of the partial mass
balance equation for the skeleton for systems without mass
exchange between components. For volume changes under
small deformation we can easily relate the Jacobian JS to
the first invariant of the Almansi–Hamel deformation
tensor. In the general case

ðJSÞ
2
¼ det ðFSFSTÞ. (14)

Simultaneously, the eigenvalue problem for the symmetric
tensor FSFST:

ðFSFST � b1Þk ¼ 0¼)l ¼
1

2
1�

1

b

� �
, (15)
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yields

ðJSÞ
2
¼ bð1Þbð2Þbð3Þ ¼

1

1� 2lð1Þ
1

1� 2lð2Þ
1

1� 2lð3Þ

� 1þ
X3
a¼1

lðaÞ
 !2

. ð16Þ

We have used definition (10). Hence

JS � 1þ e; e:¼tr eS �
X3
a¼1

lðaÞ, (17)

i.e. volume changes of the skeleton are indeed described by
the first invariant e of eS. This yields immediately the
following relation for changes of the partial mass density
rS (compare (13)):

rS0 � rS

rS0
¼

JS � 1

JS
� e. (18)

Simultaneously, relations (12) yield the following identity:

qeS

qt
¼ symgrad vS i.e.

qe

qt
¼ div vS. (19)

Therefore, the mass balance equation for the skeleton is
identically satisfied

qrS

qt
þ divðrSvSÞ �

qrS

qt
þ rS0 div v

S

¼ � rS0
qe

qt
þ rS0 div v

S � 0. ð20Þ

We proceed to the description of the motion of the fluid
component. In contrast to the skeleton this motion is not
described by the displacement but, as customary in fluid
mechanics, by the velocity field vFðx; tÞ. Principally, one can
integrate the velocity field to obtain a displacement field of
the fluid2 but this is usually not done because the result
depends on the choice of the reference configuration and,
of course, the fluid does not possess any privileged
reference. Consequently, one relies on the Eulerian
description of the fluid, and this requires knowledge of
both the velocity vF as well as the partial mass density rF.
The latter is determined by the mass balance equation

qrF

qt
þ divðrFvFÞ ¼ 0. (21)

In the linear theory we assume that changes of the mass
density with respect to the reference value rF0 appearing in
the same instant of time in which the skeleton occupies the
configuration B0 are small, i.e.

rF � rF0
rF0

����
����51. (22)
2i.e. for a given field of velocity vF we must integrate the equation

qx
qt
¼ vFðx; tÞ; xðt ¼ 0Þ ¼ X,

which is a set of three ordinary nonlinear differential equations for the

trajectory of the fluid particle X.
In such cases the mass balance equation (21) can be written
in the form

q�
qt
¼ div vF; � :¼

rF0 � rF

rF0
. (23)

Obviously, the field � describes small volume changes of the
fluid in the same way as e describes small volume changes
of the skeleton.
We conclude that partial volume changes of the

skeleton e are determined when the deformation of the
skeleton eS is known, while the volume changes of the fluid
� follow from Eq. (23) if the velocity of the fluid vF is
determined by its own equation. We see further that this is
the partial momentum balance equation. Volume changes
of the fluid determine changes of the partial mass density of
the fluid rF.
In spite of the above objections many researchers

follow M. Biot and introduce the field of displacement
for the fluid component. The commonly used notation is
as follows: The displacement of the skeleton is denoted
by u � uS and the displacement of the fluid U is introduced
in such a way that vF ¼ qU=qt. Then time integration in
(19) and (23) yields the following relations for volume
changes:

e ¼ div u; � ¼ divU. (24)

In some of his works Biot uses also the increment of fluid

contents as a field replacing volume changes of the fluid.
This field is defined in the following way:

z ¼ n0ðe� �Þ � n0 divðu�UÞ. (25)

The latter relation yields an important conclusion

qz
qt
¼ n0 divðv

S � vFÞ. (26)

Hence the field z cannot change without diffusion:
there must be a relative motion of components in order
to change the fluid contents. However, this means as
well that changes of the fluid contents cannot appear
in thermodynamic equilibrium processes. This conclu-
sion has the paramount consequences for the appli-
cability of variational methods in the theory of
poroelastic materials. We return to this problem in the
sequel.
2.2. Momentum balance

The form of the momentum balance equations depends
on the choice of the reference system. In this note we skip
the problem of reference to noninertial systems as this does
not differ from the same problem in one-component
systems (e.g. see [12]). Additional terms related to the
centrifugal, Coriolis, Euler and translational accelerations
have the similar form but refer to a corresponding
kinematics of the component. In an inertial reference
system these partial balance equations have the following
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linearized forms:

rS0
qvS

qt
¼ divTS þ rS0b

S þ p̂,

rF0
qvF

qt
¼ �grad pF þ rF0 b

F � p̂, ð27Þ

where the current mass densities are replaced by their
reference values, convective parts of momentum fluxes (i.e.
divðrSvS � vSÞ and divðrFvF � vFÞ, respectively) are ne-
glected and it is assumed that the partial stress tensor in the
fluid reduces to the partial pressure pF. The first two
simplifications follow from the linearization, while the last
one means that we assume the fluid component to be ideal
on the macroscopic level of description. This need not be so
for the true fluid whose viscosity appears in the micro-
structural relation for the momentum source, p̂. We shall
return further to this relation.

The quantities rS0b
S; rF0 b

F are partial external body forces
per unit volume.

Frequently the partial description of momenta is
replaced by the bulk momentum of the whole mixture
and only one of the partial momenta. It is usually the
partial momentum balance for the fluid because in some
cases of practical bearing the inertial force of the fluid can
be neglected; this momentum balance yields then a
generalization of Darcy’s law. The bulk momentum
balance which is the sum of the partial equations has the
form

r0
qv
qt
¼ divTþ r0b, (28)

where

T � TS � pF1; r0 ¼ rS0 þ rF0 ,

r0v ¼ rS0v
S þ rF0 v

F; r0b ¼ rS0b
S þ rF0 b

F. (29)

Obviously, T denotes the bulk stress tensor and v is the so-
called barycentric velocity. The latter is not a very useful
field because it does not have any global physical
interpretation: Indeed, diffusion separates particles of
components after a finite time so much that one cannot
define any reasonable collection of centers of gravity.
However, in some quasistatic problems the bulk momen-
tum balance equation may be very useful. It appears, for
instance, in the theory of plastic deformations of soils in
which the bulk stress tensor plays an important role.

The above structure of the momentum balance shows
that the partial stress tensor in the skeleton cannot be
usually identified with the so-called effective stresses

introduced into soil mechanics by Terzaghi. As already
mentioned, the partial pressure in the fluid pF is in many
cases related to the so-called pore pressure p by the relation
pF ¼ np, where n is the current porosity.
2.3. Changes of porosity

Porosity is the microstructural variable of the two-
component immiscible mixture and it requires a relation
which would determine its changes. However, we do not
have any additional natural macroscopic conditions which
would lead to such a relation. It must be determined either
from the analysis of the microstructure or it must be
introduced to the macroscopic model in a heuristic way. In
the literature there appear at least five ways to describe
changes of porosity:
(1) Constitutive assumptions; this is done in particular for

porosity changes in the thermodynamic equilibrium, e.g.
assuming that the equilibrium porosity is a function of
volume changes of the skeleton (solid frame). In some cases
it is not sufficient. In granular materials and, in particular,
in nonlinear models (large deformations) there may be an
influence of shearing deformations on changing porosity.
(2) Assumption on incompressibility of true components

(e.g. [23–25]). Then partial mass balance equations yield a
differential equation for porosity and a differential
constraint on relative volume changes of components.
This approach is used in particular in models describing
the plastic behavior of soils. However, results are contra-
dictory with a micro–macro approach for Biot’s poroelas-
tic model. Additionally, it reduces the number of modes of
acoustic waves which rules out its applicability in wave
analysis.
(3) An evolution equation for porosity typical for a

microstructural variable. This sort of model was proposed
by Bowen (e.g. [26,27], Bowen’s contribution to [10]). It is
based on intuitions stemming from chemistry (e.g. evolu-
tion equations for the extent of chemical reactions) and
some theories of defects (e.g. theory of dislocations with
Orowan’s equation for the density of dislocations). It does
not seem to be appropriate for soils and rocks.
(4) A balance equation following from the so-called

principle of equilibrated pressures introduced by Goodman
and Cowin [28] and modified by Fang [29], Hutter and
Kirchner [30] (e.g. for applications in theories of combus-
tion of granulates, abrasion, landslides, avalanches, etc.).
This yields a second-order partial differential equation for
porosity.
(5) A balance equation of porosity (e.g. [11,18]):

qDn

qt
þDiv J ¼ �

Dn

t
; Dn :¼ n� nE , (30)

in Lagrangian (i.e. referred to a reference configuration of
the skeleton B0) description. n is the porosity, nE is the
equilibrium porosity which must be given by a constitutive
law, J is the porosity flux which in the simplest case is
proportional to the filter velocity, i.e. it vanishes when
there is no diffusion (e.g. in thermodynamic equilibria).
The right-hand side describes the relaxation (t is the
relaxation time) which is needed in biomechanical but,
most likely, not in geotechnical applications. In the
simplest case of large relaxation times ðt!1Þ this
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3It is rather unfortunate that the constant N appears in this work in two

different meanings. On the one hand, it is identical with the shear modulus

mS in some works on Biot’s model and, on the other hand, it denotes a

material parameter describing the influence of the gradient of porosity. We

refer sporadically to the first meaning of this constant in the present work

but we use it in the model only in the second meaning.
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equation for the linear isotropic case has the form

qDn

qt
þ FdivðvF � vSÞ ¼ 0; nE ¼ n0ð1þ deÞ, (31)

where d;F are constant material parameters. They can be
easily related to compressibilities of true materials by
means of the same Gedankenexperiments which yield the
Gassmann relations for Biot’s model (see: [31] as well as
further parts of this work). The above equation has the
following solution:

n ¼ n0 1þ deþ
F
n0
ðe� �Þ

� �
. (32)

Such changes are always present in Biot’s model but not
stated explicitly. The reason is that porosity in Biot’s model
is not an independent field. It is given in terms of volumetric
strains of both components, e; �, and the material
parameters required by the above equation, d;F, follow
from material parameters present in the model (no
additional material parameters for porosity!).

2.4. Constitutive relations

In order to construct field equations by means of the
above balance equations we need in general constitutive
relations for the following constitutive quantities:

fTS;TF; p̂;J; nE ; n̂g. (33)

We have indicated already some simplifications in this set.
Instead of the tensor TF we need a constitutive relation
only for the partial pressure pF, for the porosity balance
equation we dispense with the formulation of the
constitutive problem and assume relations discussed in
the previous section. Consequently, in order to close the
system we need constitutive relations of the form

TS ¼ TSðeS; �;Dn; v
F � vS; ar; grad nÞ,

pF ¼ pFðeS; �;Dn; v
F � vS; ar; grad nÞ, (34)

and for the momentum source which we present in a linear
form with respect to vectorial variables

p̂ ¼ p̂diff �N grad n� r12ar, (35)

where p̂diff is the part determined by the relative velocity
vF � vS, N is a material parameter, and ar is the relative
acceleration (see Section 3.2). It can be shown [21] that only
the first term in (35) contributes to the dissipation (8). We
discuss the first contribution separately further in this
work. In the simplest case p̂diff ¼ p ðvF � vSÞ, where p is a
constant permeability coefficient.

The constitutive dependence on grad n is essential and
yields the possibility of the coupling proposed by Biot. The
structure of the dependence of stresses on Dn and vF � vS

will be presented in Section 3.2. For the purpose of
construction of Biot’s model we can omit the dependence
on Dn. The lack of a dependence on grad n yields the
following result [19]:

TS ¼ TSðeSÞ; pF ¼ pFð�Þ. (36)

This is the simple mixture model whose linearization yields
Biot’s constitutive relations for stresses with Q ¼ 0.
In the linear model which follows from (34) and (35) we

obtain the following relations for the partial stresses:

TS ¼ TS
0 þ lSe1þ 2mSeS þQ�1�Nðn� n0Þ1,

pF ¼ pF
0 � rF0 k��Qe�Nðn� n0Þ, (37)

where n0 is a constant reference value of the porosity, and
lS, mS, k;Q;N are material constants.3 We have incorpo-
rated in the stresses (37) the contribution of grad n

appearing in the momentum source (35). This is possible
for a constant coefficient N which is the case in the linear
model. We discuss the role of the additional material
parameter N further in the section on Gassmann relations.
However, it should be stressed that it may vanish in a linear

model.
Bearing the above relations in mind we see that the set of

balance equations (19), (23), (27), (30), for two scalars, two
vectors and one tensors form the set of field equations for
the fields feS; �; n; vS; vFg. Clearly, if we introduce the
displacement vector uS then we can dispense of the tensor
equation for eS, and the momentum balance equation for
the skeleton becomes second-order equation for this
displacement.
This completes the general remarks on the construction

of a two-component model for poroelastic materials. In the
following sections we concentrate on Biot’s model.

3. Remarks on Biot’s model

3.1. Coupling through partial stresses, simple mixture model

We proceed to discuss question (1) listed in the
preliminaries. Already in his first paper in 1941 on
consolidation Biot introduced the constitutive coupling
between partial stresses in the skeleton and fluid pressure
through volume changes of the respective components. We
write these relations in the notation commonly used in
classical elasticity and fluid mechanics. As indicated in the
last section, if we neglect the influence of the gradient of
porosity (N � 0 in (37)) we obtain for the partial stresses
TS in the skeleton and TF in the fluid

TS ¼ TS
0 þ lSe1þ 2mSeS þQ�1; e ¼ tr eS,

TF ¼ �pF1; pF ¼ pF
0 � rF0 k��Qe; � ¼

rF0 � rF

rF0
, (38)



ARTICLE IN PRESS

Table 1

Material elastic parameters

Wilmanski (present work) lS mS k Q

Stoll [33] K G M C

Biot [7] A N R Q

Biot [34] lc m M a
Bourbie et al. [35] lf m M b
Allard [36] P N R Q
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where lS; mS correspond to the classical Lamé constants, k
is the compressibility of the fluid component, and Q is
Biot’s coupling constant. Of course, these relations are
macroscopic and, for this reason, material parameters are
effective macroscopic material parameters which depend on
the initial porosity n0.

We quote here another form of these constitutive
relations which possesses a particular practical bearing.
First of all, we can use the variable z, the increment of fluid
content, instead of the volume change of fluid, �. Bearing
relation (25) in mind, we obtain

T � TS þ TF

¼ T0 þ ðl
S
þ rF0 kþ 2QÞe1þ 2mSeS �

Qþ rF0 k
n0

z1,

T0 ¼ TS
0 � pF

0 1,

p ¼
1

n
pF

�
1

n0
1�

n� n0

n0

� �

� n0p0 � ðQþ rF0 kÞeþ
rF0 k
n0

z
� �

; p0 ¼
pF
0

n0
, ð39Þ

where according to (32),

n� n0

n0
¼ de�

F
n2
0

z. (40)

If the initial pore pressure, p0, is much smaller than the
material parameters ðQþ rF0 kÞ=n0, rF0 k=n2

0 then we can
neglect the contribution following from changes of
porosity. We obtain finally:

T ¼ T0 þ Ke1þ 2Gdev eS � Cz1; dev eS ¼ eS � 1
3

e1,

(41)

K ¼ lS þ 2
3
mS þ rF0 kþ 2Q; C ¼

Qþ rF0 k
n0

; G ¼ mS,

p ¼ p0 � CeþMz; M ¼
rF0 k
n2
0

. (42)

This form shows clearly that stresses consist of equilibrium
parts given by the deformation tensor eS and none-
quilibrium parts given by the increment of fluid contents
z (comp. (26)). Consequently, one cannot expect to obtain
the field equations based on the above constitutive
relations by means of any variational principle. It is long
known (e.g. comp. [32]) that a variational principle yields
the invariance with respect to time reversal and hence
cannot be formulated for irreversible processes. Biot
applied the variation of the stress potential to obtain
relations (41), (42) but this is, of course, not the variational
principle—equations of motion are not following from the
stationarity of any functional constructed by means of this
potential.
Biot has been also using in his first work on consolida-
tion [3] a different set of constants but these seem to be
abandoned and we shall not quote them here. In Table 1
below we have collected some parameters used in different
works on Biot’s model.
where K ;G;M ;C of Table 1 are given by relations (42)

and

A ¼ lS; N ¼ mS; R ¼ rF0 k,

lc ¼ lS þ rF0 kþ 2Q; m ¼ mS; a ¼ n0
rF0 kþQ

rF0 k
,

lf ¼ lS þ rF0 kþ 2Q; b ¼ n0
Qþ rF0 k

rF0 k
� a,

P ¼ lS þ 2mS � Aþ 2N. (43)

As indicated in Section 1.3, the thermodynamic derivation
of constitutive relations for stresses requires a special
construction of constitutive relations in the nonlinear case.
Namely, we have to include a dependence on higher
gradients in order to obtain the coupling term described in
the above relations by the constant Q.

3.2. Dependence on relative accelerations

We turn now our attention to question (2) listed in the
preliminaries. As proposed by Biot it is assumed that
momentum balance equations contain a contribution of
relative accelerations (comp. (1)). This implies that the
matrix of partial mass densities is not diagonal. The off-
diagonal part is assumed to be symmetric, i.e. this
additional contribution is described by a material para-
meter r12. It is easy to check that such a contribution
violates the principle of material objectivity [13]. However,
one may construct a nonlinear model which is materially
objective and reduces in the linear limit to the Biot
contribution (for details see [21]).
Such a nonlinear objective model with a contribution of

relative accelerations is thermodynamically admissible if
we add some nonlinear terms to partial stresses and to the
free energy. They reflect in the simplest manner the
existence of fluctuations of the microstructural kinetic
energy caused by the heterogeneity of momentum in the
representative elementary volume. The existence of such
fluctuations as a result of tortuosity of porous materials
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has been indicated by Coussy [37]. There exist some
attempts to derive Biot’s model with the contribution of
relative acceleration by means of Hamilton’s principle
based on the fluctuation kinetic energy. As the true
variational principle does not hold for dissipative systems
the dissipation through fluctuation and diffusion is
accounted for by a pseudo-potential and a pseudo-
variational principle. This does not seem to be the right
way of handling irreversible processes, and it is appropriate
to rely rather on nonequilibrium thermodynamics. In this
section, we present only the main idea in order to specify
the position of Biot’s model.

In classical mechanics the space of motion is isometric,
i.e. the distance of two arbitrary points, say x1;x2, must be
the same for all reference systems. If the position vectors of
these two points in another reference system are described
by x�1;x

�
2 then this condition means jx1 � x2j ¼ jx

�
1 � x�2j.

This means that there exist a time-dependent orthogonal
matrix (the matrix of rotations) OðtÞ and a time-dependent
vector cðtÞ (the vector of translation of the origin) such that
the change of the reference systems is described by the
transformation

x� ¼ OðtÞxþ cðtÞ; O�1 ¼ OT (44)

for an arbitrary point x of the space of motion. This
transformation yields rules of the transformation for
different quantities appearing in continuum thermody-
namics. For instance, scalars do not react on such a
transformation and the velocity fields, vS; vF, their time
derivatives (accelerations in linear models), the Almansi–
Hamel deformation tensor, eS, and the stress tensor
transform in the following way:

vS� ¼ OvS þ _Oxþ _c; vF� ¼ OvF þ _Oxþ _c,

_O ¼
dO

dt
; _c ¼

dc

dt
,

¼) vF� � vS� ¼ OðvF � vSÞ, (45)

qvS�

qt
¼ O

qvS

qt
þ 2 _OvS þ €Oxþ €c,

qvF�

qt
¼ O

qvF

qt
þ 2 _OvF þ €Oxþ €c,

¼)
qvF�

qt
�

qvS�

qt
¼ O

qvF

qt
�

qvS

qt

� �
þ 2 _OðvF � vSÞ, (46)

eS� ¼ OeSOT; TS� ¼ OTSOT. (47)

Due to the presence of time derivatives of O and c in their
transformation rules we say that velocities and accelera-
tions are not objective and the relative velocity, the
deformation tensor as well as the stress tensor are
objective.

The principle of material objectivity requires that
constitutive relations are not influenced by transformation
(44). This means that, for instance, a classical constitutive
law for elastic materials should transform in the following
way:

TS ¼TSðeSÞ¼)TS� ¼TSðeS�Þ

¼)OTSðeSÞOT
¼TSðOeSOT

Þ. ð48Þ

It is important that the constitutive function TS is the same
in untransformed and in transformed relations. It is easy to
see that the linear relation for p̂ applied by Biot is not
invariant (materially objective) due to the presence of the
relative acceleration in the form of the difference (46).
It can be shown [21] that the following nonlinear

definition of the relative acceleration is objective:

ar ¼
q
qt
þ vS � grad

� �
ðvF � vSÞ

� ½ð1� zÞ grad vF þ z grad vS	ðvF � vSÞ

¼) a�r ¼ Oar, (49)

where z is an arbitrary constitutive parameter, not
necessarily constant. Consequently, this acceleration can
be used as a constitutive variable similarly to, say,
deformation tensor eS or the relative velocity vF � vS. Let
us remark that the structure of the above definition
reminds the well-known structure of objective time
derivatives used in rheology.
Thermodynamic analysis presented in [21] yields the

following conclusions for the intrinsic part of Helmholtz
free energy function c and for the partial stress tensors
TS;TF:

rc ¼ rScS
þ rFcF

�
b
F

JSD2
n �

1

2
r12ðv

F � vSÞ � ðvF � vSÞ,

TS ¼ TS
Bðe

S; �Þ þ bDn1� zr12ðv
F � vSÞ � ðvF � vSÞ,

TF ¼ �pF
Bðe; �Þ1� bDn1� ð1� zÞr12ðv

F � vSÞ � ðvF � vSÞ,

(50)

where the contributions TS
B, pF

B lead to the Biot constitutive
relations for partial stresses after linearization. Hence,
neither the Helmholtz free energy c nor partial stresses TS,
TF depend on the relative acceleration ar. Solely in the
source of momentum (35) this dependence is linear and
leads in Biot’s model to the contribution with the added
mass coefficient r12.
It is clear that the Helmholtz free energy is not a potential

for partial stresses even though it is for the internal energy
(¼ c� Tðqc=qTÞ, T—absolute temperature) and for the
entropy ð¼ �qc=qTÞ. However, it is interesting to see that
the total Helmholtz free energy splits into partial energies,
a contribution of nonequilibrium changes of porosity and
an interaction term related to the velocity of diffusion. The
latter is attributed to the macroscopic influence of
fluctuations of microscopic kinetic energy of the fluid.
Let us note that the above form of the Helmholtz

free energy is one of a very few examples known in
thermodynamics in which it contains nonequilibrium



ARTICLE IN PRESS
K. Wilmanski / Soil Dynamics and Earthquake Engineering 26 (2006) 509–536 519
contributions. This is the reason that it is not a potential
for stresses and, simultaneously, it confirms the statement
that such models cannot be constructed by any true
variational principle.

The above constitutive relations contain not only a
nonlinear contribution related to the added mass r12 but
also a linear contribution of the deviation Dn of porosity
from its equilibrium value. It can be shown that the
material coefficient b is so small that this term can safely be
neglected in the linear model [16]. However, it plays an
important role in the description of the structure of
nonlinear waves which we do not discuss in this note.

Values of the coefficient r12 were investigated in the
literature and usually it is assumed that they are related to
the porosity. This is rather strange because for the same
value of porosity n0 the curvature of channels may vary
almost arbitrarily and this means that one cannot expect
any relation between r12 and n0. In spite of this objection,
some of these semi-empirical relations seem to correspond
rather well with experimental data. We use further the
relation proposed by Berryman [38]

r12 ¼ rF0 ð1� aÞ; a ¼
1

2

1

n0
þ 1

� �
i.e. aX1; r12p0.

(51)

We conclude that the contribution of added mass r12
proposed by Biot is nonobjective but, simultaneously, this
nonobjectivity results from neglecting nonlinear terms to
the objective relative acceleration. Consequently, it can be
accepted in the linear model provided we refer the motion
to inertial reference systems. The transformation to non-
inertial systems, convenient, for example, in the description
of processes in a centrifugal motion, cannot be performed
on Biot’s equations of motion, and we have to account
carefully for the above arguments.
4Biot writes only the x-component of this equation but his remark in

Section 3 makes clear that the other two components should be analogous.

The components of the stress tensor TS are denoted: ðsx; ty; tzÞ on the x-

plane and the notation for other components is not introduced. Instead of

our coefficient p Biot uses b. The partial pressure pF is denoted by �s.
5The paper of Bedford et al. [39] contains a typical argument concerning

the frequency dependence. As they write after relation (2) coefficients p
and r12 (b and �c in their notation) are constitutive constants. Then, in

Section 1, the following simple motion is considered by the authors. The

one-dimensional displacements us and uf are assumed to be independent of

the spacial variable and to have the form us ¼ eiot and uf ¼ Ueiot where U

is a complex constant. The substitution in Biot’s equations yields in our

notation the compatibility conditions (relations (6) and (7) in the above

quoted paper)

p ¼ rF0o Im
U

U � 1
; r12 ¼ rF0 Re

U

U � 1
.

Hence, the ‘‘constitutive constants’’ are no longer constant and, if we

inverse the Fourier transform ðo! tÞ, constants become functions of

time!
3.3. Structure of momentum source, diffusion, tortuosity

Now we discuss question (4) stated in the preliminaries.
It was a great discovery of Biot that the momentum source
p̂ should be not only dependent on the relative velocity
(diffusion) but it should also be variable due to the
morphology of pores and the true viscosity of the fluid.
This dependence yields a frequency dependence of the bulk
permeability (diffusion) coefficient for monochromatic
waves. By means of a simple analysis of flows caused by
harmonic vibrations in a particular geometry of the
microstructure Biot showed that this influence may be
neglected in the range of low frequencies where both
components move in a synchronized way but it must be
accounted for in the range of high frequencies. His
formulae for the permeability coefficient contain the true
viscosity and some geometric properties of the microstruc-
ture. Biot speculated as well that the reason for this
dependence is not only viscosity but also a complex pattern
of the flow in channels which is attributed to tortuosity.
In order to follow Biot’s arguments let us rewrite Eqs. (1)
in the form appearing in his famous paper on acoustic
waves [7] (Eq. (6.6)):4

divTS ¼
q2

qt2
ðr11uþ q12UÞ þ p

q
qt
ðu�UÞ,

r11 ¼ rS0 � r12,

� grad pF ¼
q2

qt2
ðr12uþ q22UÞ � p

q
qt
ðu�UÞ,

r22 ¼ rF0 � r12. ð52Þ

These equations are modified in Biot’s next paper [8] in
which the coefficient p is replaced by the product of this
coefficient with the complex function F ðoÞ. The form of
this correction is derived for the microscopic Poiseuille flow
in various channels of the porous material and the real and
imaginary parts of F are plotted as functions of the
frequency. The value of F in the limit of low frequencies is
approximately one and the complex form of F must be
introduced in the range of high frequencies.
Biot’s argument is repeated in many papers on dynamics

of porous materials (e.g. see [36], Eqs. (6.52) and (5.64))5

and there exists an extensive experimental evidence which
supports Biot’s idea (e.g. see [40] for a brief review).
The problem is that the correction of equations by

introducing the frequency-dependent complex permeabil-
ity, say pF ðoÞ, is mathematically inappropriate. After such
a correction, solutions of the equations of motion would
have to be complex. In addition, the functions appearing in
these equations are defined on different spaces: some of
them are time dependent and some other frequency
dependent and this is, of course, mathematically not
correct. Papers concerning this subject avoid the problem
by writing the Fourier transform of Eqs. (52) in which the
variable of the Fourier transformation is identified with the
frequency appearing in F.
The above remarks indicate the necessity of a correction

in the formulation of the problem and this, as a matter of
fact, was already suggested by Biot himself. Namely, the
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influence of relative velocities in the macroscopic model
should have a form reflecting viscous-like effects following
from obstacles for the motion of the real fluid in channels.
It means that, similarly to viscoelastic materials, one
should expect a kind of hereditary integral describing the
momentum source.

In spite of their practical importance explicit relations
for the bulk permeability p are not needed in the
macroscopic construction of such a model. They may be
adjusted to experiments or selected by means of some
analysis of microstructure in particular problems (e.g. see:
[41]). It is only essential in the linear model to account for
their changes in time as a dynamic process goes on. This
can be done in the same way as it is done for viscoelastic
properties of solids (e.g. [42]). We proceed to construct
such a model of momentum sources.

To this end, the second law of thermodynamics indicates
the following dissipation inequality:

p̂diff � wX0; w :¼vF � vS. (53)

Consequently, p̂diff must be odd in the relative velocity.
Within a linear model of isotropic materials it has then the
following form for a constant relative velocity w,

p̂diff ðw; tÞ ¼ p ðtÞw, (54)

which indicates a smallness of the relative velocity.
Knowledge of this single-step response function pðtÞ is
sufficient to predict an output p̂diff for an arbitrary
constant input w. Let us note that the time dependence
of the permeability coefficient p should be invariant with
respect to the translation of the origin of the time axis. This
means that t is the time lag since application of the
constant relative velocity w. An input wðtÞ ¼ w0Hðt� t0Þ,
where Hðt� t0Þ is the Heaviside function would lead to the
output p̂diff ¼ pðt� t0Þw0. Consequently, for the two-step
history

wðtÞ ¼ Hðt� t1ÞDw1 þHðt� t2ÞDw2, (55)

the output must have the following form:

p̂diff ðtÞ ¼ p1ðt; t1; t2ÞDw1 þ p2ðt; t1; t2ÞDw2. (56)

This expression is valid for all constant increments of the
relative velocity. Hence, it holds in particular for Dw2 ¼ 0.
Then the momentum source must be pðt� t1ÞDw1. In the
same way we identify the second contribution and it
follows

wðtÞ ¼
X2
a¼1

Hðt� taÞDwa¼) p̂diff ðtÞ ¼
X2
a¼1

paðt� taÞDwa.

(57)

Certainly, the same argument applies for an arbitrary
number of steps. In rheology this is called Boltzmann’s
superposition principle. By means of continuity assump-
tions which are similar to those of the theory of
viscoelasticity we can approximate by step history the
response to an arbitrary integrable history of the relative
velocity. We have then

wðtÞ ¼

Z t

�1

Hðt� sÞdwðsÞ¼)p̂diff ðtÞ ¼

Z t

�1

pðt� sÞdwðsÞ,

(58)

which are the so-called Stieltjes convolutions. As we
assume invariance with respect to translation the initial
point of the relative motion can be chosen arbitrarily.
Therefore, it is convenient to set the lower limit of
integration at �1.
Integration by parts and change of variables yields

p̂diff ðtÞ ¼ pð0ÞwðtÞ þ
Z 1
0

_pðsÞwðt� sÞds; _pðsÞ:¼
qp
qs

. (59)

This constitutive relation contains the memory functional
typical for a viscous effect. The instantaneous reaction is
characterized by the initial permeability pð0Þ. After Biot’s
work [7] it is argued in the literature of the subject that this
is the only contribution in cases of monochromatic waves
of low frequency.
We demonstrate here only some simple properties of the

above relation but it is obvious that the relation for the
momentum source can be easily extended on nonlinear
models. Such extensions are known for memory materials
and we shall not present any details in this note.
Let us write relation (59) for the harmonic disturbance of

the frequency o. We obtain immediately

w ¼ w�ðxÞe�iot; p̂diff ¼ p̂
�
diff ðxÞe

�iot

¼)p̂
�
diff ¼ �io

1

pð0Þ

Z 1
0

pðsÞeios ds

� �
pð0Þw�. ð60Þ

The transform of the permeability coefficient in parenth-
eses can now be identified with Johnson’s relation [40,41]
or any other relation proposed for the permeability as a
function of frequency. This contribution appears in the
Fourier transformed momentum balance equations rather
than in the original momentum balance equations which
hold for an arbitrary time-dependent input.
The above hereditary form of the momentum source is,

as already indicated, attributed to the viscosity of the true
fluid and to the tortuosity. However, the influence of
tortuosity is assumed to lead also to an added mass effect
and, consequently, to the nondiagonal form of the matrix
of mass densities. This yields contributions of the relative
accelerations which were discussed in the previous section.
We return to this interpretation of the added mass in the
section on monochromatic waves.

3.4. Microstructural (Gassmann-like) relations

In this section we answer question (3) formulated in the
preliminaries and, simultaneously, we relate some material
parameters to material constants of true materials. In
particular, we demonstrate that the model with dependence
on the gradient of the porosity is meaningful, i.e. the
material constant N can indeed be estimated. However,
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considerations of this section do not form an immanent
part of the macroscopic model. The latter is fully described
in previous sections and its material parameters, say,
lS;mS; rF0 k;Q;N; pðtÞ; d;F or, equivalently, K ;G;M ;C;N;
pðtÞ; d;F do not have to be found from any theoretical
considerations. Such theoretical considerations are possible
only for some of these parameters and only for some
materials.

There are some attempts to derive macroscopic equa-
tions of poroelasticity from microstructure by use of
multiscaling and, consequently, by the method of homo-
genization. One of the first attempts of this sort is the work
of Burridge and Keller [43]. Their results yield the structure
of the macroscopic model which coincides with Biot’s
model but relations for material parameters are not
effective. Some further attempts (e.g. [44]) are very
sophisticated from the mathematical point of view but
they do not seem to produce results of importance in
engineering applications, either.

For granular materials there exists a procedure of
estimating parameters related to purely volumetric defor-
mations. This procedure stemming from the averaging
method over a REV yields relations between lS þ 2

3
mS or K ;

rF0 k; or M ; Q or C;N; d;F and true compressibilities of
substances, K s, K f of the solid frame and fluid components,
respectively, as well as the initial porosity, n0. Certainly,
any other combination of macroscopic parameters can
then also easily be calculated.

Such relations were considered first by Gassmann [45]
and the Gedankenexperiments from which one can system-
atically derive Gassmann’s relations for porous materials
were proposed by Biot and Willis [46]. We follow here the
considerations presented in [31]. Let us mention that a
similar method of derivation used in these considerations
has recently independently been proposed by Cheng and
Abousleiman [47] (comp. also [48]).

Description of granular materials by means of a
macroscopic model is particularly easy when a deformation
is homogeneous, spherically symmetric and the mechanical
reactions of the system reduce to pressures. Such a system
is considered in this section.

In our notation we have for such a deformation

eS ¼ 1
3e1; pS ¼ �1

3trT
S; pF ¼ �1

3trT
F (61)

and the macroscopic constitutive relations for partial
pressures are as follows (comp. (37)):

pS � pS
0 ¼ �ðl

S
þ 2

3
mSÞe�Q�þNðn� n0Þ,

pF � pF
0 ¼ �r

F
0 k��Qe�Nðn� n0Þ. (62)

Field equations, say (52), are in homogeneous equilibrium
identically satisfied, and the balance equation of porosity
reduces to relation (32). We shall later return to the latter.

As a boundary condition in the static case we have the
equilibrium condition of the full pressure change with a
given excess (external) pressure Dp, i.e.

Dp ¼ ðpS � pS
0Þ þ ðp

F � pF
0 Þ. (63)

Clearly the problem to find volume changes e; �, partial
pressures pS, pF, and porosity n following the loading Dp

cannot be solved yet even if we account for the relation for
porosity (32). We have only four equations at the disposal
and we need an additional equation specifying, for
instance, a flow of the fluid through the boundary of the
medium (the second boundary condition) provided the
problem remains homogeneous. This is natural for a two-
component system and we present such equations in the
sequel.
However, we proceed with the closure of the above

problem in a different way [31]. Namely we specify
properties of the microstructure and relations between
microscopic and macroscopic models. Then the problem
can be solved and additional equations mentioned above
serve solely the purpose of relating microscopic and
macroscopic properties (compatibility conditions!). Such
an approach is possible for static problems due to the
homogeneity. Then, as mentioned above, solutions of
partial momentum equations are trivial and the problem
becomes algebraic.
The microscopic model for spherical deformations is

specified as follows. Volume changes on the microscopic
level are denoted by eR, �R. Then eR describes relative true
volume changes of grains (the solid frame), and �R

describes changes of the true mass density of the fluid in
channels of the granular material. The corresponding
pressures are denoted by pSR, pFR and, of course, the
latter is identical with the pore pressure pf . For these
quantities the following microscopic constitutive relations

are assumed:

pSR � pSR
0 ¼ �K se

R; pFR � pFR
0 ¼ �K f�

R. (64)

In these relations K s, K f denote real (true) compressibility
moduli of the solid (granule) and fluid components,
respectively. In contrast to material parameters of the
macroscopic model, these can be measured independently
of a current morphology of the granular material. They are
not influenced by porosity, cohesivity, or any other
property characteristic for the texture of the medium.
The above presented macroscopic and microscopic

properties are related through two sets of compatibility
conditions. On the one hand, we have dynamic compat-

ibility relations which for pressures have the form

pS ¼ ð1� nÞpSR; pS
0 ¼ ð1� n0Þp

SR
0 ,

pF ¼ npFR; pF
0 ¼ n0pFR

0 . (65)

On the other hand, relations between partial and true mass
densities (4)

rS ¼ ð1� nÞrSR; rS0 ¼ ð1� n0ÞrSR0 ,

rF ¼ nrFR; rF0 ¼ n0rFR0 (66)
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and solutions of partial mass balance equations (comp. (18)
and (23) for the macroscopic model)

rS ¼ rS0ð1þ eÞ�1; rF ¼ rF0 ð1þ �Þ
�1,

rSR ¼ rSR0 ð1þ eRÞ�1; rFR ¼ rFR0 ð1þ �
RÞ
�1, (67)

yield immediately the following geometrical compatibility

relations:

e ¼ eR þ
n� n0

1� n0
; � ¼ �R �

n� n0

n0
. (68)

Consequently, for the nine unknown quantities of spherical
homogeneous deformations

fe; �; pS; pF; eR; �R; pSR; pFR; ng, (69)

we have nine equations at the disposal: 1 equilibrium
condition (63), two macroscopic constitutive relations (62),
two microscopic constitutive relations (64), two dynamic
compatibility relations (65), and two geometrical compat-
ibility conditions (68). This simple algebraic problem can
be solved.

If we solve the problem for changes of porosity [31] and
compare the result with the relation for porosity (32) we
obtain the following relations for the material parameters
d, F:

d ¼
KV � K

n0ðK s � K f Þ
; F ¼

ðQþ rF0 kÞ � n0K f

K s � K f
, (70)

KV :¼ð1� n0ÞK s þ n0K f . (71)

KV is the so-called Voigt compressibility modulus. Hence,
once the material parameters K ;rF0 k and Q are determined
in terms of K s, K f and n0 the relation for porosity is fully
explicit and does not require any additional material
parameters.

This result shows that the porosity is not constant in
Biot’s model but its changes are described by other
fields—namely by e and � (or z), and parameters of the
model.

According to the work of Biot and Willis [46] one can
consider three boundary value problems for the above
homogeneous case. They are called jacketed undrained,
jacketed drained and unjacketed Gedankenexperiments.

The conditions defining these Gedankenexperiments are
as follows:

(1) The jacketed undrained experiment is performed on a
sample of which the boundary is impermeable, i.e.

z ¼ 0) e ¼ �; (72)

it means that there is no flow through the boundary and,
consequently, macroscopic volume changes of both com-
ponents must be equal.

(2) The jacketed drained experiment of which the
boundary is permeable, i.e. there is a drainage of the
sample connecting the fluid component directly with the
external world. Then the excess loading Dp is carried only
by the skeleton

pFR ¼ pFR
0 ) �R ¼ 0. (73)

(3) The unjacketed experiment in which the sample is
immersed in the fluid and the pore pressure and the
external fluid pressure must be the same, i.e.

pFR � pFR
0 ¼ Dp, (74)

where Dp is a given excess pressure.
These tests are called Gedankenexperiments because

they do not have to be really performed but they are
principally possible under ideal conditions (e.g. when
capillary effects, viscosity, temperature changes, etc. can
be neglected), and, simultaneously, they lead to relations
between physical properties—in our case, between macro-
scopic and microscopic material parameters.
It is commonly assumed that in addition to microscopic

tests which deliver compressibilities K s, K f one can
measure the so-called drained compressibility modulus Kd.
This is defined as the negative fraction of the excess
pressure Dp to the macroscopic volume change e in the
drained jacketed test. Consequently, we obtain four
additional relations which together with the nine equations
listed above form a set of 13 equations for nine unknowns
(69). Hence, the system is overdetermined but can be solved
provided four parameters of the problem are related to
other parameters.
The jacketed undrained test described by (72) yields

immediately the first compatibility relation between materi-
al parameters

C1 :¼C þ
K f ðK � K sÞ �NðK � KVÞ

n0ðK s � K f Þ
¼ 0. (75)

The definition of the jacketed drained experiment yields the
second compatibility relation

C2 :¼n0 �
C

M
�

Kb

K s

1� ð1� n0ÞðK s=KbÞ

1� ½ð1� n0Þ=n0	½NC=KbM	

� 1�
NðK � n0C

n0MKb

� �
¼ 0,

Kb :¼K �
C2

M
. (76)

Simultaneously, the definition of the drained compressi-
bility modulus leads to the following third compatibility

relation:

C3:¼K � Kd � C
C �N

M � ðN=n0Þ
¼ 0. (77)

Finally, for the unjacketed test, we obtain the fourth

compatibility relation:

C4:¼ 1�
K

KW

� �
M � C �N

1� n0

n0

C

Ks

� �

þ 1�
C

KW

� �
K � C �N

1� n0

n0
1�

K

K s

� �� �
¼ 0,
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1

KW
:¼

1� n0

K s
þ

n0

K f
. (78)

The set of relations

fC1;C2;C3;C4g ¼ 0 (79)

forms four equations for four material parameters
fK ;C;M ;Ng, or equivalently for flS þ 2

3
mS; rF0 k;Q;Ng in

terms of the material parameters fK s;K f ;Kdg and the
initial porosity n0. It is nonlinear and, consequently,
possesses more than one solution. As it cannot be solved
analytically we present below some typical numerical
results. For the data used in the example there exist two
physically reasonable solutions in which all four quantities
K ;M ;C;N are real and nonnegative.

However, one analytical solution can be constructed in
the fully general case. Namely, substitution of the
parameter N ¼ 0 in fC1;C3;C4g ¼ 0 yields the following
set of equations:

K � Ks þ n0C
K s � K f

K f
¼ 0; Kd � K þ

C2

M
¼ 0,

K 1�
C

K

� �
� C þM �

MKd

KW
¼ 0. (80)

This set possesses a real positive solution which can be
found analytically and it has the form

K ¼
ðK s � KdÞ

2

ðK2
s=KWÞ � Kd

þ Kd; C ¼
K sðK s � KdÞ

ðK2
s=KWÞ � Kd

,

M ¼
K2

s

ðK2
s=KWÞ � Kd

. ð81Þ

These are the famous Gassmann relations appearing in
Biot’s model (e.g. [33]). It is rather amazing that they
satisfy identically the equation C2 ¼ 0 with N ¼ 0. Conse-
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Fig. 1. Comparison of the compressibilities K ;M (left) and of the coupling

parameter g ¼ 50 [31].
quently fK ;C;Mg given by (81) and N ¼ 0 constitute a
solution of the full system of compatibility conditions. It
yields the important conclusion that

Biot’s model of which the material parameters satisfy
the Gassmann relations is thermodynamically admissi-
ble in spite of the fact that its constitutive relations for
partial stresses do no contain a dependence on the
porosity gradient.

This property follows solely for the linear model in
which the contribution of the porosity gradient can be
incorporated in the constitutive relations for the stresses
and, simultaneously, for which the conditions of the
Gedankenexperiments can be satisfied.
As mentioned above the set of equations fC1;C2;

C3;C4g ¼ 0 for material parameters fK ;M;C;Ng cannot
be solved analytically. However, it is a rather simple
algebraic system which can be handled numerically with
any standard package. Below we show such numerical
results calculated by means of the package MAPLE 7.0.
We have chosen the following data for these calculations

K s ¼ 48� 109 Pa; K f ¼ 2:25� 109 Pa; Kd ¼
K s

1þ gn0

,

(82)

where the last empirical relation is proposed after
Geertsma (e.g. see: [49] where it is claimed that g ¼ 50
gives a good fit with experimental data for many soils).
It should be mentioned that numerical values of the

constant N lie below these of the coupling parameter Q.
The latter, as seen in Fig. 1, is much smaller than both
compressibility coefficients, K ;M. Consequently, the ap-
proximation with both constants Q and N equal to zero
may lead in some cases to reasonable results. We return to
this problem discussing acoustic properties of simple
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mixtures for which these two constants are assumed to be
zero. Incidentally, such a model would not satisfy relations
describing Gedankenexperiments and, for this reason, can
be only treated as an approximation.

On the left panel of Fig. 1 we compare directly
compressibilities K ;M for both models. Obviously the
compressibility modulus of the skeleton, K, is higher (app.
20%) for Biot’s model than it is for the full model but it is
the other way around for the compressibility of the fluid,
M.

The coupling coefficient, Q, agrees qualitatively for both
models and for the porosity n0o0:58 (Fig. 1, right panel)
but the quantitative differences are essential. This coupling
is much stronger in Biot’s model and it becomes negative in
the full model for n0\0:58. This means that an increment
of pressure would lead to an increment of volume (i.e. a
nonconvex potential of stresses) which, according to
classical arguments of continuum mechanics, yields an
instability.

Further results for different material constants and
another choice of the Geertsma parameter can be found
in [31]. It is interesting to check the numerical results for
the coefficients d and F describing the behavior of the
current porosity n (see relation (32)). These are shown in
Fig. 2. It is clear that equilibrium changes of porosity
proportional to volume changes of the skeleton e are much
bigger than nonequilibrium changes proportional to the
difference of volume changes e� � (i.e. to the increment of
fluid content z). The parameter d is app. 20 times bigger
than the nonequilibrium parameter F=n0. Changes of
porosity are apparently more significant in the range of
small initial porosities than for large initial porosities.

It is rather unfortunate that the shear modulus mS cannot
be determined by a similar simple Gedankenexperiment.
There exist some attempts to relate this macroscopic
parameter to properties of the microstructure by some
shearing experiment but results are strongly dependent on
the choice of the microstructural configuration, shape and
size of granule and many other parameters (e.g. see [49]).
4. Acoustic waves

4.1. Propagation of wave fronts

Acoustic wave analysis based on Biot’s model of porous
materials is the main subject of investigation in this field of
research. Biot’s model is not a particularly good tool to
describe the behavior of soils which, in most cases—such as
behavior of clays, landslides and avalanches, damage of
rocks, etc., yield irreversible deformations. It is applicable
in some problems of biomechanics but, in this field, one has
to account usually for large deformations—for instance,
the deformation of lungs is of the order of 70%, the
deformation of callus in the bone healing process reaches
20%. Such deformations are not described by Biot’s model.
However, it is a very efficient and reliable model for the
description of acoustic waves of small amplitude which
appear in nondestructive testing of materials and in sonar
methods. For this reason there is a vast literature on this
subject and there are many books dealing with acoustic
waves in poroelastic media (e.g. [46–48, 34]). In this note,
we aim to present only a few chosen problems of acoustics
which do not seem to achieve much attention in the works
on this subject. In particular, this concerns the influence of
parameters characteristic for Biot’s model: the coupling of
stresses (parameter Q) and the added mass effect (para-
meter r12). We omit the problems of memory effects related
to the hereditary character of momentum sources as well as
the relaxation of porosity. The former is extensively
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compatibility conditions following with the assumption of continuity of

both motions and velocities (e.g. [15]).
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discussed in the literature, the latter has not been
investigated at all.

Acoustic waves in continua are related to the propaga-
tion of a nonmaterial singular surface—the wave front S—
on which acceleration fields are discontinuous but velocity
fields remain continuous. If the latter does not hold we deal
either with shock waves or with vortex sheets.

Let us assume that the instantaneous geometry of the
front S is given by the following equation:

f ðx; tÞ ¼ 0; x 2 Bt ¼ fSðB0; tÞ � R3, (83)

which is at least of class C2 with respect to x, and of the
class C1 with respect to time t. Bt denotes the current
configuration of the skeleton. Smoothness requirements
mean that changes of the normal vector to the surface are
differentiable, and changes of curvatures are continuous.
Simultaneously, there exists a smooth speed of propagation
of the surface. In order to see these properties we use the
identity

df � dx � grad f þ dt
qf

qt
¼ 0. (84)

As the gradient of f is orthogonal to the surface (f is
constant along the surface, i.e. the vector grad f may
possess solely an orthogonal component) we can define a
unit normal vector by the relation

n :¼
grad f

jgrad f j
. (85)

The second gradient of f is related to curvatures. Bearing
relation (84) in mind we obtain for the speed of
propagation

c :¼
dx

dt
� n ¼ �

qf =qt

jgrad f j
. (86)

It is easy to see that relation (83) does not impose any
conditions on the tangential component of the velocity of
the surface. This means that the kinematics of slip motions
cannot be described by such a relation. However, this is
immaterial in the theory of waves. If the speed of
propagation c is given, then relation (86) is the nonlinear
differential equation for the function f:

qf

qt
þ cjgrad f j ¼ 0. (87)

With an appropriate initial condition for the position of
the front (i.e. f ðx; t ¼ 0Þ-given) this equation forms a
nonlinear Cauchy problem.

We proceed to present an example of analysis of weak
discontinuity (acoustic) waves for Biot’s model as well
as the ‘‘simple mixture’’ model in which both the coupling
Q and the tortuosity coefficient ða� 1Þ are assumed
to be zero. Similarly to Biot’s model the latter model
has already a rather extensive literature (for reviews of
results, see: [15,50,51]). We rewrite Biot’s equations
in slightly modified form. For the fields vS, vF, eS, �, we
have the field equations

r11
qvS

qt
þ r12

qvF

qt
¼ lSgrad tr eS þ 2mSdiv eS þQ grad �þ p̂,

r22
qvF

qt
þ r12

qvS

qt
¼ krF0 grad �þQ grad tr eS � p̂, (88)

where

qeS

qt
¼ symgrad vS;

q�
qt
¼ div vF,

r11 ¼ rS0 ½1� rð1� aÞ	; r12 ¼ rð1� aÞrS0 ; r22 ¼ rarS0,

a ¼
1

2

1

n0
þ 1

� �
; r ¼

rF0
rS0

(89)

and the source p̂ depends only on the relative velocity.
We begin the analysis of this system by proving its

hyperbolicity. To this aim we consider the propagation of
the front, S, of a weak discontinuity wave, i.e. of a
singular surface on which

½½vS		 ¼ 0; ½½vF		 ¼ 0, (90)

where ½½. . .		 denotes the jump of the quantity across S. On
such a surface accelerations may be discontinuous and we
call their jumps the amplitudes of discontinuity

aS:¼
qvS

qt

� �� �
; aF:¼

qvF

qt

� �� �
. (91)

Then the following compatibility conditions hold:6

½½grad vS		 ¼ �
1

c
aS � n; ½½grad vF		 ¼ �

1

c
aF � n,

½½grad eS		 ¼ �
1

c

qeS

qt

� �� �
� n; ½½grad �		 ¼ �

1

c

q�
qt

� �� �
n,

(92)

where c is the speed of propagation of the surface S and n

its unit normal vector. The latter gives the direction of the
propagation of the wave. The sign � denotes the tensor
product. Bearing (89) in mind we obtain immediately

½½grad eS		 ¼
1

2c2
ðaS � nþ n� aSÞ � n,

½½grad �		 ¼
1

c2
ðaS � nÞn. (93)

We evaluate the jump of the field equations (88) on the
surface S. This immediately yields

ðr11c21� lSn� n� mSð1þ n� nÞÞaS

þ ðr12c21�Qn� nÞaF ¼ 0,
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ðr12c21�Qn� nÞaS þ ðr22c21� krF0 n� nÞaF ¼ 0. (94)

This is clearly an eigenvalue problem. We say that
system (88) is hyperbolic if the eigenvalues c are real and the
corresponding eigenvectors ½aS; aF	 are linearly indepen-
dent. We prove that this is indeed the case.

It is important to observe that the above eigenvalue
problem is independent of the momentum source p̂. As this
source is the only quantity which contributes to the
dissipation it means that the propagation of the wave
fronts is independent of the diffusion, i.e. the speeds of
propagation are the same for thermodynamic equilibrium
and nonequilibrium processes. We see further that this
property does not extend to attenuations.

It is convenient to separate the transversal and long-
itudinal parts of problem (94). The transversal part follows
if we take the scalar product of Eqs. (94) with a vector n?
perpendicular to n. We obtain

ðr11c2 � mSÞaS
? þ r12c2aF

? ¼ 0,

r12aS
? þ r22aF

? ¼ 0,

aS
?:¼a

S � n?; aF
?:¼a

F � n?. (95)

Hence we have for the speed of the front

c2 ¼
r22

r11r22 � r212
mS. (96)

As r2240, mS40, the first condition for hyperbolicity of the
set (88) follows to be

a� rð1� aÞ40. (97)

This condition is obviously fulfilled because r40 and a is
not smaller than 1 (see (51)). The speed of propagation (96)
describes the shear wave. It is easy to see that in the
particular case without the influence of tortuosity a ¼ 1
this relation reduces to the classical formula

c ¼ cS ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
mS=rS0

q
. (98)

In this case, according to (95)2, the amplitude in the fluid
aF
? is zero, i.e. the shear wave is carried solely by the

skeleton.
We proceed to the longitudinal part. Now we take the

scalar product of relations (94) with the vector n. It follows

ðr11c2 � ðlS þ 2mSÞÞaS � nþ ðr12c2 �QÞaF � n ¼ 0,

ðr12c2 �QÞaS � nþ ðr22c2 � krF0 Þa
F � n ¼ 0, (99)

and the dispersion relation is as follows:

r½ð1� rð1� aÞÞc2 � c2P1	 ½ac2 � c2P2	 � rð1� aÞc2 �
Q

rS0

� �2
¼ 0,

(100)

where

c2P1:¼
lS þ 2mS

rS0
; c2P2:¼k. (101)
The eigenvalues of this problem have the form

c2 ¼
1

2r½a� rð1� aÞ	
½A


ffiffiffiffi
B
p
	, (102)

where

A:¼rac2P1 þ ½1� rð1� aÞ	rc2P2 � 2
Q

rS0
rð1� aÞ,

B:¼A2 � 4r½a� rð1� aÞ	 c2P1c
2
P2r�

Q2

rS2
0

� �
. (103)

It can be easily shown that under condition (97) B40 for
all aX1; QX0. However, c2 defined by (102) is positive
only if the additional condition

QprS0
ffiffi
r
p

cP1cP2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rF0 kðl

S
þ 2mSÞ

q
, (104)

on Q is satisfied. This is the second condition for

hyperbolicity.
If a ¼ 1, Q ¼ 0 then c is equal to either cP1 or cP2 which

means that the set is unconditionally hyperbolic.
The two solutions for c2 define two longitudinal modes

of propagation, P1 and P2. The P2-mode, called the Biot
wave or the slow wave in the theory of porous materials, is
also known as the second sound and it appears in all two-
component systems described by hyperbolic field equa-
tions. For instance, it is known in the theory of binary
mixtures of fluids which is applied to describe dynamic
properties of liquid helium. For porous materials, it has
been discovered by Frenkel in 1944 [5]. After the derivation
of the dispersion relation for monochromatic waves—we
consider this problem in the next subsection—he wrote:
‘‘. . .for large values of the parameters z ¼ m=k (� p in our
notation) one of the roots corresponds to waves with a very
small damping, and the other—to waves with a very large
damping. The waves of the second kind are thus really
nonexistent’’. He did not consider these waves any further
and they were discovered again by Biot in 1956 [7].
4.2. Monochromatic bulk waves, low and high frequency

limits, attenuation

The above analysis yields solely the propagation proper-
ties of the wave front S. We do not learn anything about,
for instance, the attenuation of waves. For this reason we
proceed to analyze monochromatic waves. As we will see,
the speeds of propagation obtained above follow in the
limit of frequency o!1.
For simplicity we leave out the memory effect in the

source of momentum. This simplification affects the
behavior of attenuation in the high frequency range but
speeds of monochromatic waves change only little. It
means that we assume the source to have the form

p̂ ¼ pðvF � vSÞ, (105)

where the permeability coefficient p is constant.
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We seek solutions of Eqs. (88) in the form of the
following plain monochromatic waves of given fre-
quency, o:

vS ¼ VSE; vF ¼ VFE; eS ¼ ESE; � ¼ EFE,

E:¼ exp½iðk � x� otÞ	, (106)

where VS, VF, ES, EF are constant complex amplitudes,
and k is the wave vector. This should be understood in the
following way: the wave number, k:¼

ffiffiffiffiffiffiffiffiffi
k � k
p

¼

Re k þ iIm k, is complex and the direction of propagation
n:¼k=k real which yields exp ðik � xÞ ¼ exp ð�Imkðn � xÞÞ

exp½iðRe kðn � xÞ � otÞ	, i.e. the function E splits into
contributions of attenuation and progressive wave.

Substitution of this ansatz in the field equations yields
the following compatibility conditions:

½r11o
21� lSk� k� mSðk21þ k� kÞ þ ipo1	VS

þ ½r12o
21�Qk� k� ipo1	VF ¼ 0,

½r12o
21�Qk� k� ipo1	VS

þ ½r22o
21� krF0 k� kþ ipo1	VF ¼ 0. ð107Þ

The problem of existence of such waves reduces, as
usual, to the eigenvalue problem with the eigenvector
½VS;VF	. As in the case of propagation of fronts, we split
the problem into two parts: in the direction k? perpendi-
cular to k (transversal modes) and in the direction of the
wave vector k (longitudinal modes).

For transversal modes (monochromatic shear waves) we
have

½r11o
2 � mSk2

þ ipo	VS
? þ ½r12o

2 � ipo	VF
? ¼ 0,

k2
¼ k � k,

½r12o
2 � ipo	VS

? þ ½r22o
2 þ ipo	VF

? ¼ 0,

VS
? ¼ VS � k?; VF

? ¼ VF � k?. (108)

The dispersion relation can in this case be written in the
following form:

o ðr11r22 � r212Þ
o
k

	 
2
� mSr22

� �

þ ip ðr11 þ r22 þ 2r12Þ
o
k

	 
2
� mS

� �
¼ 0, ð109Þ

i.e.

o
k

	 
2
¼

oraþ iðp=rS0Þ
or½a� rð1� aÞ	 þ iðp=rS0Þð1þ rÞ

c2S; c2S ¼
mS

rS0
.

(110)

Consequently, neither the phase speed o=Re k nor the
attenuation Im k of monochromatic shear waves are
dependent on the coupling coefficient Q.
In the two limits of frequencies we have then the
following solutions:
o! 0 :

lim
o!0

o
Rek

	 
2
¼

mS

rS0 þ rF0
; lim

o!0
ðIm kÞ ¼ 0,

r11 þ r22 þ 2r12 � rS0 þ rF0 ,

o!1 :

lim
o!1

o
Re k

	 
2
¼

r22
r11r22 � r212

mS,

lim
o!1
ðIm kÞ ¼

p

2
ffiffiffiffiffiffiffiffiffiffi
rS0m

S

q 1

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

a� rð1� aÞ

r
. (111)

The first result checks with results of the classical one-
component model commonly used in soil mechanics. The
denominator rS0 þ rF0 indicates that both components move
in phase. This gives rise to the lower speed of propagation
than in the limit of infinite frequencies. The speed in the
second one is identical with this of formula (96). Hence
the propagation of the front of shear waves is identical
with the propagation of monochromatic waves of in-
finite frequency. Notice that the attenuation in this limit is
finite.
We demonstrate further properties of these monochro-

matic waves on a numerical example.
In the direction k, for longitudinal modes, we obtain the

dispersion relation

½r11o
2 � ðlS þ 2mSÞk2

þ ipo	½r22o
2 � krF0 k2

þ ipo	

� ðr12o
2 �Qk2

� ipoÞ2 ¼ 0. ð112Þ

It is convenient to write this relation in the following form:

o ½1� rð1� aÞ	
o
k

	 
2
� c2P1

� �
a

o
k

	 
2
� c2P2

� �

þ
1

r
i
p
rS0

o
k

	 
2
ð1þ rÞ

o
k

	 
2
� rc2P2 � c2P1 � 2

Q

rS0

� �

�
1

r
o rð1� aÞ

o
k

	 
2
�

Q

rS0

� �2

¼ 0. ð113Þ

Let us check again the two limits of frequencies: o! 0
and 1. In the first case the first contribution in (113)
identically vanishes and we obtain
o! 0 :

c0:¼ lim
o!0

o
Rek

	 

,

c20 ð1þ rÞc20 � rc2P2 � c2P1 � 2
Q

rS0

� �
¼ 0; lim

o!0
ðIm kÞ ¼ 0.

(114)
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Obviously, we obtain two real solutions of this equation

lim
o!0

o
Re k

	 
2����
1

:¼C2
0P1 ¼

c2p1 þ rc2p2 þ 2ðQ=rS0Þ

1þ r

�
lS þ 2mS þ rF0 kþ 2Q

rS0 þ rF0
,

lim
o!0

o
Re k

	 
2����
2

:¼c20P2 ¼ 0. (115)

These are squares of the speeds of propagation of two
longitudinal modes in the limit of zero frequency. Clearly,
the second mode, P2-wave, does not propagate in this
limit. Both limits are independent of the tortuosity
coefficient, a. Result (115) checks with the relation for
the speed of longitudinal waves used in the classical one-
component model of soil mechanics provided Q ¼ 0. Again
the components move in phase.

In the second limit case we have
o!1 :

c1:¼ lim
o!1

o
Re k

	 

,

rf½1� rð1� aÞ	c21 � c2P1gfac21 � c2P2g

� rð1� aÞc21 �
Q

rS0

� �2

¼ 0. ð116Þ

This coincides with relation (100). Consequently, the limit
o!1 gives indeed the properties of the front of acoustic
longitudinal waves in the system.

Simultaneously we obtain the following attenuation in
the limit of infinite frequencies:

lim
o!1
ðIm kÞ ¼

pG1

2rS0rG2

,
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Fig. 3. Speed of propagation and attenuation of monochromatic S-waves for t

[21].
G1 ¼ c1 1þ r�
1

c21
c2P1 þ rc2P2 þ 2

Q

rS0

� �� �
,

G2 ¼ c2P1 a�
c2P2
c21

� �
þ c2P2 1� rð1� aÞ �

c2P1
c21

� �

þ 2
Q

rS0
1� a�

Q

rrS0c21

� �
. ð117Þ

Hence both limits of attenuation for the P1-wave and the
P2-wave are finite.
Let us mention that in many works on wave analysis the

attenuation of waves is measured not by the imaginary part
of the wave number Im k but by the so-called quality factor
Q (unfortunately, the notation is the same as for the Biot
coupling parameter!) which is proportional to o=Im k.
Consequently, for a finite limit of Im k in o!1 the
quality factor in this limit becomes infinite (i.e.
limo!1 1=Q ¼ 0). For this reason, it is sometimes claimed
that waves are not attenuated in this limit. Physically, this
statement does not make sense as the dissipation in the
system, responsible for the attenuation, is different from
zero for any monochromatic wave.
We proceed with the presentation of a numerical result

in the whole range of frequencies o 2 ½0;1Þ (e.g. compare
[21]). We use the following numerical data:

cP1 ¼ 2500m=s; cP2 ¼ 1000m=s; cS ¼ 1500m=s,

rS0 ¼ 2500 kg=m3; r ¼ 0:1; p ¼ 108 kg=m3s,

Q ¼ 0:8GPa; n0 ¼ 0:4; a ¼ 1:75. (118)

Speeds cP1, cP2, cS, mass density rS0 (i.e. rSR0 ¼
4167 kg=m3 for the porosity n0 ¼ 0:4) and fraction r ¼

rF0 =r
S
0 possess values typical for many granular materials

under a confining pressure of a few atmospheres and
saturated by water. In units that are standard for soil
a=1.75
a=1
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mechanics the permeability p corresponds to app. 0:1
Darcy. The coupling coefficient Q has been estimated by
means of the Gassmann relation. The tortuosity coefficient
a ¼ 1:75 follows from the Berryman formula (89)5.

Transversal waves described by relation (110) are
characterized by the distribution of speeds and attenuation
in function of frequency as shown in Fig. 3. The solid lines
correspond to the solution of Biot’s model and the dashed
lines to the solution of the simple mixture model.

It is clear that the qualitative behavior of the speed of
propagation is the same in both models. In the range of
high frequencies, it is a few percent smaller in Biot’s model
than in the simple mixture model. A large quantitative
difference between these models appears for the attenua-
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Fig. 5. Speed of propagation and attenuation of monochromatic P1-wave
tion. In the range of higher frequencies it is much smaller in
Biot’s model, i.e. tortuosity described by the added mass
r12 lowers the dissipation of shear waves.
The latter property is illustrated in Fig. 4 where we plot

the attenuation of the front of shear waves, i.e.
limo!1 Im k, as a function of the tortuosity coefficient,
a. This behavior of the attenuation indicates that the
damping of waves created by the tortuosity must be placed
in the model somewhere else. As we already indicated, Biot
did this by making the diffusion coefficient, p, dependent
on the frequency. The influence of added mass plays indeed
an important role in the theory of suspensions but,
according to the above result, it seems to be rather
doubtful if it should be included in the theory of porous
materials. We proceed to longitudinal waves. The solid
lines in the following figures correspond again to Biot’s
model, the dashed lines to the simple mixture model. In
order to show separately the influence of the tortuosity, a,
and of the coupling, Q, we plot as well the solutions with
a ¼ 1 (dashed–dotted lines) and the solutions with Q ¼ 0
(dashed double dotted lines).
Even though similar again the quantitative differences

are much more substantial for P1-waves (Fig. 5). This is
primarily the influence of the coupling through partial
stresses described by the parameter Q. The simple mixture
model ðQ ¼ 0; a ¼ 1Þ as well as Biot’s model with Q ¼ 0
yield speeds of these waves which differ only a few percent
from one another (lower curves in the left diagram). The
coupling, Q, shifts the curves to higher values and reduces
the difference caused by the tortuosity. This result does not
seem to be very realistic because the real differences
between low frequency and high frequency speeds were
measured in soils to be rather as big as indicated by the
simple mixture model. This may be an indication that
values of the coupling parameter, Q, given by Gassmann’s
relations, are too big for real granular materials.
7

6

5

4

3

2

1

0

at
te

nu
at

io
n 

of
 P

1-
w

av
es

 [1
/m

]

Q=0.8 GPa, a=1.75

Q=0, a=1

Q=0.8, GPa, a=1

Q=0, a=1.75

5.0×10+05 1.0×10+06

frequency [1/s]

s for various coupling parameters Q and tortuosity coefficients a [21].



ARTICLE IN PRESS

Q=0.8 GPa, a=1.75

Q=0, a=1
Q=0.8, GPa, a=1

Q=0, a=1.75

5.0×10+05 1.0×10+06

frequency [1/s]

Q=0.8 GPa, a=1.75

Q=0, a=1
Q=0.8, GPa, a=1

Q=0, a=1.75

5.0×10+05 1.0×10+06

frequency [1/s]

0

25

50

75

100

125

150

175

200

250

225

S
pe

ed
 o

f P
2-

w
av

es
 [m

/s
]

at
te

nu
at

io
n 

of
 P

2-
w

av
es

 [1
/m

]

1000

900

800

700

600

500

400

300

200

100

0

Fig. 6. Speed of propagation and attenuation of monochromatic P2-waves for various coupling parameters Q and tortuosity coefficients a [21].

K. Wilmanski / Soil Dynamics and Earthquake Engineering 26 (2006) 509–536530
Both the tortuosity, a, and the coupling, Q, reduce the
attenuation quite considerably as indicated in the right
panel of Fig. 5.

In spite of some claims in the literature to the contrary,
the tortuosity a does not influence the existence of the slow
(P2-) wave (Fig. 6). Speeds of this wave are again
qualitatively similar in Biot’s model and in the simple
mixture model. The maximum differences appear in the
range of high frequencies and reach 35%. The same
concerns the attenuation even though quantitative differ-
ences are not so big (app. 8%).

The above examples yield the following inferences:
ð1�Þ We have demonstrated on the example of acoustic

waves that the tortuosity coefficient, a, and the coupling
parameter, Q, have a quantitative but not a qualitative
influence on speeds and attenuations of waves. Compar-
ison of results for Biot’s model with these for the simple
mixture model in which the tortuosity a ¼ 1 and the
coupling parameter Q ¼ 0 shows that both models are
hyperbolic provided the parameter Q satisfies a condition
bounding this parameter from above. In particular, both
models predict the existence of the P2-wave. Speeds and
attenuations of monochromatic P1-, P2- and S-waves are
qualitatively the same but there are quantitative discre-
pancies.
ð2�Þ Tortuosity introduced to the model through the

relative acceleration yields dissipation solely due to the
modification of the relative motion. Namely, if we assume
the permeability coefficient p ¼ 0 the dissipation in
isothermal processes without relaxation of porosity
vanishes but an influence of relative accelerations remains
in the model. This is due to the fact that the tortuosity, in
contrast to the porosity, is not introduced as a field
described by its own field equation. This is an explanation
of a rather unexpected behavior of the attenuation of
monochromatic waves. Inspection of the figures shown in
this section makes clear that the presence of the tortuosity
aa1 yields a smaller rather than a bigger attenuation as it
would be for a dissipative field. This may be explained by
the fact that the tortuosity reduces the relative velocity
vF � vS and, consequently, it reduces the contribution to
dissipation pðvF � vSÞ � ðvF � vSÞ. This unphysical behavior
has not been indicated in the literature because in the
investigation of monochromatic waves it is covered by an
influence of the viscous effects included in the variable
permeability coefficient pðoÞ.
ð3�ÞWe have demonstrated that a rather moderate value

of the parameter Q suggested by the classical Gassmann
relation for granular materials leads to an unreasonable
increment of speeds of propagation and reduction of
attenuation. In addition, the speed of propagation of
monochromatic P1-waves becomes very flat as a function
of frequency. This contradicts observations in soil
mechanics and geotechnics and indicates that the Gass-
mann relation predicts too big values of this parameter.

5. Boundary conditions and surface waves

Geotechnical and seismic applications of surface waves
demonstrate the practical importance of this branch of
acoustics. These waves enable cheap nondestructive testing
of many complex materials and yield simple engineering
methods of field investigation of soils, ground water or
searching for landmines and other obstacles. In particular,
Rayleigh waves in heterogeneous materials play an
important role. An extensive presentation of these methods
can be found in the book [52].
The analysis of surface waves in saturated porous

materials shows that poroelasticity predicts a much richer
structure of surface waves than classical elasticity which is
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the theoretical tool for classical surface waves used in
geotechnics. Possibilities related to the multicomponent
character of porous materials and different structures of
boundaries can be found in the review article [53] and in
the above quoted book (the contributions of Wilmanski,
pp. 203–276, and Albers, pp. 277–324). Simultaneously, the
analytical complexity of the problem yields the limitation
of theoretical investigations to homogeneous materials
which leaves out important modes of propagation and
essential fields of application. In this section, we present
only a very brief presentation of such waves.

5.1. Boundary conditions for poroelastic materials

The structure of field equations for poroelastic materials
indicates that we need two vectorial boundary conditions.
Namely, we have two equations following from the
momentum balance and one scalar equation for changes
of porosity. However, the latter has the general form of an
evolution equation and requires only an initial condition.

One of the vectorial boundary conditions is obvious, and
it is identical with the condition appearing in the classical
theory of elasticity. Due to the continuity of the stress
vector on the material surface we can write approximately

ðTSn� pFnÞjqB0
¼ text, (119)

where n denotes the unit vector normal to the boundary
qB0, text is a given density of the external loading. In this
relation, the approximation is connected with the relative
motion and it is twofold: in the bulk stress an influence of
diffusion is neglected and, for the bulk motion, it is
assumed that the material surface of the skeleton (true
boundary) and of the bulk medium coincide. The order of
magnitude of diffusion contributions ðmass density�
square of the diffusion velocityÞ is of the order of a few
kilopascals and can be neglected under normal conditions
in comparison with components of stresses. It should be
stressed that one cannot prescribe such a condition to each
component separately. It has been shown by Terzaghi in
his famous Gedankenexperiment ([2], see also [54]) that the
distribution of the external load text between the compo-
nents changes in time: at the initial instant the full loading
is taken over by the fluid component and then it is divided
between components in a time-dependent manner until for
the infinite time the whole external loading is carried by the
skeleton.

The second vectorial boundary condition is character-
istic for the permeable boundary of the porous material. If
this is the boundary with a fluid outside which flows out of
the porous material then two conditions must be specified.
The first one concerns the transport of mass of the fluid
through the boundary. This is assumed to be continuous
(i.e. there is no sink of the mass on the boundary) and the
amount of the fluid which flows per unit surface and in unit
time is given by a driving force. The latter is assumed to be
equal to the difference between the external pressure and
the pore pressure. Such a condition—an interfacial
counterpart of Darcy’s law—has been proposed by
Deresiewicz (e.g. [55]) in his research of surface waves. It
has the form

rF0 ðv
F � vSÞ � n� aðpF � npextÞjqB0

¼ 0. (120)

The material parameter, a (sometimes denoted by 1=T , e.g.
[56,57,53]), is the surface permeability coefficient, and it
reflects the existence of a boundary layer in the porous
material which is replaced by the condition on the
interface. It is an overall macroscopic description of this
layer which is created by the flow of the fluid component
from conditions specified by the porous material (i.e. by the
permeability p, porosity n, a geometry of the microscopic
vicinity of the boundary such as the shape of openings of
channels, their average orientation with respect to the
surface normal, etc.) to the free space of a pure fluid. It is
clear that the limit a! 0 corresponds to the impermeable
(sealed) boundary, and the limit a!1 corresponds to the
continuity of pressure in the fluid: pF ¼ n0pext. Such a
boundary condition is used, for instance, in theories of
porous materials with a rigid skeleton which are applied in
the description of various geotechnical diffusion and
seepage processes.
Considerations concerning the derivation of such a

condition on an interface between two porous materials
can be found in the work of Gurevich and Schoenberg [58].
We still need two scalar conditions to obtain a well-

posed boundary value problem. These conditions concern
the tangential components of both velocities. For an ideal
fluid, we do not have any boundary layers related to the
tangential motion and, consequently, these components
must be equal

ðvF � vSÞ � ðvF � n� vS � nÞnjqB0
¼ 0. (121)

This is not true if the fluid is viscous. Such a case was
considered by Beavers and Joseph [59] (see also [60,61])
who proposed the analogue of the Deresiewicz condition
for tangential components. We do not need this condition
in this work.

5.2. Surface waves—simple mixture model

The beginning of the research of propagation of surface
waves in porous materials goes back to the works of
Deresiewicz (e.g. [55], for further references see [52]).
Within Biot’s model he considered Rayleigh waves on the
interface porous material/fluid. This wave is similar to the
Rayleigh wave of classical elasticity but it leaks its energy
into the P2-wave. This analysis was performed in the full
frequency range. The analysis of Feng and Johnson [56,57]
for the high frequency limit revealed the existence of an
additional surface mode, an analogue of the Stoneley wave,
which is slower than the P2-wave. In addition, there exists
an additional leaky mode which is the Stoneley wave in the
outside fluid. The existence of the true surface mode is
strongly dependent on the surface permeability. A brief
review of surface modes of propagation and experimental
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methods for their investigation can be found in the paper
of Nagy [53].

In this section, we present very briefly the theoretical
construction of surface waves on the basis of the simple
mixture model [62]. It means that we assume Q ¼ 0 and
r12 ¼ 0 (i.e. a ¼ 1) in Biot’s model. In addition, we assume
that the bulk permeability p is constant. In contrast to
these simplifications, we show that the results match
qualitatively very well available results for Biot’s model.
Simultaneously, calculations for the simple mixture model
are much simpler and can be easily made in the whole
frequency range (compare the contribution of Albers in
[52] as well as [63,64]).

We use displacements for both components, uS, uF. Then
Eqs. (88) and (89) can be replaced by the set

q2uS

qt2
¼ ð1� 2c2s Þgrad div u

S þ 2c2s div grad u
S þ p

q
qt
ðuF � uSÞ,

q2uF

qt2
¼ c2f grad div u

F � p
q
qt
ðuF � uSÞ, (122)

where we use the following dimensionless notation:

t!
t

t
; x!

x

cP1t
; uS!

uS

cP1t
; uF!

uF

cP1t
; p!

pt
rS0

,

cs ¼
cS

cP1
; cs ¼

cP2

cP1
; r ¼

rF0
rS0

(123)

and definitions (98) and (101) are applied in order to
eliminate material parameters. The constant t normalizing
time is arbitrary. It may be, for instance, identified with the
inverse of one of the characteristic frequencies of the
porous medium p=2rF0 or p=2rS0.

We seek the solution by means of the following scalar
and vector potentials:

uS ¼ gradjS þ rotcS; uF ¼ gradjF þ rotcF. (124)

We consider surface waves on the plain boundary of a
semi-infinite porous medium. For such waves, we introduce
Cartesian coordinates with the z-axis perpendicular to the
boundary and oriented into the porous medium. The
boundary coincides with z ¼ 0. Then the following ansatz
for the two-dimensional problem of propagation in the
direction of the x-axis is appropriate

jS ¼ ASðzÞ exp½iðkx� otÞ	; jF ¼ AFðzÞ exp½iðkx� otÞ	,

cS
y ¼ BSðzÞ exp½iðkx� otÞ	; cF

y ¼ BFðzÞ exp½iðkx� otÞ	,

cS
x ¼ cS

z ¼ cF
x ¼ cF

z ¼ 0. (125)

Substitution into the field equations (122) yields the
following compatibility conditions:

c2f
d2

dz2
� k2

� �
þ o2

� �
AF þ i

p
r
oðAF � ASÞ ¼ 0,
d2

dz2
� k2

� �
þ o2

� �
AS � ipoðAF � ASÞ ¼ 0,

c2s
d2

dz2
� k2

� �
þ o2 þ

ipo
oþ iðp=rÞ

� �
BS ¼ 0. (126)

These ordinary differential equations can be easily solved.
Let us mention that this would not be the case for
heterogeneous materials for which material parameters are
functions of the position. This important practical problem
is solved approximately for classical Rayleigh waves [52].
For porous materials the problem has not been formulated
as yet.
We write the solution of the set in the form

AF ¼ A1
f e

g1z þ A2
f e

g2z; AS ¼ A1
s e

g1z þ A2
s e

g2z; BS ¼ Bse
zz,

(127)

where the exponents follow from (126) in the form

z
k

� �2

¼ 1�
1

c2s
1þ

ip
oþ iðp=rÞ

� �
o
k

	 
2
, (128)

and

c2f
g
k

	 
2
� 1

� �2
þ 1þ 1þ

1

r

� �
ip
o

� �
o
k

	 
4
þ 1þ c2f þ c2f þ

1

r

� �
ip
o

� �
g
k

	 
2
� 1

� �
o
k

	 
2
¼ 0. ð129Þ

These are equations for z and g. For the existence of
surface waves, we have to require that the exponents
possess negative real parts. Simultaneously, the coefficients
in (127) are related in the following way:

A1
f ¼ dfA1

s ; A2
s ¼ dsA2

f , (130)

df :¼
1

r

ðip=oÞðo2=k2
Þ

c2f ½ðg1=kÞ2 � 1	 þ ðo=kÞ2 þ ðip=orÞðo2=k2
Þ
, (131)

ds:¼
ðip=oÞðo2=k2

Þ

½ðg2=kÞ2 � 1	 þ ðo=kÞ2 þ ðip=oÞðo2=k2
Þ
. (132)

In order to see the difference in the behavior of the
exponents in low and high frequency limits, we solve Eqs.
(128) and (129) in these limits.
In the high frequency approximation we obtain

1

o
51:

z
k

� �2

¼ 1�
1

c2s

o
k

	 
2
,

g1
k

	 
2
¼ 1�

o
k

	 
2
;

g2
k

	 
2
¼ 1�

1

c2f

o
k

	 
2
, (133)

and

df ¼ ds ¼ 0. (134)

On the other hand, the limit o! 0 is singular. We
solve the problem by the method of singular perturbations.
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It follows:

o51:
z
k

� �2

¼ 1�
rþ 1

c2s

o
k

	 
2
,

g1
k

	 
2
¼ 1�

rþ 1

rc2f þ 1

o
k

	 
2
,

g2
k

	 
2
¼ 1�

rc4f þ 1

c2f ðrc2f þ 1Þ

o
k

	 
2
�

ip
o

rc2f þ 1

rc2f

o
k

	 
2
, (135)

and for the coefficients of the amplitudes

df ¼ 1�
or

ip
1� c2f
1þ rc2f

; ds ¼ �rc2f 1�
or

ip
1� c2f
1þ rc2f

� �
. (136)

Clearly, the relation for g2=k contains a singularity.
The solution for exponents (127) still leaves three

unknown constants Bs, A2
f , A1

s which must be specified
from boundary conditions.

For the contact of the porous materials with vacuum
through a sealed boundary ða ¼ 0Þ the boundary condi-
tions (119), (120) have, in dimensionless notation, the
following form:

1

rS0c2P1
T13

����
z¼0

�
1

rS0c2P1
TS

13

����
z¼0

¼ c2s
quS

1

qz
þ

quS
3

qx

� �����
z¼0

¼ 0,

(137)

1

rS0c2P1
T33

����
z¼0

�
1

rS0c2P1
ðTS

33 � pFÞ

����
z¼0

¼
quS

1

qx
þ

quS
3

qz

� �
� 2c2s

quS
1

qx
� c2f r

rF

rF0
� 1

� �����
z¼0

¼ 0, ð138Þ

q
qt
ðuF

3 � uS
3Þ

����
z¼0

¼ 0, (139)

where T13, TS
13, T33, TS

33 are components of stress tensors
and the first two conditions mean that the surface z ¼ 0 is
stress-free (far-field approximation), and the last condition
means that there is no transport of fluid mass through this
surface (impermeable boundary). uS

1, uS
3 denote the

components of the displacement uS in the direction of the
x-axis and the z-axis, respectively, while uF

3 is the z-
component of the displacement uF.

We present the solution of this boundary value problem
only in the above mentioned two limits of the frequency.
The numerical results for the whole spectrum can be found
in [63]. As the boundary conditions yield a homogeneous
set of algebraic relations we have to require that the
determinant is equal to zero. This yields the dispersion

relation which can be reduced to the following relations for
the speeds of propagation of surface waves.

For high frequencies 1=o51 we have ds ¼ df ¼ 0, and
the dispersion relation follows in the form:
PR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1

c2f

o
k

	 
2s
þ

r

c4s

o
k

	 
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

o
k

	 
2r
¼ 0, (140)

where

PR:¼ 2�
1

c2s

o
k

	 
2� �2

� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

o
k

	 
2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1

c2s

o
k

	 
2s
.

(141)

Hence for r ¼ 0 relation (140) reduces to PR ¼ 0 which
is the Rayleigh dispersion relation for single component
elastic continua. In general, Eq. (140) possesses two roots
defining two surface waves: a true Stoneley wave which
propagates with finite attenuation and with a velocity a bit
smaller than cf as well as a generalized Rayleigh wave
which is leaky (i.e. it radiates energy to the P2-wave) and
propagates with the velocity cR: cfocRocs. The Rayleigh
wave is leaky because its attenuation is unbounded, i.e.
such a wave cannot exist in the high-frequency range.
Immediately after the initiation, it transforms into bulk
waves.
These results are not very surprising because the

dispersion relation (140) is identical with the dispersion
relation for the so-called Stoneley–Scholte wave (e.g. see:
[65]). The only difference is that the real Stoneley–Scholte
wave propagates on both sides of the interface and the
above presented wave propagates solely below the bound-
ary ðz40Þ in the porous medium.
Due to the singularity in the limit o! 0 we have to

perform a singular perturbation again. The expansion with
respect to

ffiffiffiffi
o
p

yields the identity in the zeroth order and the
following relation for the higher order:

o
k

	 

2�

rþ 1

c2s

o
k

	 
2� �2
(

�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

rþ 1

c2s

o
k

	 
2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

rþ 1

rc2f þ 1

o
k

	 
2s )

þOð
ffiffiffiffi
o
p
Þ ¼ 0. ð142Þ

Clearly we obtain two solutions:
(1) A Rayleigh wave of which the velocity is different

from zero in the limit o! 0 and whose attenuation is of
the order Oð

ffiffiffiffi
o
p
Þ. The relation for the velocity is similar to

relation (141) with the velocities of bulk waves replaced by
the low frequency limits

c20P1 ¼
lS þ 2mS

rS0 þ rF0
; c20S ¼

mS

rS0 þ rF0
. (143)

Particularly we have

rþ 1

c2s
¼ c2P1

rS0 þ rF0
mS

�
c2P1
c20S

,

rþ 1

rc2f þ 1
¼ c2P1

rS0 þ rF0
lS þ 2mS þ rF0 k

�
c2P1
c20P1

. ð144Þ
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Consequently,

2�
c2P1
c20S

o
k

	 
2� �2

� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

c2P1
c20S

o
k

	 
2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

c2P1
c20P1

o
k

	 
2s
¼ 0.

(145)

(2) The Stoneley wave has a velocity of propagation of
the order Oð

ffiffiffiffi
o
p
Þ. Hence, it goes to zero in the same way as

the velocity of propagation of the P2-wave.
For a permeable boundary neither condition (137) nor

condition (139) would hold. The first condition (137) would
have to possess the right-hand side reflecting the external
pressure pext appearing in the fluid outside the porous
material. This change would appear as well in for an
impermeable boundary when we did not have the vacuum
outside.
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medium/fluid. Upper panel: velocity of surface waves as a function of

surface permeability a for limit frequencies o!1 and 0. Lower panel:

attenuation of leaky Stoneley wave as a function of frequency for different

surface permeabilities a [52].
On the other hand, condition (139) must be replaced by
the Deresiewicz condition which in the present case has the
form

rF0
q
qt
ðuF

3 � uS
3Þ � aðpF � n0pextÞ

����
z¼0

¼ 0, (146)

where pext is an external pressure.
In addition, for a permeable boundary we have to

account for the continuity of the mass flux through the
boundary. This additional boundary condition is necessary
with respect to the existence of an additional constant in
the solution for the exterior (in the range zo0).
We omit theoretical considerations for this case and refer

to [52] and the forthcoming paper by Albers [64]. The
results presented in these works support the view that the
simplification made at the beginning of this section gives
rise to excellent qualitative results which, as far as
comparable, check with earlier results of Feng, Johnson
and others obtained for the frequency limit o!1. As an
example, we present in Fig. 7 (upper panel) the relation
between velocities of propagation of three surface modes
on the permeable boundary as a function of the surface
permeability coefficient a as they follow within the simple
mixture model in the limits o!1 and 0. These results of
Albers check in all details with the results presented by
Nagy [52, Fig. 23]. As we see the true surface mode—
Stoneley wave—exists only in the range of the relatively
closed boundary. For the open boundary only leaky waves
may appear. These results are also confirmed in the new
work of Gubaidullin et al. [65] on surface waves described
by Biot’s model in the full spectrum of frequencies and the
two limit values of a.
Another result of Albers which seems to be quite new is

shown in the lower panel of Fig. 6. Namely, the attenuation
of the leaky Stoneley wave indicates the existence of
resonances at characteristic frequencies p=2rS0 and p=2rF0
which are observed experimentally (comp. Fig. 4.13 in [40])
and which are not reported in the work [66].
The above reported results must be still considered as

preliminary. The results for the simple mixture model seem
to agree quite well with the results for the full Biot model
but the problem of influence of the tortuosity remains
open. One should incorporate in the analysis the
frequency-dependent permeability pðoÞ which has not been
done yet.

6. Final remarks

The above presented review of results concerning the
structure of Biot’s model of porous materials shows clearly
that this model, in spite of its flaws, describes in the linear
way processes in poroelastic saturated materials in agree-
ment with fundamental requirements of continuum ther-
modynamics. The violation of some principles, like
thermodynamic admissibility or material objectivity, are
characteristic for many linear models including the classical
theory of elasticity and are not essential for results
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obtained in inertial reference systems. However, it shows as
well that extensions to nonlinear processes are not
straightforward and should be made by means of appro-
priate methods of continuum thermodynamics which
require, for instance, a constitutive dependence on higher
gradients and a proper definition of objective relative
accelerations. The problem of extension of the momentum
source responsible for tortuosity effects seems to be simple
as well once we have given this contribution in the linear
model in a hereditary form characteristic for viscous
effects.

In addition, many discussions and controversies in this
field of research seem to be related rather to the
interpretation of field quantities, in particular to their
microstructural interpretation, than to the physical con-
tents of the model. Therefore, it would be useful to perform
the averaging of microstructural properties in a more
realistic situation than as proposed by Biot and Willis and
presented in Section 3.4.

It seems to be also clear that it is a waste of effort to try
to construct a true variational principle as the Biot model
contains a nonequilibrium variable, the increment of fluid
contents which rules out the existence of such a principle.

Finally, it seems to be obvious that the most important
effects observed by the propagation of waves are described
not only by Biot’s model but even by its simplified version
which we call the simple mixture. It remains still a very
much open question if the P2-wave predicted by Biot’s
model may extend technical possibilities of the field
measurements. The P2-wave itself is much too strongly
attenuated to be observable under real in situ conditions
but the Stoneley surface wave whose existence is due to the
P2-wave gives rise to such new possibilities.
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