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Summary
We present a weakly nonlinear model of poroelastic materials in which deformations of both components

are assumed to be small and sinultaneously material properties depend on the current porosity. Changes

of the latter are described by the balance equation. The model is used in the description of nonlinear

waves (one-dimensional Riemann problem) created by the impact of meteorite of a moderate size. The

asymptotic method of analysis is applied.

1. Introduction

The paper is devoted to the construction of a weakly nonlinear model of a two-component
porous material. It is assumed that deformations are small but material parameters
depend on changes of porosity. The latter are described by a balance equation. This
model is used in the description of propagation of strong discontinuity waves which may
appear in soils after an impact of the meteorite of a moderate size. These are meteorites
listed in the second and third lines of the Table 1 below.
With a few exceptions the propagation of shock waves in soils has been modelled by the
application of one-component models (e.g. [1]). Some results based on the asymptotic
analysis of a two-component model have been published under the smallness assumption
of the porosity relaxation time (e.g. [3]). In this work, we present an approach in which
this assumption is not satis…ed.

2. Field equations

The fundamental …elds descibing the mechanical behaviour of the porous material are as
follows
– partial mass densities,    of the soil and of the water, respectively,
– partial velocities,   


  where we use Cartesian coordinates,

– porosity .
In addition, as we construct the set of the …rst order …eld equations, we consider the
deformation tensor of the solid component,  as the …eld as well.
These quatities have to satisfy the following set of balance equations



Table 1: Consequences of impacts of meteorites of various sizes

Impactor
diameter

Yield
(megatons)

Interval
(years)

Consequences

50 10 1
meteors in upper atmosphere

most do not reach surface

75 10-100 1000

irons make craters like Barringer Meteor

Crater (USA), stones produce airburst like

Tunguska, land impacts destroy area of

the size of cities

160 100-1000 5000

irons, stones hit the ground,

comets produce airbursts,

land impacts destroy area of the size

of large urban area (New York, Tokyo)

350 1000-10000 15000
land impacts destroy area of the size

of small states, ocean impacts produce

mild trunamis

700 10000-100000 65000
land impacts destroy area of the size

of moderate states like Virginia,

ocean impacts makes big tsunamis

1700 100000-1000000 250000
land impact raises dust with global

implication, it destroys area of the size

of large states like California or France




+



= 0



+



= 0


�



+ 



�
� 





� 

�
 � 

�
= 0


�



+ 



�
� 





+ 

�
 � 

�
= 0 (1)

�


+ 
�


+�




�
 � 

�
+
�

= 0 � = � 




� 1
2

�



+



�
= 0

where we have used the assumption on smallness of deformation of both components
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The last equation in the set (1) is the linearized form of the integrability condition.
We have used already the linear constitutive relations for the momentum source: 

�
 � 

�
,

and for the porosity source: � . In these relations  is the permeability coe�cient,
and  is the relaxation time of porosity. The ‡ux of porosity has been linearized as well:
�
�
 � 

�
, where � is the transport coe�cient for porosity.



In order to construct …eld equations we have to add constitutive relations for the partial
stresses, , in the soil, the partial pressure in the ‡uid, 

 , and the equilibrium porosity,
. We assume them to have the following form

 = 0 + 
 ()  + 2

 ()  + [ () � () (� 0)� �]  (3)

 = 0 � 0  () � ()  � () (� 0)� �  =   = � 
 = 0 (1 +  () ) 

Consequently, we have to specify the following material parameters
�
    �   

�
 (4)

They may all be functions of the current porosity, , which makes the model weakly
nonlinear.
In constitutive relations (3) we have included interactions between components through
volume changes – the parameter  introduced by M. Biot, as well as through the porosity
changes – the parameter  , introduced on the basis of thermodynamical considerations
[4]. However, we have neglected a second order contribution introduced by Signorini and
relating stresses to the second invariants of deformations. This has been argued elsewhere
to be negligible.

3. 1-D problem

In order to investigate the structure of the …eld equations we simplify the problem to
one spacial dimension. In principle, a similar analysis can be also performed for three
dimensions but the problem becomes technically much more involved.
The 1-D problem is described by the set of the following …elds

�
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�
 (5)

where  is the extension/compression of the skeleton (soil) in the -direction,  is the
relative volume change of the ‡uid,   are -components of the velocity, and � =
�  is the deviation of porosity from its equilibrium value.
Field equations for these quantities follow from (1), (3) and they have the form
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with constitutive relations
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The dependence of compressibilities + 2
3
  coupling parameters  and properties

� of porosity equation can be found from Gedankenexperiments as functions of porosity
(see: [4]). On the other hand, the nonequilibrium parameters     are assumed in the
present work to be constant. Their average values can be estimated (e.g. [5]) but little is
known about their behaviour for large changes of porosity. In Table 2, we present these
estimates of typical quantities in the case of soils saturated with water.
Bearing these estimates in mind, we can immediately …nd the orders of magnitude of
various contributions to …elds equations. These are presented in Table 3. It is seen that
the model contains two small parameters:  and 1 . The last condition is di�erent from
that used in the work [3], where it was assumed that the relaxation time  is small.

Table 2: Typical values of parameters

macroscopic time scale 0 = 10
�5 [s]

macroscopic length scale ( = 0 = 10
3 m/s)  = 10�2 [m]

reference porosity, 0 03
true mass density of solid: 0 (0 = (1� 0) 0 ) 5 � 103 [kg/m3]
true mass density of ‡uid: 0 (0 = 0


0 ) 103 [kg/m3]

e�ective Lam� coe�cient,  50 [GPa]
coe�cient of ‡uid compressibility,  106 [m2/s2]
coupling parameter, 
coupling parameter, 

02 [GPa]
02 [GPa]

coe�cient of permeabilty,  108 [kg/m3s]
coe�cient of equilibrium changes of porosity,  2 [-]
relaxation time of porosity, 
coe�cient �

1 [s]
0015 [-]

coupling coe�cient,  01 [GPa]
speeds of 1� and �waves 3 [km/s] and 1 [km/s]
changes of partial density,  � 0 1 [kg/m3]
di�usion (seepage) velocity,  �  01 [m/s]
partial pressure in ‡uid, p0
partial stresses in solid, 110

1 [MPa]
150 [MPa]

changes of porosity, � 0 10�3

Table 3: Orders of magnitude of various contributions to …eld equations
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In the dimensionless form, these parameters can be de…ned as follows
Estimates shown in Table 2 yield the following small parameters of the model
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Consequently, for our data we can rede…ne the …eld equations in terms of a single small
parameter . They have the following form
– the equations resulting from the mass balance relations
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– porosity balance equation
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where the dimensionless constitutive relations have the form
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For the data of Tables 2 and 3 the parameters of the dimensionless quantities have the
following values

 = 10�2 [m], 0 = 10
�5 [s], 0 = 10

3 [kg/m3] � = 0015 (17)

0 = 103 [m/s], 0 = 1 [GPa], 0 = 10
8 [kg/m3s], �0 = 15 � 10�2

 = 3 � 10�3



4. Governing set of equations

Now we are in the position to write the governing set of equations for the one-dimensional
…elds f     �g. They have the following form
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and 0 0 are initial values of dimensionless partial mass densities.
For typographical reasons, we have skipped the prime for the dimensionless quantities.
The inequalities (19) follow from micro/macro considerations presented in the paper [4].
The structure of this set makes clear that, for reasons of consistency of orders of magni-
tude, a weak discontinuity wave P1 or P2, i.e. for waves in which velocities are continuous
on the wave front but one of the accelerations may be not, is accompanied by a kink-like
solution for the porosity. This follows easily from momentum balance equations. Simul-
taneously, for strong discontinuities of velocity …elds (i.e. kink-like solutions) the porosity
must be expressed by the soliton-like solution. This structure has been already indicated
for another asymptotic problem in the paper [3].

5. Structure of asymptotic solutions

We construct the asymptotic solution of the Riemann problem. Technical details con-
cerning the asymptotic analysis can be found in the papers [2]. In such a solution, we
have a regular part which is a power expansion with respect to the small parameter 
and the singular part related to the "boundary layer" e�ect near the front of the wave.
This contribution is written in the form of dependence on the so-called fast variable
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where ��

  0 are smooth bounded functions, and, simultaneously, � is kink-like,

while 0 – soliton-like. They are stabilized in in…nity, i.e.
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�� = 0 (solitons),

where  is either 0 or �. Then
Proposition 1: Strong discontinuities cannot exist simultaneously for  and  , i.e.
the strong discontinuity of  yields the weak discontinuity of  , or conversely. The
propagation velocities of fronts of these two discontinuities satisfy the condition

_2
0 =

 ()

0
or _2

0 =  ()  (22)

Proposition 2: Let � =  =  = 0 and 0  0 0  0  are constant for
 = 0. Then asymptotic solutions of any accuracy with respect to  of the system (18)
exist on a …nite time interval, and they possess the following properties. They are smooth
approximations with respect to  of order O () of strong discontinuities either for   
or for      and the in…nitely thin soliton function of order O () for � along a small
perturbation of characteristics of the linearized problem to (6).
Details of these asymptotic considerations are the subject of the forthcoming paper.

6. Final remarks

The model presented in this work is able to describe the propagation of strong disconti-
nuity waves which propagate in the intermediate stage of the impact problem. It enables
the estimation of the time and the distance from the site of impact before the dynamics
of the problem is described by the usual acoustic waves in the two-component poroelastic
medium.
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